
Multiple-Pattern Matching Using
Improved Bit-Parallel Approach

K. H. Chen, G. S. Huang and R. C. T. Lee∗

Department of Computer Science and Information Engineering,
National Chi Nan University, Puli, Nantou, Taiwan.

{s95321902, shieng, rctlee}@ncnu.edu.tw

Abstract

We consider a fundamental problem testing if ev-
ery bit is zero in a bit vector in a so-called bit-parallel
machine. In this machine, a machine word can have
unlimited number of bits, and logical operations such as
bitwise-and, bitwise-or, and so on, can be done in O(1)
time. However, in each time, only one bit in a bit vec-
tor can be examined. We show how to solve this funda-
mental problem in O(1) time by using the composition
of bitwise logical operations and basic arithmetic oper-
ations, and apply this technique to solve the multiple-
pattern matching problem. Multiple-pattern matching
is the problem of finding all occurrences of patterns
in a text. There are bit-parallel algorithm Shift-And
[11] that can solve it. In this paper, we show how to
improve the performance of the Shift-And algorithm,
and accordingly, to the performance of multiple-pattern
matching under the bit-parallel machine we have ad-
dressed. Our idea is based on a key lemma from Ou
and Lee [12].

1 Introduction

We consider the multiple fixed length pattern
matching problem: Given a set P of r patterns
p1, p2, · · · , pr with lengths m respectively and a text T
with length n, find all occurrences of pi, 1 ≤ i ≤ r, in
T . Let Σ be the constant-sized alphabet. The first
algorithm which solved this problem was the Aho-
Corasick in O(n) time (AC algorithm for short) [1].
It creates a finite state machine from the set of pat-
terns P , scans each character of T and conducts a
trie searching. Based on this approach, many studies
combined it with other single-pattern matching algo-
rithms. Commentz-Walter [4] combined the idea of
the Boyer-Moore algorithm [3] and the AC algorithm
to solve the problem. Crochemore et al.[6] integrated
the ideas of the Reverse Factor algorithm [5] to the AC
algorithm. It employed two automata-theoretic tools:
an AC machine and a suffix automaton. Later, Raf-
finot developed similar algorithm, called MultiDBM
[13]. Besides the automata approach, for multiple pat-

∗To whom correspondence should be addressed.
Email:rctlee@ncnu.edu.tw

terns matching, many researchers used ”hash” tech-
nique to find possible patterns which occur in [7, 15].

Some researchers used bit parallelism to represent
patterns and text. In single pattern matching, the bit
parallel approach is very useful. Many papers used
bit parallel technique to solve this problem [2, 11]. In
[2], Shift-Or operation and KMP Algorithm were com-
bined. In [8], bit-parallel approach was combined with
Sunday’s quick searching algorithm [14]. The Shift-
And Algorithm [11] combined bit parallel approach
with the Reverse Factor Algorithm [5], but their algo-
rithm has some flaws which we will discuss later.

Our algorithm is quite similar to the Shift-And Al-
gorithm. However, we used the logical operations first
mentioned in [10] and soundly developed in [12].

The organization of this paper is as follows. In
Sect. 2, we briefly introduce the basic idea of the Shift-
And algorithm for single pattern case, and then pro-
pose the all zero vector problem arising from designing
Shift-And algorithms for multiple pattern matching in
Sect. 3. Logical operations to solve the all zero vector
problem are in Sect. 4. We also provide a complete ex-
ample of the improved Shift-And algorithm in Sect. 5.
Finally, we conclude this work in Sect. 6.

2 The Reverse Factor Algorithm
Solved by the Shift-And Tech-
nique

A comprehensive introduction of the Reverse Fac-
tor Algorithm can be found in [9]. As pointed out in
[9], the essential point in the algorithm is to find the
longest suffix of a window W of T which is equal to a
prefix of X of length m, denoted as LSP (W,X).

To use the bit parallel approach, we first define
an incidence vector B with length m. B[a] is set 1
at i-th position if and only if xi = a. For exam-
ple, let X = gtcaa. Then its mask B[a] = (00011),
B[c] = (00100), B[t] = (01000) and B[g] = (10000).
Besides, the algorithm has a bit vector D = d1 · · · dm
where the bit di after k iterations is set 1 if and only if
xi · · ·xi+k−1 = wm−k+1 · · ·wm. Initially, we initialize
di = 1, 1 ≤ i ≤ m.

To find LSP (W,X), we scan the window from right
to left. Let last be finding the latest a suffix of W
which is equal to a prefix of X. When a new character

The 27th Workshop on Combinatorial Mathematics and Computation Theory

21

in the window was scanned at the k-th iteration, we
update D. The formula to update D is as follows

D′ ← (D & B[wm−k+1]) (1)

If every bit is 0 in D, we stop. Then |LSP (W,X)| =
last if last 6= 0; otherwise, |LSP (W,X)| = 0. The
shift Ss = m− |LSP (W,X)|. If we can perform m it-
erations and d1 = 1, then we stop and report a match.
A proper suffix of a string is a suffix of the string,
but not equal to the string. Let |LPSP (W,X)| be
the length of the longest proper suffix of W which is
equal to a prefix of X. Then |LPSP (W,X)| = last if
last 6= 0; otherwise, |LPSP (W,X)| = 0. In this case,
the shift Ss = m− |LPSP (W,X)|.

If D 6= 0m and k < m, we must check whether
d1 = 1. That is, set last to be k. It means that we
have found a suffix of W which is equal to the prefix of
X with length k. Otherwise, we shift vector D one bit
to the left and fill the vacant bit to be 0. For instance,
if D = (0110), after shifting, we have D′ = (1100).
This is denoted as

D′ ← D << 1 (2)

Algorithm 1 shows a complete description of the
single-pattern matching using the Shift-And algo-
rithm.

Algorithm 1: The single-pattern matching using the
Shift-And algorithm

Input: Two strings T and X with length n and m
respectively

Output: The locations of all occurrences of X in T
begin
|LPSP (W,X)| is the length of the longest
proper suffix of the window in T which is equal
to a prefix of X.
|LSP (W,X)| is the length of the longest suffix of
the window in T which is equal to a prefix of X.
Set i = m.
Compute all of the incidence vectors B of X.
While i ≤ n do

k = 0 and last = 0.

D = 1m.

W = ti−mti−m+1 · · · ti.
|LPSP (W,X)| = 0.

While (1) do

k ← k + 1.

D ← D & B[wm−k+1].

If D = 0m, then |LSP (W,X)| = last and exit.

If k = m and d1 = 1, report an occurrence of
X at ti−m, |LPSP (W,X)| = last and exit.

If d1 = 1, then last← k.

D ← D << 1.

If D 6= 0m, then i← i + (m− |LPSP (W,X)|);
otherwise, i← i + (m− |LSP (W,X)|).

end

We give an example where it is assumed that X =

actg, T = ttcgacgt. We begin with

T = ttcgacgt,D = (1111),m = 4, n = 9, last = 0,

B[a] = (1000),

B[c] = (0100),

B[g] = (0010),

B[t] = (0001).

The first window is W = ttcg. We found D =
0m and last = 0 in 3-th iteration. Therefore,
|LSP (W,X)| = 0. We shift the window Ss = m −
|LSP (W,X)| = 4− 0 = 4. In the second attempt, we
scan W = actg. In 4-th iteration, because k = 4 = m
and last = 0, we stop and report a match. Then
|LPSP (W,X) = 0|. Ss = m − |LPSP (W,X)| =
4 − 0 = 4. The processes of two attempts are shown
in Figure 1 and Figure 2 respectively.

3 The All Zero Vector Prob-
lem Arising from Designing Bit-
Parallel Algorithms for Multiple
Pattern Matching

For multiple-patterns matching, its preprocessing
phase is like the single-pattern matching. Let the set
of patterns be P = {p1, p2, · · · , pr}. We concatenate
the patterns as follows: S = p1p2 · · · pr. For example,
let P = {cct, aca, gtc}. Then the concatenation of
S = cctacagtc.

Let us assume that we have T = accttac. For
the set of patterns, the length of each pattern is 3.
We therefore set the window to be W = T (1, 3) =
acc with length 3. For each pattern pi in P =
{cct, aca, gtc}, we now try to find LSP (W, pi). It can
be seen that |LSP (W, p1)| = 2, |LSP (W, p2)| = 0 and
|LSP (W, p3)| = 0. To find this in a bit-parallel man-
ner, let M be the total length of the patterns. We
further define an incidence vector B with length |S|.
B[a] is set 1 at i-th position if and only if si = a. For
our example where S = cctacagtc,

B[a] = (000101000),

B[c] = (110010001),

B[g] = (001000010),

B[t] = (000000100).

Let bit vector D consist of all 1’s to start with.
Since our first window is W = T (1, 3) = acc and the
rightmost character w3 is c, we perform an AND op-
eration of B[c] and D. We obtain D = (110010001)
which indicates c appears in locations 1, 2, 5 and 9 in
S. At this point, we have to examine whether D con-
tains at least one 1 because if D contains only 0, there
exists no substring of pi for any i which appears in W
and we may stop the process. Therefore, we must solve
the following All Zero Vector Problem: Given a vector
X, determine whether X contains all 0’s. The algo-
rithm of Navarro and Raffinot [11] checks all bits in
O(M) time which makes that algorithm not efficient.

The 27th Workshop on Combinatorial Mathematics and Computation Theory

22

T= t g a g tct c
W

D= 1 1 11
B[g]= 0 1 00&

k=1

1-st iteration

T= t g a g tct c
W

D= 0 0 01
B[c]= 0 0 01&

k=2

2-nd iteration

T= t g a g tct c
W

D= 1 0 00
B[c]= 0 0 10&

D= 0 1 00 D= 0 0 01 D= 0 0 00
k=3

3-rd iteration

<<1 <<1
last=0 last=0 last=0

|LSP (W, X)| = 0

Figure 1: The first attempt.

t gctT= t g a g tct c
W

D= 1 1 11
B[t]= 0 0 10&

D= 0 0 10

1-st iteration

T= a g tc
W

D= 0 1 00
B[g]= 0 1 00&

D= 0 1 00

2-nd iteration

<<1 <<1

t gctT= a g tc
W

D= 0 0 01
B[c]= 0 0 01&

D= 0 0 01

3-rd iteration

<<1

t gctT= a g tc
W

D= 1 0 00
B[c]= 1 0 00&

D= 1 0 00

Report an occurrence.

4-th iteration

k=1 k=2 k=3last=0 last=0 last=0 k=4last=0

|LPSP (X, W)| = 0

Figure 2: The second attempt.

We shall point out that we may use the bit-parallel
logical operation in [12] to solve the problem in O(1)
time. We will discuss this operation in the next sec-
tion.

There is another instance where we shall encounter
the All Zero Vector Problem. If D contains at least
1, it indicates that c does appear in one of the pi’s.
But we actually need to know whether it appears
as the first character of some pi. We use a mask
A = a1a2 · · · am where ai is set 1 if i-th position in
S is the first character of a pattern, otherwise, ai

is set 0. We then perform an AND operation of A
and D to produce a vector C. If C contains only
0, there does not exist any LSP (W, pi). For the
previous case, A = (100100100). C = A & D =
(100100100)&(110010001) = (100000000). Vector C
indicates only the first character of p1 is c. As shown
above, we have to examine whether C contains all 0’s.
Thus, we have to solve another All Zero Vector Prob-
lem here.

4 Logical Operations to Solve the
All Zero Vector Problem

Let X = (x1x2 · · ·xm) be a vector consisting of 1’s
and 0’s. In the All Zero Vector problem, we want to
check whether xi = 0 for 1 ≤ i ≤M using only logical
operations, such as AND and OR etc. By modifying
slightly the results in [12], we can use the following
formula.

Y ≡ (((X + 0M−11)⊕X) & X) (3)

In Y , y1 = 1 if and only if xi = 0 for 1 ≤ i ≤
M . Here, X is the complement vector of X and the
operation ’+’ is the binary addition from right to left.

For example, assume that X = (000000). We have

X = (111111). Then Y = (((111111) + (000001)) ⊕
(111111)) & (111111) = (11111) and y1 = 1.

For another example, assume that X = (001010).

We have X = (110101). Then Y = (((110101) +
(000001)) ⊕ (110101)) & (110101) = (000001) and
y1 = 0.

For the correctness of this approach, consult [12].

5 The Improved Shift-And Algo-
rithm

Based on Equation (3), we can easy to examine
whether the bits of D are all 0’s. Recall our case that
D = (110010001). We have D = (001101110). Then

E = (((D + 081)⊕D) & D)

= (((001101110) + (000000001))

⊕(001101110)) & (001101110)

= (000000001).

Notice that e1 = 0, which means that there exists at
least one bit which is 1 in D. We further examine
whether it appears as the first character of some pi.
We have C = A & D = (100100100) & (110010001) =

(100000000) and C = (011111111). Then

F = (((C + 081)⊕ C) & C)

= (((011111111) + (000000001))

⊕(01111111)) & (01111111)

= (01111111).

Notice that f1 = 0 indicates that the bits in C are
not all 0’s. It means that we have found a suffix of

The 27th Workshop on Combinatorial Mathematics and Computation Theory

23

W which is equal to a prefix of pi with length 1. We
set last to 1. If we can perform m iterations and also
find f1 = 0, then we report the existence of an exact
match and stop the process. Let |LPSP (W, pi)| be
the length of the longest proper suffix of W which is
equal to a prefix of pi. Then |LPSP (W, pi)| = last if
last 6= 0; otherwise, |LPSP (W, pi)| = 0.

If every bit in D is 0, we stop. Hence
|LSP (W, pi)| = last if last 6= 0; otherwise,
|LSP (W, pi) = 0|.

If D 6= 0m, we shift vector D one bit left for all
patterns and fill their vacant bits to be 0. For in-
stance, D = (110010001), A = (100100100). Then

A = (011011011). We perform an AND operation of

D and A. We obtain (010010001). After shifting one
bit, we have D′ = (100100010). This is denoted as

D′ ← (D & A) << 1 (4)

abcdef
See algorithm 2 for a complete description of the

improved Shift-And algorithm.

Algorithm 2: The improved Shift-And algorithm

Input: A text T of length n and a set P of r
patterns {p1, p2, · · · , pr} with length m.

Output: The locations of all occurrences in T
begin
|LPSP (W,pi)| is the length of the longest proper
suffix of the window in T which is equal to a
prefix of pi.
|LSP (W,pi)| is the length of the longest suffix of
the window in T which is equal to a prefix of pi.
k represents the k-th iteration.

M =
r∑

i=1

m.

Set S = p1p2 · · · pr and the mask
A = a1a2 · · · aM where ai = 1 if i-th position is
the first character of a pattern.
Compute all of the incidence vectors B of S.
Set i = m.
While i ≤ n do

k = 0 and last = 0.

D = 1M .

W = ti−mti−m+1 · · · ti.
|LPSP (W, pi)| = 0.

While (1) do

k ← k + 1.

D ← D & B[wm−k+1].

E ← ((1 + D)⊕D) & D.

If e1 = 1, then |LSP (W,pi)| = last and exit.

C ← D & A.

F ← ((1 + C)⊕ C) & C.

If f1 = 0 and k = m, report an occurrence,
|LPSP (W, pi)| = last and exit.

If f1 = 0, then last← k.

D ← (D & A) << 1.

If D 6= 0m, then i← i + (m− |LPSP (W, pi)|);
otherwise, i← i + (m− |LSP (W, pi)|).

end

S = cctacagtc,

A = (100100100),

B[a] = (000101000),

B[c] = (110010001),

B[t] = (001000010),

B[g] = (000000100),

Figure 3: The matrix B and the filter vector A.

T= a t tcc a
W

k=1

1-st iteration

0 1 10 0 1 11 0D =
0 0 00 0 0 00 1

0 1 10 0 1 11 1
⊕ 0 1 10 0 1 11 0D =

0 0 00 0 0 00 1
0 1 10 0 1 11 0D =

0 0 00 0 0 00 0
&

E =

e1

0 1 11 1 1 11 1
0 0 00 0 0 00 1

1 0 00 0 0 00 0
⊕ 0 1 11 1 1 11 1

1 1 11 1 1 11 1
0 1 11 1 1 11 1
0 1 11 1 1 11 1

&

C =

C =
+

+

C =

F =

f1last=1

<< 1

1 0 01 1 0 00 1
0 1 01 1 0 11 1

0 0 01 1 0 00 1

D =
&A =

1 0 10 0 0 10 0D′ =

1 0 01 1 0 00 1
1 0 10 0 1 00 0

1 0 00 0 0 00 0

D =
&A =

C =

1 1 11 1 1 11 1
1 0 01 1 0 00 1

1 0 01 1 0 00 1D =

D =
B[c] =&

Figure 4: The first iteration in the first attempt.

We give a complete example that T = acctta, m =
3 and P = cct, aca, gtc. The concatenation of S =
cctacagtc. In the preprocessing phase, the incidence
vectors B of S and the mask A are shown in Figure 3.

We scan the characters of window W = acc from
right to left. The rightmost character w3 is c and the
first iteration is shown in Figure 4.

In Figure 4, we found that e1 = 0 which indicates
the bits in D are not all 0’s. We further examine
whether f1 = 0. We obtain f1 = 0, which means
there exists a suffix of pi which is equal to a prefix of
W with length 1. We set last = 1.

In the second iteration, we have D = (100100010)
and the character w2 is c. We found that e1 = 0
and f1 = 0, which indicates there exists a suffix of p1
which is equal to a prefix of W with length 2. We set
last = 2. The process of the 2-nd iteration is shown
in Figure 5.

In the third iteration, we have D = (00000000)
and the character w1 is a. After computing, we
found that e1 = 1. We stop the process. Note that
|LSP (W, pi)| = last = 2. Then the shift Sm = 3−2 =
1. The process of the 3-rd iteration is shown in Fig-
ure 6.

In the second attempt, we scan the characters of
window W = cct from right to left. We start with the
rightmost character w3 = t. The process for the first
iteration in the second attempt is shown in Figure 7.

The 27th Workshop on Combinatorial Mathematics and Computation Theory

24

T= a t tcc a
W

k=2

2-nd iteration

0 1 11 1 1 11 1D =
0 0 00 0 0 00 1

1 0 00 0 0 00 0
⊕ 0 1 11 1 1 11 1D =

1 1 11 1 1 11 1
0 1 11 1 1 11 1D =

0 1 11 1 1 11 1
&

E =

e1

0 1 11 1 1 11 1
0 0 00 0 0 00 1

1 0 00 0 0 00 0
⊕ 0 1 11 1 1 11 1

1 1 11 1 1 11 1
0 1 11 1 1 11 1
0 1 11 1 1 11 1

&

C =

C =
+

+

C =

F =

f1last=2

<< 1

1 0 00 0 0 00 0
0 1 01 1 0 11 1

0 0 00 0 0 00 0

D =
&A =

0 0 00 0 0 00 0D′ =

1 0 00 0 0 00 0
1 0 10 0 1 00 0

1 0 00 0 0 00 0

D =
&A =

C =

1 0 10 0 0 10 0
1 0 01 1 0 00 1

1 0 00 0 0 00 0D =

D =
B[c] =&

Figure 5: The second iteration in the first attempt.

T= a t tcc a
W

k=3

3-rd iteration

1 1 11 1 1 11 1D =
0 0 00 0 0 00 1

0 0 00 0 0 00 0
⊕ 1 1 11 1 1 11 1D =

1 1 11 1 1 11 1
1 1 11 1 1 11 1D =

1 1 11 1 1 11 1
&

E =

e1

+
0 0 00 0 0 00 0
0 0 10 0 0 01 0

0 0 00 0 0 00 0D =

D =
B[a] =&

Figure 6: The third iteration in the first attempt.

T= a t tcc a
W

k=1

1-st iteration

1 0 11 1 1 01 1D =
0 0 00 0 0 00 1

1 0 11 1 1 11 0
⊕ 1 0 11 1 1 01 1D =

0 0 00 0 0 10 1
1 0 11 1 1 01 1D =

0 0 00 0 0 00 1
&

E =

e1

1 1 11 1 1 11 1
0 0 00 0 0 00 1

0 0 00 0 0 00 0
⊕ 1 1 11 1 1 11 1

1 1 11 1 1 11 1
1 1 11 1 1 11 1
1 1 11 1 1 11 1

&

C =

C =
+

+

C =

F =

f1last=0

<< 1

0 1 00 0 0 10 0
0 1 01 1 0 11 1

0 1 00 0 0 10 0

D =
&A =

0 0 01 0 1 00 0D′ =

0 1 00 0 0 10 0
1 0 10 0 1 00 0

0 0 00 0 0 00 0

D =
&A =

C =

1 1 11 1 1 11 1
0 1 00 0 0 10 0

0 1 00 0 0 10 0D =

D =
B[t] =&

Figure 7: The first iteration in the second attempt.

T= a t tcc a
W

k=2

2-nd iteration

1 1 10 1 1 11 1D =
0 0 00 0 0 00 1

1 0 01 0 0 00 0
⊕ 1 1 10 1 1 11 1D =

0 1 11 1 1 11 1
1 1 10 1 1 11 1D =

0 1 10 1 1 11 1
&

E =

e1

1 1 11 1 1 11 1
0 0 00 0 0 00 1

0 0 00 0 0 00 0
⊕ 1 1 11 1 1 11 1

1 1 11 1 1 11 1
1 1 11 1 1 11 1
1 1 11 1 1 11 1

&

C =

C =
+

+

C =

F =

f1last=0

<< 1

0 0 01 0 0 00 0
0 1 01 1 0 11 1

0 0 01 0 0 00 0

D =
&A =

1 0 00 0 0 00 0D′ =

0 0 01 0 0 00 0
1 0 10 0 1 00 0

0 0 00 0 0 00 0

D =
&A =

C =

0 0 01 0 1 00 0
1 0 01 1 0 00 1

0 0 01 0 0 00 0D =

D =
B[c] =&

Figure 8: The second iteration in the second at-
tempt.

In Figure 7, we found that e1 = 0 and f1 = 1, which
indicates it is no LSP (W, pi). We shift D one bit left
based on Equation (4).

In the second iteration, we have D = (010000100)
and the character w2 is c. We found that e1 = 0
and f1 = 1. We shift D one bit left and get D =
(100000000). The result is shown in Figure 8.

In the third iteration, we have D = (100000000)
and the character w1 is c. We found that e1 = 0,
f1 = 0 and k = m = 3. We report the existence of
an exact match and set |LPSP (W, pi) = 0|. Then the
shift Sm = 3− 0 = 3, which is shown in Figure 9.

After shifting, the boundary of the window is larger
than the length of T . The searching process has fin-
ished.

6 Conclusions

In this paper, we show how to solve the all-zero-
vector problem in a bit-parallel machine in O(1) time.
Based on this breakthrough, we successfully improve
the performance of the Shift-And algorithm in solv-
ing the multiple-pattern matching problem. A by-
product of this achievement is to solve the single pat-
tern matching problem, which is simply a special case
of the multiple-pattern matching problem. At the end
of this paper, we put some words to justify the mod-
eling of the bit-parallel machines. One might wonder
why we put restriction on the way to examine the con-
tent of a bit-vector one bit in each time. In fact, this
idea is inspired from quantum computing. In quan-
tum computing, a quantum bit (qubit) can actually
represent many states through a probability distribu-
tion at the same time. A qubit can be manipulated
as a single unit, and qubits can interact with one an-
other efficiently (e.g., the superposition and entangle-
ment). Moreover, the multi-state information is still

The 27th Workshop on Combinatorial Mathematics and Computation Theory

25

T= a t tcc a
W

k=3

3-rd iteration

0 1 11 1 1 11 1D =
0 0 00 0 0 00 1

1 0 00 0 0 00 0
⊕ 0 1 11 1 1 11 1D =

1 1 11 1 1 11 1
0 1 11 1 1 11 1D =

0 1 11 1 1 11 1
&

E =

e1

0 1 11 1 1 11 1
0 0 00 0 0 00 1

1 0 00 0 0 00 0
⊕ 0 1 11 1 1 11 1

1 1 11 1 1 11 1
0 1 11 1 1 11 1
0 1 11 1 1 11 1

&

C =

C =
+

+

C =

F =

f1

1 0 00 0 0 00 0
1 0 10 0 1 00 0

1 0 00 0 0 00 0

D =
&A =

C =

1 0 00 0 0 00 0
1 0 01 1 0 00 1

1 0 00 0 0 00 0D =

D =
B[c] =&

Report a match
|LPSP (W, pi)| = 0

Figure 9: The third iteration in the second at-
tempt.

kept, as long as one does not examine the content
of a qubit. However, the content of a quantum bit
quickly becomes fixed when one tries to examine it.
The key point is that this magical ability is gifted to
data items. As a contrast, the observers are still ordi-
nary and usual. Applying this idea to the bit-parallel
machine, we therefore assume all bitwise-like opera-
tions can be processed in parallel, and thus they can
be done in O(1) time. However, when we try to exam-
ine the content of a bit-vector, we do not the ability
to examine all bits at the same time since there are
unlimited number of bits inside it. We will explore
more on this interesting model for computation in the
future. We remark that one can simulate the effect
of a bit-vector of a bit-parallel machine by the tradi-
tional Random Access Machine (RAM). It would take
O(M/w) time if the length of the bit-vector is M and
a machine word has w bits.

Acknowledgment

The authors would like to thank C. S. Ou for his
generous and enthusiastic discussions on Sect. 4.

References

[1] A. V. Aho and M. J. Corasick. Efficient string
matching: an aid to bibliographic search. Com-
munications of the ACM, 18(6):333–340, 1975.

[2] R. A. Baeza-Yates and G. H. Gonnet. A new
approach to text searching. Communications of
the ACM, 35(10):74–82, 1992.

[3] R. S. Boyer and J. S. Moore. A fast string search-
ing algorithm. Communications of the ACM,
20(10):762–772, 1977.

[4] B. Commentz-Walter. A string matching algo-
rithm fast on the average. In Proceedings of
the 6th Colloquium, on Automata, Languages and
Programming, pages 118–132, London, UK, 1979.
Springer-Verlag.

[5] M. Crochemore, A. Czumaj, L. Gasieniec,
S. Jarominek, T. Lecroq, W. Plandowski, and
W. Rytter. Speeding up two string-matching al-
gorithms. Algorithmica, 12(4-5):247–267, 1994.

[6] M. Crochemore, A. Czumaj, L. Gasieniec,
T. Lecroq, W. Plandowski, and W. Rytter. Fast
practical multi-pattern matching. Information
Processing Letters, 71(3-4):107 – 113, 1999.

[7] S. Kim and Y. Kim. A fast multiple string-
pattern matching algorithm. In In Proceedings
of 17th AoM/IAoM Conference on Computer Sci-
ence, 1999.

[8] M. O. Külekci. Tara: An algorithm for fast
searching of multiple patterns on text files. In
Computer and information sciences, 2007. iscis
2007. 22nd international symposium on, pages 1–
6, Nov. 2007.

[9] R. C. T. Lee. String matching. (Unpublished),
2010.

[10] G. Myers. A fast bit-vector algorithm for approxi-
mate string matching based on dynamic program-
ming. Journal of the ACM, 46:1–13, 1999.

[11] G. Navarro and M. Raffinot. A bit-parallel ap-
proach to suffix automata: Fast extended string
matching. In Proceedings of the 9th Annual
Symposium on Combinatorial Pattern Matching,
LNCS v. 1448, pages 14–33, 1998.

[12] C. S. Ou and R. C. T. Lee. Bit-parallel opera-
tions to investigate properties of logical vectors
by logical operations. (Unpublished), 2010.

[13] M. Raffinot. On the multi backward dawg match-
ing algorithm (multibdm). In In: R. Baeza-
Yates, Editor, Proc. 4th South American Work-
shop on String Processing, Carleton University
Press, pages 149–165, 1997.

[14] D. M. Sunday. A very fast substring search algo-
rithm. Communications of the ACM, 33(8):132–
142, 1990.

[15] S. Wu and U. Manber. A fast algorithm for multi-
pattern searching. Technical report, Department
of Computer Science, Chung-Cheng University,
1994.

The 27th Workshop on Combinatorial Mathematics and Computation Theory

26

	Abstract0F(
	p21.pdf
	Abstract

	p21.pdf
	Abstract

	p37.pdf
	. Introduction
	. Queue layout of FQn

	p38.pdf
	Introduction
	Preliminaries
	Main results
	Concluding remarks

	p53.pdf
	Abstract
	Acknowledgement
	References

	p56.pdf
	Abstract

	論文整編
	Abstract0F(
	p21.pdf
	Abstract

	p21.pdf
	Abstract

	p37.pdf
	. Introduction
	. Queue layout of FQn

	p38.pdf
	Introduction
	Preliminaries
	Main results
	Concluding remarks

	p53.pdf
	Abstract
	Acknowledgement
	References

	p56.pdf
	Abstract

	論文整編
	Abstract0F(
	p21.pdf
	Abstract

	p21.pdf
	Abstract

	p37.pdf
	. Introduction
	. Queue layout of FQn

	p38.pdf
	Introduction
	Preliminaries
	Main results
	Concluding remarks

	p53.pdf
	Abstract
	Acknowledgement
	References

	p56.pdf
	Abstract

