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Abstract

The generalized recursive circulant graph
(GRCG for short) is a generalization of the recur-
sive circulant graph. It provides a new topology
for interconnection networks. A graph G with n
vertices is called pancyclic if G contains cycles of
every length k, 3 6 k 6 n. In this paper, we shall
prove that a GRCG with two or more dimensions
contains all cycles of even lengths, and odd length
cycles which are larger than a specific length.
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1 Introduction

The circulant graph class is a famous network
topology due to its regular and symmetric connec-
tion property. Let C(n; c1, c2, . . . , cm) be a circu-
lant graph. There are n vertices in C, and vertices
u and v are adjacent if and only if u ≡ v±ci (mod
n) for 1 6 i 6 m and u, v ∈ {1, 2, . . . , n} [7, 8].
For example, C(24; 1, 3, 12) and C(24; 1, 4, 8) are
shown in Figures 1(a) and 1(b), respectively. Cir-
culant graphs, which are vertex-symmetric, form
a subclass of Cayley graphs [1, 4].

The recursive circulant graph (RCG for short) is
a subclass of circulant graphs with recursive struc-
ture. The RCG has been widely studied, such
as pancyclicity [2], edge-pancyclicity [3], parallel
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routing algorithm [9], strong hamiltonicity [15],
Hamiltonian properties in faulty condition [17],
super-connected property [18], and independent
spanning trees problem on RCGs [19, 20]. Embed-
dings of hypercubes and meshes [14], trees [11], full
ternary trees [10], and disjoint Hamiltonian cycles
[6, 12] were also studied.

Let R(cdm, d) be an RCG. Then, the graph has
N = cdm vertices, and recursively consists of d
subgraphs of R(cdm−1, d). Note that the condi-
tions of parameters 0 < c < d and m > 0 should
be satisfied. Suppose all vertices in R(cdm, d) are
labeled from 0 to cdm − 1. The adjacent vertices
of vertex u are vertices labeled with u ± dk (mod
N), for k = 0, 1, 2, . . . , dlogd Ne − 1. Further, all
edges of (u, u + 1 (mod N)) form a Hamiltonian
cycle on R(cdm, d), called basic cycle, which links
d subgraphs of R(cdm−1, d) together [6]. From the
viewpoint of circulant graphs, R(cdm, d) can also
be denoted by C(N ; d0, d1, d2, . . ., ddlogdNe−1).

Due to the restriction 0 < c < d and m >
0 on the parameters of RCGs, C(12; 1, 4) is an
RCG, but C(12; 1, 3) is not. In order to extend
the RCG class, Tang and Wang propose a general
class of graphs including RCGs [16]. They use a
multidimensional vertex labeling in the definition
to simplify the design of algorithms.

The generalized recursive circulant
graph (GRCG for short), denoted by
GR(mh, mh−1, . . . ,m1), has N = Πh

i=1mi

vertices, where mi > 2 is the size of dimension
i for i = 1, 2, . . . , h. Sometimes, we call it the
h-dimensional GRCG. The label of each vertex
is represented as a vector, i.e., (xh, xh−1, . . . , x1),
where 0 6 xi 6 mi − 1 for dimension i. The
adjacency of a vertex in a GRCG, they define
the term jump as follows. Let i+ and i− be
the two jumps of dimension i. Then, vertex
(xh, . . . , xi+1, xi, . . . , x1) takes jump i+ or i−

to reach vertex (xh, . . . , xi+1, xi + 1, . . . , x1) or
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(a) (b)

Figure 1: Two GRCGs: (a) GR(2,4,3) and (b) GR(3,2,4).

(xh, . . . , xi+1, xi − 1, . . . , x1), respectively. Notice
that we increase xi+1 by 1 and set xi= 0 (called
carrying) when xi + 1 = mi; meanwhile, we
decrease xi+1 by 1 and set xi = mi − 1 (called
borrowing) when xi − 1 = −1. Further, the
carrying and borrowing operation may occur
subsequently till dimension h is encountered.
Taking GR(2,4,3) in Figure 1(a) as an example.
Vertex (1,3,0) reaches vertices (0,3,0), (0,0,0),
(1,2,0), (1,3,1) and (1,2,2) by jumps 3−, 2+,
2−, 1+, and 1−, respectively. In Figure 1(b),
GR(3,2,4) have m1=4, m2=2, and m3=3. Vertex
(0,1,2) takes jumps 3+, 3−, 2+, 2−, 1+, and 1−

to reach (1,1,2), (2,1,2), (1,0,2), (0,0,2), (0,1,3),
and (0,1,1), respectively.

We adapt the meaning of jump to RCGs. It
turns out that an RC(cdm, d) is isomorphic to
an (m + 1)-dimensional GR(c, d, d, . . . , d) (in case
that c > 1) or an m-dimensional GR(d, d, . . . , d)
(in case that c = 1). Therefore, RCGs
are a subclass of GRCGs. Since each vertex
of a GRCG has the same jump set, GRCGs
are also a subclass of circulant graphs. That
is, GR(mh, mh−1, . . . ,m2, m1) is isomorphic to
C(N ; 1, m1, m1m2, . . .,

∏h−1
k=1 mk).

GRCGs still have the recursive structure as
RCGs. Following the definition of GRCGs, we
define GR(2) as K2 and GR(m) as a cycle with
m vertices (or Cm) when m > 3. At first, it is
obvious that GR(m2, m1) contains m1 copies of
GR(m2). Further, we can figure out by removing

the basic cycle that GR(mh, . . . ,m2, m1) contains
m1 number of GR(mh, mh−1, . . . ,m2) as induced
subgraphs.

In case of mh = 2, jumps h+ and h− reach
the same vertex and thus are viewed as one single
jump h−.

A graph G with n vertices is pancyclic if and
only if G contains cycles of every length k for
3 6 k 6 n. Particularly, if G contains cycles of ev-
ery even length, then G is bipancyclic. In [2], the
authors have studied the pancyclicity of RCGs. In
the following section, we shall investigate the pan-
cyclicity of GRCGs.

2 The pancyclicity of generalized
recursive circulant graphs

We firstly examine the bipancyclicity of GR-
CGs, and then investigate the existence of every
odd cycles in GRCGs. A one dimensional GRCG
is a cycle such that its pancyclicity can be recog-
nized intuitively. Thus, we consider hereafter only
GRCGs with higher dimensions.

For proving the bipancyclicity of GRCGs, we
shall show that an r × c grid (or mesh, i.e., a
product graph of two paths) can be embedded in
GR(mh, mh−1, . . . ,m2, m1), since it is obvious bi-
pancyclic when c and r are greater than or equal
to 2. Let c = m1 be the number of columns and
r =

∏h
i=2 mi be the number of rows of the grid.
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Figure 2: The embedding of an 8 × 3 grid on
GR(2,4,3).

Then, every vertex in the grid is labeled as (a, b)
where 0 6 a 6 r − 1 and 0 6 b 6 c − 1. The
embedding is achieved by mapping vertex (a, b) of
the grid on vertex (xh, xh−1, . . . , x1) of the GRCG,
where x1 = b, x2 = a −

∑h
k=3(xk ·

∏k−1
j=2 mj),

xh = a /
∏h−1

j=2 mj , and

xi =

(a−
h∑

k=i+1

(xk ·
k−1∏
j=2

mj)) /

i−1∏
j=2

mj

 ,

for i=3,4,. . . ,h-1.
Conversely, a vertex (xh, xh−1, . . . , x1) in the

host graph can also be relabeled as (a, b) by setting

a =
h∑

k=2

(xk ·
k−1∏
j=2

mj) and b = x1.

For example, see Figure 2. Given vertex (7,0)
in the 8 × 3 grid, its corresponding vertex in
GR(2,4,3) is (1,3,0) since x3 = ba/m2c = b7/4c =
1, x2 = a−x3 ·m2 = 7−1·4 = 3. Conversely, given
vertex (1,3,0) in GR(2,4,3), its corresponding grid
vertex is (a, b) where a = x2+x3 ·m2 = 3+1·4 = 7
and b = x1 = 0.

For a vertex (a, b) in the grid, its neighbors are
reached by taking jumps 1+, 1−, 2+ and 2− based
on the multidimensional label of the embedded
GRCG. In addition, jump 2− is absent if a = 0.
If a = r − 1, then jump 2+ is absent. Jump 1−

is absent if b = 0. If b = c − 1, then jump 1+ is
absent.

(b)

(c)

(a)

c

r

(d)

Figure 3: The construction of even length cycles:
(a) the (N − c + 2)-cycle of Case 2, (b) the (N −
c + 4)-cycle of Case 2, (c) the N -cycle of Case 2,
and (d) the (N − 1)-cycle of Case 3.

Corollary 1. GR(mh, mh−1, . . . ,m1) with h > 2
contains every even length cycle.

In the following, we will discuss the existence
of odd cycles in GRCGs. Since the smallest odd
cycle may have length greater than three, or might
not exist, we denote the length of the smallest
odd cycle in GR(mh, mh−1, . . . ,m1) by s. In order
to prove that there exist all odd cycles of lengths
greater than or equal to s, we give the following
two propositions.

Proposition 2. There exist mh-cycle for mh >
2 and (mi + 1)-cycle for 1 6 i 6 h − 1 in
GR(mh, mh−1, . . . ,m1).

Let jx,k denote the repetition of jump jx with
k times where x ∈ {+,−}. For the mh-cycle, it
starts from an arbitrary vertex u, then to take
jumps h+,mh , finally goes back to u. As to the
(mi + 1)-cycle in a GRCG, a vertex takes jumps
i+,mi and then takes jump (i + 1)− to reach itself
again.

Proposition 3. Let s′ = min
16i6h−1

{mi + 1 | mi is

even}. For GR(mh, mh−1, ...,m1), the length s of
the shortest odd cycle is equal to s′ if mh is even.
If mh is odd, then s = min{s′, mh}.

By Proposition 2, for odd mh and even mi,
there exist odd cycles if mh > 2 and 1 6 i 6 h−1.
Therefore, we choose the minimum length among
them as s. The case that s does not exist oc-
curs only when mh is even and all mi are odd. In
this case. Consequently, the corresponding GRCG
must be a bipartite graph.
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Lemma 4. If a GRCG has a cycle with the min-
imum odd length s, then it also contains cycles of
every odd length greater than s and less than or
equal to N .

Proof. By definition, GR(mh, mh−1, . . . ,m1)
contains m1 copies of GR(mh, mh−1, . . . ,m2) as
induced subgraphs and an r × c grid can be em-
bedded into it where c = m1 and r =

∏h
i=2 mi.

We prove this lemma by mathematical induction
on h.

For the basis step, i.e., h = 1, a GRCG is itself
an m1-cycle if m1 > 2 or K2 if m1 = 2. Thus,
there is exactly one odd cycle with length m1 if
m1 is odd; otherwise, s does not exist. Therefore,
the base holds.

By the mathematical induction hypothesis,
the statement is true for h = z. Note that
GR(mz+1, mz, . . ., m1) (GRz+1 for short) con-
tains m1 copies of GR(mz+1, mz, . . . ,m2) (GRz

for short) as its induced subgraphs. We use l and
t to denote the lengths of the smallest odd cycle
and the largest odd cycle, respectively, in GRz.
There are five cases taken into consideration as
follows.

• Case 1: Both r and c are odd.

In this case, m1 = c is odd and m1+1 is even.
Thus, m1 has nothing to do with the mini-
mum length of odd cycles and s = l. Since
GRz contains odd cycles of every length from
l to t. Note that t = r. We have to show the
existence of odd cycles with length j in GRz+1

for t + 2 6 j 6 N . For t + 2 6 j 6 N − c + 1,
the j-cycle can be constructed regularly. We
choose any vertex in one of subgraphs GRz

and extend the t-cycle to (t+2)-cycle, (t+4)-
cycle, and so forth. This extension is achieved
by the repetition of jump sequence 1+, 2+, 1−

and delete an edge. (see Figures 4(a) to 4(c)
for an illustration). For N − c + 3 6 j 6 N ,
the cycle is extended by replacing jump 1+

with jumps 2+, 1+, and 2− (see Figures 4(d)
and 4(e)).

• Case 2: r is odd, c is even, and c + 1 > l.

Since s = l, the odd cycles are extended simi-
larly as Case 1. The only difference is that N
is even in this case. The length of the largest
odd cycle is N − 1. Figure 4(f) shows the
situation.

• Case 3: c is even and c + 1 < l.

In this case, s = c+ 1, we have to find all odd
cycles with length j for s 6 j 6 N − 1. First,

(a)

c

r

(b) (c)

(e)(d) (f)

Figure 4: Odd cycles of lengths from t + 2 to N
in Case 1. (a) (t + 2)-cycle, (b) (t + 2c− 2)-cycle,
(c) (N − c + 1)-cycle, (d) (N − c + 3)-cycle, (e)
N -cycle, and (f) (N − 1)-cycle for even N .

(a)

c

r

(b) (c)

(e) (f)(d)

Figure 5: Odd cycles of lengths from s to N −1 in
Case 3: (a) s-cycle, (b) (s+2)-cycle, (c) (s+2(r−
1))-cycle, (d) (s+2r)-cycle, (e) (N−2r+5)-cycle,
and (f) (N − 1)-cycle.

the s-cycle starts from an arbitrary vertex u
is constructed by taking jumps 1+,c and 2−

(see Figure 5(a)). For s + 2 6 j 6 N − 1,
the cycle can be constructed by continuously
replacing one 1+ with three jumps 2+, 1+ and
2−. See Figures 5(b) to 5(f) for illustrating
the extension of odd cycles.

• Case 4: r is even and c is odd.

In this case, odd c cannot reduce s, and thus
s = l. If GRz is not a bipartite graph, then all
odd cycles of lengths from s to t exist. Note
that r = t+1. We have to show the existence
of odd cycles with lengths from t+2 to N−1.
See Figures 6 for illustrating the extension of
these cycles.
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Figure 6: The odd cycles of Case 4: (a) (t + 2)-
cycle, (b) (t + 2c− 2)-cycle, (c) (N − c)-cycle, (d)
(N − c + 2)-cycle, and (e) (N − 1)-cycle.

• Case 5: Both r and c are even and c + 1 > l.

In this case, s = l. Odd cycles of lengths from
s to r − 1 exist. If c − 1 > r − 1, then odd
cycles of lengths from r + 1 to c − 1 can be
formed by means of jump extension as used in
Case 1. Notice that c−r < c and the first two
rows contain 2c vertices. Thus, the jump ex-
tension is bounded in the first two rows of the
grid. For odd cycles with lengths from c+1 to
N−1, we apply the same approach mentioned
in Case 3 to construct them. Therefore, odd
cycles of lengths from s to N − 1 exist. This
establishes the lemma. �

By Corollary 1 and 4, we obtain the following
theorem.

Theorem 5. A generalized recursive circulant
graph is pancyclic if and only if 3-cycle exists.

3 Concluding remarks

In this paper, we study the pancyclic property
of a new class of circulant graphs GRCGs which
is a generalization of RCGs. A good labeling of
the vertices in a graph class might result in simple
algorithms for solving problems in graphs. Our
proof is also based on the vertex labeling of GR-
CGs. Moreover, since the structure of GRCGs is
similar to multidimensional torus networks [5], the
topology of GRCGs provides an alternative for de-
signing parallel computers. Many network proper-

ties, as well as combinatorial problems, are worth
to study on GRCGs.
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