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Abstract 
 

Let ( ),G V E=  be a graph of order n.  A 

Hamiltonian cycle of G is a cycle contains every 
vertex in G.  Two Hamiltonian cycles 

1 1 2 3 1, , ,... ,nC u u u u u= and C2 = 1 2 3 1, , ,... ,nv v v v v  

of G are independent if 1 1u v=  and i iu v≠  for 

2 i n≤ ≤ .  A set of Hamiltonian cycles 

{ }1 2 3, , ,... kC C C C  of G  is mutually independent 

if its elements are pairwise independent.  The 
mutually independent hamiltonicity ( )IHC G  of a 

graph G is the maximum integer k such that for 
any vertex u of G there are k mutually independent 
Hamiltonian cycles of G starting at u.  For the 
n-dimensional burnt pancake graph nB , this 

paper proved that ( )2 1IHC B =  and 

( )nIHC B n=   3for n ≥  

 
 

1 Introduction 
 
The interconnection network, one crucial step on 
designing a massively multiprocessor system, is an 
important application of graph theory.  Since Cayley 
graphs possess many favorable properties, such as 
node symmetry, recursive construction, and fault 
tolerance [1], they are suitable serving as the network 
topologies of massively multiprocessor systems.  
Let G  be a finite group and H  be its generating 
set such that 1H H −=  and 

{ }( , ) ,E v vh v G h H= ∈ ∈ , then a Cayley graph 

( ),G E  is denoted as ( , )Cay G H .  The 

n -dimensional burnt pancake graph nB , proposed 

by [4], is also a member of Cayley graphs.  A burnt 
pancake graph, based on the signed permutations, 
can provide interconnection networks that consist of 
different number of nodes from others such as a star 
graph, a pancake graph, a rotator graph, and so on.  
Because the degree and diameter are smaller than a 
hypercube with similar number of vertices, the 
topology of the burnt pancake graphs is especially 
suitable for massively parallel systems.  In 
particular, the burnt pancake graph can be used for 
the genome analysis [5].  Recently, many 
interesting properties of the burnt pancake graphs are 

studied (see [2], [3], [9], [10] ).  There are many 
mutually conflicting requirements in designing the 
topology for computer networks.  Many studies on 
mutually independent Hamiltonian cycles on 
hypercube and other interconnection networks have 
been published (see [6], [7], [8], [11], [12], [13], [14], 
[15], [16], [17], [18], [19]).  This paper proved that 
the n-dimensional burnt pancake graph nB  has n  

mutually independent Hamiltonian cycles when 
3n ≥ .  

 
 
2 Preliminaries 
 

In this section, we introduce signed permutations, 
prefix reversal operations, burnt pancake graphs, and 
mutually independent Hamiltonian cycles as well as 
other requisite definitions.   

Let n  denote the positive integer set 

{ }1,2,3,...n .  For the negative integers, we put 

the negative sign on the top of an expression.  

Thus, u u− =  for some u N∈ .  Let [ ]n  

denote the integer set { }n i i n∈∪ .  A signed 

permutation of n  is an n-permutation 1 2... nu u u  

of [ ]n  such that the set of absolute value of each 

element { }1 2, ,..., nu u u n= .  For example, 

12453 is a signed permutation of 5 .  For a 

signed permutation 1 2... nu u u u=  of n , the 

i -th prefix reversal of u , denoted by ( )i
u , is 

1 2 1 1i i i nu u u u u u− +⋯ ⋯ .  For example, ( )3
14352  

34152= .   

  The n-dimensional burnt pancake graph nB  is  

an n-regular graph with 2 !n n  vertices each of which 
has a unique label from the signed permutation of 

n .  Two vertices u  and v  are adjacent in nB  

if and only if ( )i
u v=  for some 1 i n≤ ≤ .  We use 

( )i
u  to denote the i-th digit iu  of u  and i

nB  to 

denote the i-th subgraph of nB  induced by those 

vertices u  with ( )n
u i= .  A nB  can be 
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decomposed into 2n  disjoint subgraphs i
nB  for 

every [ ]i n∈  such that each i
nB  is isomorphic to 

1nB − .  For 1 ,i j n≤ ≤  and i j≠ , we use ,i jE  to 

denote the set of edges connecting i
nB  and j

nB .  

Figure 2 shows iB  for 3i ≤ .  Observe that in n
nB , 

each vertex is labeled by appending digit n to the last 
digit of 1nB − .  The subgraph indicated by the dotted 

circle in Figure 2 is 3
3B .  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Figure 2: iB  for 3i ≤  

 
The Hamiltonian path of a graph ( ),G V E=  

is a path that traverses all vertices in G  once.  
For any arbitrary pair of vertices in a graph G, if 
there is a Hamiltonian path between them, then G 
is called Hamiltonian connected.  The 
Hamiltonian cycle of a graph ( ),G V E=  is a 

cycle that traverses all vertices in G  once.  
Without considering the edge bandwidth of G , 
one may be able to find some Hamiltonian cycles, 
which have the same origin, but each of the cycle 
does not arrive the same vertex at the same step.  
Two Hamiltonian cycles { }1 1 2 3 1, , ,... ,nC u u u u u=  

and { }2 1 2 3 1, , ,... ,nC v v v v v=  of graph G  are 

independent if that 1 1u v=  and i iu v≠  for 

{ }2,3,...,i n∈ .  A set of Hamiltonian cycles 

{ }1 2 3, , ,... kC C C C  of G  is mutually independent 

if its elements are pairwise independent.  The 
maximum number of mutually independent 

Hamiltonian cycles of G  is denoted by 

( )IHC G . 

 
3 Construction of Mutually Indepen- 

dent Hamiltonian Cycles  
 

The following lemmas are very useful in our 
construction of the mutually independent 
Hamiltonian cycles of burnt pancake graphs. 

For [ ]H n⊆ , let H
nB  denote the subgraph of 

nB  induced by ( )i
ni H

V B
∈∪ . 

Lemma 1. (from [3]) Let 4n ≥  and 

1 2 3, , ,..., mi i i i  be an m-permutation of [ ]n  such 

that 1k ki i +≠  for 1 k m≤ < .  Let H denote the 

set { }1 2 3, , ,..., mi i i i .  Then there is a Hamiltonian 

3
3B  
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path of H
nB  joining any vertex ( )1i

nu V B∈  to 

any other vertex ( )mi
nv V B∈ . 

Let F  be the set of the faulty elements, that is, 
the faulty nodes and the faulty edges in nB .  

Lemma 2 is from [10] 

Lemma 2.  Let 3n ≥ . If 2F n≤ − , then 

nB F−  has a Hamiltonian cycle; if 3F n≤ − , 

nB F−  is Hamiltonian connected. 

Theorem 1.  Let iB  be a burnt pancake graph 

for 2 3i≤ ≤ , then ( )2 1IHC B = , ( )3 3IHC B = . 

Proof  Since 2B  is isomorphic to an even cycle 

8C , ( )2 1IHC B = .  Since 3B  is vertex 

symmetric, without lose of generality, we may 
assume that the Hamiltonian cycles begin at the 
vertex (123).  The three cycles 1 2,C C  and 3C  

beginning at (123) are constructed specifically in 
Appendix A.  Hence ( )3 3IHC B = .   ■ 

Theorem 2.  There are four mutually 
independent Hamiltonian cycles in burnt pancake 

4B .  That is ( )4 4IHC B = . 

Proof.  Using the mutually independent 
Hamiltonian cycles in 3B , we can construct four 

mutually independent Hamiltonian cycles in 4B .  

Since 4
4 3B B≅ , by Theorem 1, there are three 

mutually independent Hamiltonian cycles in 44B .  

Let iP  for 1 3i≤ ≤  be the Hamilton path from 

1234r =  follow the same route as iC  in 

Theorem 1 to the vertices 3214 , 2134  and 

1324 respectively, which are shown in appendix 
B.  Appendix C shows a Hamiltonian path 4P  

of 4
4B  to make sure our new Hamiltonian cycle 

won’t have collision in the last two vertices.  
Figure 3 shows the 4 mutually Hamiltonian cycles 
on 4B  we constructed by using Lemma 2 and iP  

for 1 4i≤ ≤ .  In order to make the figure clearer, 

we use dark block to represent inB  for positive i .

 ■

 

Figure 3.  Four mutually independent Hamiltonian cycles in 4B

Theorem 3.  There are five mutually independent 
Hamiltonian cycles in burnt pancake 5B .  That 

is ( )5 5IHC B = . 

Proof  Since 5
5 4B B≅ , by Theorem 2, there are 

four mutually independent Hamiltonian cycles iC , 

1 4i≤ ≤  in 5
5B .  Let iP  be the Hamiltonian 

path using iC  from 12345r = , for 1 4i≤ ≤ , to 

43215, 43125, 42135, and 13245, respectively.  
Note that because we use the previous cycles to 
construct the new set of mutually independent 

Hamiltonian cycles, when they arrived to 43215, 

43125 and 42135, they will enter the same 

subgraph 4
5B , hence we have to find three 

mutually independent Hamiltonian paths in 45B  

connected to subgraphs 2
5B , 3

5B  and 2
5B  

respectively. The three mutually independent 
Hamiltonian paths in 4

5B , denoted as iQ , 

1 3i≤ ≤ , are shown in appendix D.  By using 

iP  for 1 4i≤ ≤  with the iQ  for 1 3i≤ ≤ , we 

can construct 5 mutually independent Hamiltonian 
cycles in 5B  as shown in figure 4.  In order to 

avoid the collision of the last two cycles in 15B , 

we have them follow two mutually independent 

paths in 1
5B  as shown in appendix E. ■ 
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Figure 4: Five mutually independent Hamiltonian cycles in 5B  

Theorem 4.  There are six mutually independent 
Hamiltonian cycles in burnt pancake burnt 
pancake 6B .  That is ( )6 6IHC B =  

Proof.  Since 6
6 5B B≅ , by Theorem 3, there are 

five mutually independent Hamiltonian cycles iC , 

1 5i≤ ≤  in 6
6B .  Let iP  be a Hamiltonian path 

using iC  from 123456r = , for 1 5i≤ ≤ , to 

vertices 543216, 543126, 542136 , 541326 

and 342156 respectively.  Similar to Theorem 3, 
when constructing mutually independent 
Hamiltonian cycles in 6B  passing vertices 

543126, 543216, 543126 and 541326, they 
will enter the same subgraph 56B .  Then for each 

path, we may use two vertices (,1it  and ,2it  for 

1 4i≤ ≤  as indicated in figure 5) in 5
6B  to 

connect to different subgraphs 6 2 1
6 6 6, , ,B B B  and 

1
6B  respectively.  For 5P  which enter 3

6B  first, 

let the path go through 5,1t  and 5,2t  as in figure 

5 to 2
6B .  Then the six mutually independent 

Hamiltonian cycles in 6B  may be constructed as 

in shown in Figure 5.  ■ 

 

Figure 5: Six mutually independent Hamiltonian cycles in 6B  
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Theorem 5.  For 7n ≥ , the burnt pancake 
graph nB  has n  mutually independent 

Hamiltonian cycles.  That is  ( )nIHC B n= . 

Proof  Let ( )t
nF V B⊆ , 3F ≤ , for some 

[ ]t n∈ , by Lemma 2, for any two vertices 

, t
nu v B F∈ − , there is a Hamiltonian path from u  

to v .  Let 123...r n= .  The first Hamiltonian 
cycle 1C  of nB  may be constructed as follows: 

Let x , y  be two vertices of ( ) ( ){ }1
,n

nB r r−  

such that ( )1
1x n= − , ( )1

1y = .  By Lemma 2, 

there is a x y−  Hamiltonian path 1H  in 

( ) ( ){ }1
,n

nB r r− .  Let z  be a vertex of 

( ) ( )( ){ }11 ,n n
nB r r−  such that ( )1

2z = .  Since 

( )n
y  is the vertex of 1

nB , by Lemma 2 there is a 

( )n
y z−  Hamiltonian path 2H  in 

( ) ( )( ){ }11 ,n n
nB r r− .  Note that ( )( )1 n

r  is the 

vertex of 1
nB  and ( )n

x  is the vertex of 1n
nB − , by 

Lemma 1 there is a Hamiltonian path 1P  of 
1

1

n s
ns

B
−

=∪  joining vertex ( )( )1 n

r  to vertex ( )n
x .  

Since ( )n
z  is the vertex of 2

nB  and ( )( )1 n
nr  is 

the vertex of n
nB , by Lemma 1, there is a 

Hamiltonian path 1Q  of 
2

n t
nt

B
=∪  joining vertex 

( )n
z  to vertex ( )( )1 n

nr .  Then 

( )11
1 1 1 2 1, , , , , , , ,nnC r r P H H Q r rr=  is a 

Hamiltonian cycle of nB . 

Next we construct the Hamiltonian cycles 2C  

to 1nC −  as follows.  For each 2 1k n≤ ≤ − , let  

x , y  be two vertices of { }1, ,n k k
nB r r r −− , such 

that ( )1
1x n= −  and ( )1

1y = .  By Lemma 2, 

there is a x y−  Hamiltonian path kH  in 

{ }1, ,n k k
nB r r r −− .  Since that ( )n

x  is a vertex of 

1n
nB −  and  ( )nkr  is a vertex of k

nB , by Lemma 

1 there is a Hamiltonian path kP  of 
1n s

ns k
B

−

=∪  

joining vertex ( )nkr  to vertex ( )n
x .  Let w  

be a vertex of n
nB , such that ( )1 1w = . Note that 

( )n
y  is a vertex of 1

nB , by Lemma 1 there is a 

Hamiltonian path kQ  of 
1 t

nt n
B

=∪  joining vertex 

( )n
y  to vertex w .  Since that ( )n

w  is a vertex 

of 1
nB , by Lemma 2 there is Hamiltonian path kR  

of 
2

1

n v
nv

B
−

=∪  joining vertex ( )n
w  to vertex 

( ) 2n
r

− .  Then , , , , , ,k
k k k k kC r r P H Q R r=  is a 

Hamiltonian cycle of nB  

For the last Hamiltonian cycle nC , we 

constructed as follow.  Let m  be a vertex of 
n
nB , such that ( )1 1m = . Since that ( )n

r  is a 

vertex of 1
nB , by Lemma 1 there is a Hamiltonian 

path nP  of 
1 t

nt n
B

=∪  joining vertex ( )n
r  to 

vertex m .  Note that ( )n
m  is a vertex of 1

nB  

and ( ) 1n
r

−  is a vertex of n
nB , by Lemma 1 there 

is a Hamiltonian path nQ  of 
1

n s
ns

B
=∪  joining 

vertex ( )n
m  to vertex ( ) 1n

r
− .  Then 

, , ,k n nC r P Q r=  is a Hamiltonian cycle of nB .  

The k Hamiltonian cycles of nB  are shown in 

figure 5. ■

 
Figure 5.  n  mutually independent Hamiltonian cycles in nB , 7n ≥ .
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4  Conclusion 
 

In this paper, we proved that the Burnt Pancake 

nB  has n  mutually independent Hamiltonian 

cycles for any integer 3n ≥  
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Appendix A: The three required cycles of Theorem 1 
 

1C = 123,123,213,213,123,123,213,213,312,132,132,312,312,132, 231,321,321,231,231, 

321,123,123, 213,213,123,123,213,213,132,312, 231,321,321,231,231,321,321,231, 

132,312,312,132,132,312,312,132, 231,321,123 

2C = 123,213,213,123,321,231,231,321,321,231,231,321,123,213,312,312,132,132,312, 

312,132,132231,321,321,231,231,321,123,213,213,123,123,213,312,312,132,132, 

312 312,132,132, 231,321,123,213, 213,123,123 

3C = 123,321,321,231,231,321,321,231, 231,132,312,312,132,132,312, 213,123,123,213, 

213,123,321, 321,231,231,321,321,231,231,132,132, 213,123,123,213,, 213,123,123, 

213 312,132,132,312,312,132,132,312, 213,123 

 
Appendix B: The three required paths of Theorem 2 

1P = 1234,1234,2134,2134,1234,1234,2134,2134,3124,1324,1324,3124,3124,1324, 2314,3214,3214, 

2314,2314,3214,1234,1234, 2134,2134,1234,1234,2134,2134,1324,3124, 2314,3214,3214, 

2314,2314,3214,3214,23141324,3124,3124,1324,1324,3124,3124,1324, 2314,3214 

2P = 1234,2134,2134,1234,3214,2314,2314,3214,3214,2314,2314,3214,1234,2134,3124,3124,1324, 

1324,31243124,1324,13242314,3214,3214,2314,2314,3214,1234,2134,2134,1234,1234,2134, 

3124,3124,1324,1324,3124 3124,1324,1324, 2314,3214,1234,2134 

3P = 1234,3214,3214,2314,2314,3214,3214,2314, 2314,1324,3124,3124,1324,1324,3124, 2134,1234, 

2134,1234,3214,3214,2314,2314,3214,3214,2314,2314,1324,1324, 2134,1234,1234, 

2134,2134,1234,1234,2134,3124,1324,1324,3124,3124,1324,1324 
 
Appendix C:  A required path in 4

4 1234B −  of Theorem 2 

4P = 1234,2134,2134,1234,1234,2134,2134,3124,1324,1324,3124,3124,1324, 2314,3214,3214, 

2314,2314,3214,1234,1234, 2134,2134,1234,1234,2134,2134,1324,3124, 2314,3214,3214, 

1324,3124,3124,1324,1324,3124,3124,1324, 2314,3214 

 
Appendix D:  The three required paths of Theorem 3  
We use iS  to denote 4

5B ’s subgraph for [ ]1,2,3,5i ∈ .  Three mutually independent paths used in Theorem 

3 are as follows: 

1Q = 3S ,
2

S , 5S , 2S ,
3

S , 1S ,
5

S ,
1

S , 23514 

2Q = 3S , 2S ,
5

S ,
2

S , 5S ,
1

S ,
3

S , 1S , 32514 

3Q = 2S , 1S , 3S ,
1

S ,
5

S ,
2

S , 5S , 3S , 21534 

 
Appendix E:  Two required subgraph sequences in 1

5B  of Theorem 3 
We use iS  to denote 1

5B ’s subgraph for [ ]2,3,4,5i ∈ .  The two subgraph sequences are as follows: 

3S , 4S , 5S ,
2

S ,
3

S ,
4

S ,
5

S , 2S  

2
S ,

3
S ,

4
S ,

5
S , 2S , 3S , 4S , 5S  
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