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Abstract

To construct parallel paths among nodes in
interconnection networks is an important issue
concerned with efficient data transmission. Em-
bedding of paths have attracted much attention in
the parallel processing. A graph G is globally two-
equal-disjoint path coverable (GTEDPC) if for
any two distinct pairs of vertices a, b and c, d of
G, there exist two disjoint paths P and Q satisfy
that (1) P (Q, respectively) joins a and b (c and
d, respectively), (2) |P | = |Q|, and (3) V (P ∪ Q)
= V (G). The hierarchical crossed cube is a new
hierarchical interconnection network. In this pa-
per, we study the globally two-equal-disjoint path
cover property of HCC(k, n) for k ≥ 1 and n ≥ 5.

Keywords: hierarchical crossed cube, glob-
ally two-equal-disjoint path coverable, GTEDPC,
Hamiltonian path.

1 Introduction

Recently, hierarchical interconnection networks
have attracted lot of concern. There are many re-
search about the hierarchical structure[7, 10, 12,
20, 21]. A new hierarchical interconnection net-
work, the hierarchical crossed cube HCC(k, n),
was proposed in [8]. The hierarchical crossed cube
draws upon constructions used within the well-
known hypercube[18] and also the crossed cube
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(a variation of the hypercube as proposed by Efe
[4, 5]). The hierarchical crossed cube has many
advantages such as lower degree, smaller diameter,
and maximum fault tolerance in same number of
vertices. Usually, the interconnection network is
represented as a graph whose vertices represent
the nodes (i.e., processors) of the network and
whose edges represent the communication links of
the network. In this paper, we use standard ter-
minology in graphs[1].

The graph-theoretic properties of interconnec-
tion networks have been investigated with their
applications in parallel computing. However, find-
ing parallel paths among nodes in interconnection
networks is one of the important problems con-
cerned with efficient data transmission. Paral-
lel paths are usually studied in terms of disjoint
paths in graphs. A set of paths in G is called
disjoint if they do not share any vertices. To con-
struct disjoint paths in interconnection networks
is important since they can be used to increase
the transmission rate and enhance the transmis-
sion reliability. Moreover, applications of disjoint
paths have been researched in some fields such
as multipath routing[17] and fault tolerance[6].
Depending on the number of source vertices or
destination vertices, there are one-to-one[2, 13],
one-to-many[3], and many-to-many disjoint path
problems[14, 15, 16]. However, the many-to-many
disjoint path problem is the most generalized one.
The existence of the globally two-equal-disjoint
path cover in a network implies there are two dis-
joint paths for any two source-destination pairs.
Clearly, the globally two-equal-disjoint path cover
problem is a specialized many-to-many disjoint
path problem.

In this paper, we study the globally two-equal-
disjoint path cover property of hierarchical crossed
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cube. In next section, we give the definitions of
two-equal-disjoint path cover property and hier-
archical crossed cube. Then we discuss the main
contribution in section 3. In the final section, we
give the conclusion.

2 Preliminary

Let G = (V,E) be an graph if V is a finite set
and E is a subset of {(u, v)|(u, v) is an unordered
pair of V }. We say V is the vertex set and E is
the edge set. Two vertices u and v are adjacent
if (u, v) ∈ E. A path in a graph is denoted by
a sequence of distinct vertices 〈v0, v1, v2, ..., vn〉,
where vi and vi+1 are adjacent for 0 ≤ i ≤ n− 1.
We use 〈v0, P, vn〉 or P(v0,vn) to represent a path
P = 〈v0, v1, v2, ..., vn〉. For convenience, we use ā
to represent the complement of binary string a.
The length of P denoted by |P | is the number of
edges in P . A path is a Hamiltonian path if its
vertices are distinct and span V . A graph G is
Hamiltonian connected if there exists a Hamil-
tonian path joining any two distinct vertices. A
graph G is Hamiltonian laceable if G is bipartite
and it has a Hamiltonian path P(u,v) for any pair
of vertices u and v, where u belongs to one set of
the bipartition and v to the other.

Definition 1 Let graph G have 2k vertices,
k ≥ 2, and let a, b, c, and d be four distinct ver-
tices of G. G is (a, b, c, d)-two-equal-disjoint path
coverable if there are two disjoint paths P(a,b) and
Q(c,d) with |P(a,b)| = |Q(c,d)| = k − 1.

Definition 2 A graph G is globally two-equal-
disjoint path coverable (GTEDPC) if for any four
distinct vertices a, b, c, and d, G is (a, b, c, d)-two-
equal-disjoint path coverable.

As we shall see, the construction of HCC(k, n)
is built around those of hypercubes Qn and crossed
cubes CQn. Now we define the hierarchical
crossed cubes as follows:

Definition 3 Fix k, n ≥ 1. The hierarchical
crossed cube has vertex set {0, 1}k+2n. Each ver-
tex of HCC(k, n) is written as (u, v, w), where u

∈ {0, 1}k and v, w ∈ {0, 1}n. The set of edges
of HCC(k, n) is partitioned into 2 sets, Eint and
Eext. The set Eint is referred to as the set of
internal edges, while the set Eext is referred to
as the set of external edges. In more detail,
Eint = {((u, v, w), (u, v, w′)) : (w, w′) is an edge
of CQn.} and

Eext = {((u, v, w), (u′, w, v)) : (u, u′) is an edge
of Qn.}

The hierarchical crossed cube HCC(k, n) is
formed by taking 2k+n disjoint copies of CQn,
with CQn(u, v) denoting the copy of CQn on the
set of vertices {(u, v, w) : w ∈ {0, 1}n} (the edges
of these copies of CQn form the internal edges).
The vertices in these copies of CQn are then joined
by additional edges (the external edges) whereby
the vertices are partitioned into 22n sets of 2k ver-
tices, with each set of 2k vertices joined by edges
to form a copy of Qk. Consequently, edges lie in
the internal layer or the external layer. Clearly,
HCC(k, n) has 2k+2n vertices, n2k+2n−1 inter-
nal edges, and k2k+2n−1 external edges, making
(n + k)2k+2n−1 edges in total.

For each vertex a of HCC(k, n), we often label
it as (ua, va, wa) in this paper. Moreover, for
k ≥ 1 and i ∈ {0, 1}, denoted by Hk−1(i), the
subgraph of HCC(k, n) induced by the vertices
of

{
(iu, v, w) : u ∈ {0, 1}k−1

, v, w ∈ {0, 1}n
}

.
Note that for k ≥ 2, Hk−1(0) and Hk−1(1) are
isomorphic to HCC(k − 1, n); for k=1, H0(0)
and H0(1) are two disjoint sets of CQns. For
each vertex a in Hk(i), i ∈ {0, 1}, we use a′′ to
represent the neighbor of a in Hk (̄i) in this paper.

Consider each subgraph CQn(u, v) as a super
vertex, then we can view HCC(1, n) as a complete
bipartite graph K2n,2n of super vertices. Herein,
the super vertex of CQn(u, v) is labeled by uv.
A Hamiltonian path consists of super vertices of
HCC(1, n) is called a super Hamiltonian path.

Figure 1: Structure of HCC(2, 3).
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3 HCC(k, n) is globally two-equal-
disjoint path coverable

In this section, we will first focus on the
globally two-equal-disjoint path cover property of
HCC(1, n) as Theorem 1 for n ≥ 5. Then we
will use induction to prove HCC(k, n) is globally
two-equal-disjoint path coverable (GTEDPC) as
Theorem 2 for k ≥ 1 and n ≥ 5. The following
lemmas are very important to establish our base
case, Theorem 1, of Theorem 2.

Lemma 1 [9] CQn is (n − 3) fault Hamiltonian
connected.

Let a = (u, va, w) and b = (u, vb, w) be two
distinct vertices of HCC(1, n) for n ≥ 3. Since
there exists a Hamiltonian path joining (ū, w, va)
and (ū, w, vb) by Lemma 1, we can obtain a path
P(a,b) traverses every vertex of V (CQn(ū, w)) ∪
{a, b} exactly once and have the Observation 1 as
follows. (See Fig. 2)

Observation 1 For any two vertices a =
(u, va, w) and b = (u, vb, w) of HCC(1, n) for n
≥ 3, there exists a path P(a,b) traverses every ver-
tex of V (CQn(ū, w)) ∪ {a, b} exactly once.

Figure 2: Illustration of Observation 1.

Lemma 2 [19] A bipartite graph is Hamiltonian
laceable if it is equitable and whenever x and y are
two vertices from different partite set, there exists
a Hamiltonian path P joining x and y.

Lemma 3 [11] The crossed cube CQn is globally
two-equal-disjoint path coverable for n ≥ 5.

In the following discussion, we prefer using
CQn(u, pi) and CQn(ū, qj) to denote two CQns
in H0(u) and H0(ū), respectively, where 1 ≤ i, j
≤ t for some integer t, pi ∈ {0, 1}n, qj ∈ {0, 1}n,
and u ∈ {0, 1}. Moreover, assume that pi 6= pj

and qi 6= qj if i 6= j.

Lemma 4 Let 1 ≤ t ≤ 2n, 1 ≤ i, j ≤ t and
let H be a subgraph of HCC(1, n), n ≥ 5, con-
sists of 2 × t × 2n vertices of V (CQn(u, pi)) ∪

V (CQn(ū, qj)). For two arbitrary vertices a ∈
CQn(u, v) and b ∈ CQn(ū, v′) in H, there exists
a Hamiltonian path of H joining a and b.

Proof. Consider each CQn of H as a super ver-
tex, by Lemma 2, then there exists a super Hamil-
tonian path P ′ of H joining uv and ūv′. With-
out loss of generality, let v = p1 and v′ = qt and
let P ′ = 〈up1, ūq1, up2, ūq2, ..., upt, ūqt〉 (See
Fig. 3). Then we back to our work in terms of
CQn. By Lemma 1, there exists a Hamiltonian
path Pi of CQn(u, pi) and a Hamiltonian path Qi

of CQn(ū, qj) for 1 ≤ i, j ≤ t. Therefore, we can
obtain a Hamiltonian path P of H joining a and
b that P = 〈a, P1, Q1, P2, Q2, ..., Pt, Qt, b〉. ¤

Figure 3: Illustration of Lemma 4.

Lemma 5 Let 2 ≤ t ≤ 2n, 1 ≤ i, j ≤ t and
let H be a subgraph of HCC(1, n), n ≥ 5, con-
sists of 2 × t × 2n vertices of V (CQn(u, pi)) ∪
V (CQn(ū, qj)). For two arbitrary vertices a, b ∈
CQn(u, v) in H, there exists a Hamiltonian path
of H joining a and b.

Proof. Without loss of generality, let v = p1 and
let x and y be two vertices in CQn(u, p1) − {a, b}
with wx, wy ∈ {pi, qj} for some i and j. With-
out loss of generality, let wx = q1 and wy = qt.
By Lemma 3, there exist two-equal-disjoint paths
P 1

1 joining a and x and P 2
1 joining b and y in

CQn(u, p1) (See Fig. 4). Then let z = (u, p2, q1),
by Observation 1, there exists a path P(x,z) tra-
verses every vertex of V (CQn(ū, q1)) ∪ {x, z} ex-
actly once. Then, let H − CQn(u, p1)∪CQn(ū, q1)
be a subgraph of H called H ′. By Lemma 4, there
exists a Hamiltonian path P ′ of H ′ joining z and
y′′. As a result, we can obtain a Hamiltonian path
P of H joining a and b as P = 〈a, P 1

1 , x, P(x,z),
z, P ′, y′′, y, P 2

1 , b〉. ¤

Lemma 6 Let 3 ≤ t ≤ 2n, 1 ≤ i, j ≤ t, and
let H be a subgraph of HCC(1, n), n ≥ 5, con-
sists of 2 × t × 2n vertices of V (CQn(u, pi)) ∪
V (CQn(ū, qj)). For two arbitrary vertices a ∈
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Figure 4: Illustration of Lemma 5.

CQn(u, v) and b ∈ CQn(u, v′) in H, there exists
a Hamiltonian path of H joining a and b.

Proof. Without loss of generality, let v = p1

and v′ = p3. let x, y, and z be three vertices
in CQn(u, p1) − a with wx, wy, wz ∈ {pi, qj}
for some i and j. Without loss of generality, let
wx = qt, wy = q2, and wz = q1. By Lemma 3,
there exist two-equal-disjoint paths P 1

1 joining a
and z and P 2

1 joining x and y in CQn(u, p1) (See
Fig.5). Let s = (u, p2, q1) and w = (u, p2, q2)
be two distinct vertices, then by Observation 1,
there exist two paths P(z,s) traverses every vertex
of V (CQn(ū, q1)) ∪ {z, s} exactly once and P(w,y)

traverses every vertex of V (CQn(ū, q2)) ∪ {w, y}
exactly once. By Lemma 1, there exists a Hamil-
tonian path P(s,w) of CQn(u, p2). Then, let H −
CQn(u, p1)∪CQn(u, p2)∪CQn(ū, q1)∪CQn(ū, q2)
be a subgraph of H called H ′. By Lemma 4, we
can obtain a Hamiltonian path P ′ of H ′ joining x′′

and b. Therefore, there exists a Hamiltonian path
P of H joining a and b with P = 〈a, P 1

1 , z, P(z,s),
s, P(s,w), w, P(w,y), y, P 2

1 , x, x′′, P ′, b〉. ¤

Figure 5: Illustration of Lemma 6.

Theorem 1 HCC(1, n) is globally two-equal-
disjoint path coverable for n ≥ 5.

Proof. Let a, b and c, d be two distinct source-
destination pairs of HCC(1, n). We establish two
disjoint paths P(a,b) and Q(c,d). Furthermore, the
two disjoint paths satisfy that |P(a,b)| = |Q(c,d)|
and V (P(a,b) ∪Q(c,d)) = V (HCC(1, n)). We con-
sider the relative positions of a and c of HCC(1, n)

as the following two conditions:
(1) a and c are in different CQns.
(2) a and c are in the same CQn.

Moreover, both condition 1 and condition 2
are divided into more subcases as Table 1. (See
table 1)

Table 1: All cases of Theorem 1.

Case 1 a and c are in different CQns.
Subcase 1.1 a and b are both in CQn(ua, va); c
and d are both in CQn(uc, vc).
Subcase 1.1.1 ua = uc

Without loss of generality, let va = p1 and vc

= p2n . Let 1 ≤ i, j ≤ 2n−1 and let H1 be a
subgraph of HCC(1, n) consists of 2 × 2n−1 ×
2n vertices of V (CQn(u, pi)) ∪ V (CQn(ū, qj))
(See Fig. 6(a)). Let HCC(1, n) − H1 be another
subgraph called H2. Clearly, c and d are in H2.
By Lemma 5, there exist two Hamiltonian paths
P(a,b) of H1 and Q(c,d) of H2. Therefore, we can
obtain two disjoint paths P(a,b) and Q(c,d) with
|P(a,b)| = |Q(c,d)| = 22n − 1.

Subcase 1.1.2 ua 6= uc

Without loss of generality, let va = p1 and vc

= q2n . Let 1 ≤ i, j ≤ 2n−1 and let H1 be a
subgraph of HCC(1, n) consists of 2 × 2n−1 ×
2n vertices of V (CQn(u, pi)) ∪ V (CQn(ū, qj))
(See Fig. 6(b)). Let HCC(1, n) − H1 be another
subgraph called H2. Clearly, c, d are in H2. By
Lemma 5, there exist two Hamiltonian paths
P(a,b) of H1 and Q(c,d) of H2. Therefore, we can
obtain two disjoint paths P(a,b) and Q(c,d) with
|P(a,b)| = |Q(c,d)| = 22n − 1.

Subcase 1.2 a and b are both in CQn(ua, va), c
is in CQn(uc, vc), and d is in CQn(ud, vd).
Subcase 1.2.1 ua = uc = ud
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Figure 6: Illustration of Subcase 1.1.

Without loss of generality, let va = p1, vc = p2n−1 ,
and vd = p2n . Let 1 ≤ i, j ≤ 2n−1 and let H1 be
a subgraph of HCC(1, n) consists of 2 × 2n−1

× 2n vertices of V (CQn(u, pi)) ∪ V (CQn(ū, qj))
(See Fig. 7(a)). Let HCC(1, n) − H1 be another
subgraph called H2. Clearly, c, d are in H2.
By Lemma 5, we can find a Hamiltonian path
P(a,b) of H1. Then by Lemma 6, there exists a
Hamiltonian path Q(c,d) of H2. Therefore, we can
obtain two disjoint paths P(a,b) and Q(c,d) with
|P(a,b)| = |Q(c,d)| = 22n − 1.

Subcase 1.2.2 (ua = uc) 6= ud

Without loss of generality, let va = p1, vc = p2n ,
and vd = q2n . Let 1 ≤ i, j ≤ 2n−1 and let H1 be
a subgraph of HCC(1, n) consists of 2 × 2n−1

× 2n vertices of V (CQn(u, pi)) ∪ V (CQn(ū, qj))
(See Fig. 7(b)). Let HCC(1, n) − H1 be another
subgraph called H2. Clearly, c, d are in H2.
By Lemma 5, we can find a Hamiltonian path
P(a,b) of H1. Then by Lemma 4, there exists a
Hamiltonian path Q(c,d) of H2. Therefore, we can
obtain two disjoint paths P(a,b) and Q(c,d) with
|P(a,b)| = |Q(c,d)| = 22n − 1.

Subcase 1.2.3 ua 6= (uc = ud)
Without loss of generality, let va = p1, vc =
q2n−1 , and vd = q2n . Let 1 ≤ i, j ≤ 2n−1 and
let H1 be a subgraph of HCC(1, n) consists
of 2 × 2n−1 × 2n vertices of V (CQn(u, pi)) ∪
V (CQn(ū, qj)) (See Fig. 7(c)). Let HCC(1, n)
− H1 be another subgraph called H2. Clearly,
c, d are in H2. By Lemma 5, we can find a
Hamiltonian path P(a,b) of H1. Then by Lemma
6, there exists a Hamiltonian path Q(c,d) of
H2. Therefore, we can obtain two disjoint paths
P(a,b) and Q(c,d) with |P(a,b)| = |Q(c,d)| = 22n − 1.

Subcase 1.3 The four vertices a, b, c, and
d belong to four CQns.
Subcase 1.3.1 ua = ub = uc = ud

Without loss of generality, let va = p1, vb = p2,
vc = p2n−1 , and vd = p2n . Let 1 ≤ i, j ≤ 2n−1

Figure 7: Illustration of Subcase 1.2.

and let H1 be a subgraph of HCC(1, n) consists
of 2 × 2n−1 × 2n vertices of V (CQn(u, pi)) ∪
V (CQn(ū, qj)) (See Fig. 8(a)). Let HCC(1, n)
− H1 be another subgraph called H2. Clearly,
c, d are in H2. By Lemma 6, there exist two
Hamiltonian paths P(a,b) of H1 and Q(c,d) of H2.
Therefore, we can obtain two disjoint paths P(a,b)

and Q(c,d) with |P(a,b)| = |Q(c,d)| = 22n − 1.

Subcase 1.3.2 (ua = ub = uc) 6= ud

Without loss of generality, let va = p1, vb = p2,
vc = p2n , and vd = q2n . Let 1 ≤ i, j ≤ 2n−1

and let H1 be a subgraph of HCC(1, n) consists
of 2 × 2n−1 × 2n vertices of V (CQn(u, pi)) ∪
V (CQn(ū, qj)) (See Fig. 8(b)). Let HCC(1, n)
− H1 be another subgraph called H2. Clearly,
c, d are in H2. By Lemma 6, there exists a
Hamiltonian path P(a,b) of H1. Then by Lemma
4, there exists a Hamiltonian path Q(c,d) of H2.
Hence, we can obtain two disjoint paths P(a,b)

and Q(c,d) with |P(a,b)| = |Q(c,d)| = 22n − 1.

Subcase 1.3.3 (ua = ub) 6= (uc = ud)
Without loss of generality, let va = p1, vb = p2,
vc = q2n−1 , and vd = q2n . Let 1 ≤ i, j ≤ 2n−1

and let H1 be a subgraph of HCC(1, n) consists
of 2 × 2n−1 × 2n vertices of V (CQn(u, pi)) ∪
V (CQn(ū, qj)) (See Fig. 8(c)). Let HCC(1, n)
− H1 be another subgraph called H2. Clearly,
c, d are in H2. By Lemma 6, there exist two
Hamiltonian paths P(a,b) of H1 and Q(c,d) of H2.
Therefore, we can obtain two disjoint paths P(a,b)

and Q(c,d) with |P(a,b)| = |Q(c,d)| = 22n − 1.

Subcase 1.3.4 (ua = uc) 6= (ub = ud)
Without loss of generality, let va = p1, vb = q1,
vc = p2n , and vd = q2n . Let 1 ≤ i, j ≤ 2n−1

and let H1 be a subgraph of HCC(1, n) consists
of 2 × 2n−1 × 2n vertices of V (CQn(u, pi)) ∪
V (CQn(ū, qj)) (See Fig. 8(d)). Let HCC(1, n)
− H1 be another subgraph called H2. Clearly,
c, d are in H2. By Lemma 4, there exist two
Hamiltonian paths P(a,b) of H1 and Q(c,d) of H2.
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Therefore, we can obtain two disjoint paths P(a,b)

and Q(c,d) with |P(a,b)| = |Q(c,d)| = 22n − 1.

Figure 8: Illustration of Subcase 1.3.

Case 2 a and c are in the same CQn.
Subcase 2.1 The four vertices a, b, c, and d
belong to the same CQn.
Without loss of generality, va = p1. By Lemma
3, there exist two-equal-disjoint paths P ′(a,b) and
Q′(c,d) of CQn(u, p1). Without loss of generality,
let x = (u, p1, wx) be the neighbor of b on P ′(a,b)

and y = (u, p1, wy) be the neighbor of d on Q′(c,d).
Moreover, let wx = q1 and wy = q2. Then, let
P ′(a,b) = 〈a, P(a,x), x, b〉 and Q′(c,d) = 〈c, Q(c,y), y,

d〉. Let H1 be a subgraph of HCC(1, n) consists
of V (CQn(u, pi)) ∪ V (CQn(ū, qj)) with 3 ≤ i, j
≤ 2n−1 + 1 and let HCC(1, n) − CQn(u, p1)
∪ CQn(u, p2) ∪ CQn(ū, q1) ∪ CQn(ū, q2) ∪
H1 be a subgraph called H2. Without loss of
generality, let b′′ be in H1 and d′′ be in H2. For
two distinct vertices x1 = (u, p2, q1) and y1 =
(u, p2, q2), by Observation 1, there exist two paths
P(x,x1) traverses every vertex of V (CQn(ū, q1))
∪ {x, x1} and Q(y,y1) traverses every vertex of
V (CQn(ū, q2)) ∪ {y, y1} (See Fig. 9). Let x2

and y2 be two arbitrary vertices in CQn(u, p2)
with x2, y2 /∈ {x1, y1}, x′′2 ∈ H1, and y′′2 ∈ H2.
By Lemma 3, there exist two-equal-disjoint paths
P(x1,x2) and Q(y1,y2) of CQn(u, p2). Whether x′′2
and b′′ are in the same CQn, by either Lemma
5 or Lemma 6, there exists a Hamiltonian path
P(x′′2 ,b′′) of H1. Similarly, whether y′′2 and d′′ are
in the same CQn, by either Lemma 5 or Lemma
6, there exists a Hamiltonian path Q(y′′2 ,d′′) of H2.

Therefore, we can obtain two-equal-disjoint paths
P(a,b) = 〈a, P(a,x), x, P(x,x1), x1, P(x1,x2), x2, x′′2 ,
P(x′′2 ,b′′), b′′, b〉 and Q(c,d) = 〈c, Q(c,y), y, Q(y,y1),
y1, Q(y1,y2), y2, y′′2 , Q(y′′2 ,d′′), d′′, d〉.

Figure 9: Illustration of Subcase 2.1.

Subcase 2.2 a, b, and c are in CQn(ua, va); d is
in CQn(ud, vd).
Without loss of generality, let va = p1. Let y
= (u, p1, wy) be a vertex with y /∈ {a, b, c} and
wy 6= vd. Without loss of generality, let wy =
q1. By Lemma 3, there exist two-equal-disjoint
paths P ′(a,b) and Q′

(c,y) of CQn(u, p1). Assume x

= (u, p1, wx) is the neighbor of a or b on P ′(a,b)

with wx 6= vd. Without loss of generality, let x
be the neighbor of b on P ′(a,b) and let wx = q2,
then let P ′(a,b) = 〈a, P(a,x), x, b〉. Let H1 be a
subgraph of HCC(1, n) consists of V (CQn(u, pi))
∪ V (CQn(ū, qj)) with 3 ≤ i, j ≤ 2n−1 + 1 and
let HCC(1, n) − CQn(u, p1) ∪ CQn(u, p2) ∪
CQn(ū, q1) ∪ CQn(ū, q2) ∪ H1 be a subgraph
called H2. Without loss of generality, let b′′ be
in H1 and d be in H2. For two vertices x1 =
(u, p2, q2) and y1 = (u, p2, q1), by Observation
1, there exist two paths P(x,x1) traverses every
vertex of V (CQn(ū, q2)) ∪ {x, x1} and Q(y,y1)

traverses every vertex of V (CQn(ū, q1)) ∪ {y, y1}
(See Fig. 10). Let x2 and y2 be two arbitrary
vertices in CQn(u, p2) with x2, y2 /∈ {x1, y1}, x′′2
∈ H1, and y′′2 ∈ H2. By Lemma 3, there exist
two-equal-disjoint paths P(x1,x2) and Q(y1,y2) of
CQn(u, p2). Whether x′′2 and b′′ are in the same
CQn, by either Lemma 5 or Lemma 6, there
exists a Hamiltonian path P(x′′2 ,b′′) of H1. Next
we consider the position of d in two conditions:
(1) ud = ua and (2) ud 6= ua. By Lemma 4, there
exists a Hamiltonian path Q(y′′2 ,d) of H2 if ud =
ua. If ud 6= ua, whether y′′2 is in CQn(ū, vd), there
exists a Hamiltonian path Q(y′′2 ,d) of H2 by either
Lemma 5 or Lemma 6. Therefore, we can obtain
two-equal-disjoint paths P(a,b) = 〈a, P(a,x), x,
P(x,x1), x1, P(x1,x2), x2, x′′2 , P(x′′2 ,b′′), b′′, b〉 and
Q(c,d) = 〈c, Q(c,y), y, Q(y,y1), y1, Q(y1,y2), y2, y′′2 ,
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Q(y′′2 ,d), d〉.

Figure 10: Illustration of Subcase 2.2.

Subcase 2.3 a and c are both in CQn(ua, va); b
and d are both in CQn(ub, vb).
Subcase 2.3.1 ua = ub

Without loss of generality, let va = p1 and vb

= p2 and let x = (u, p1, wx) and y = (u, p1, wy)
be two vertices with x, y /∈ {a, c}. Without
loss of generality, let wx = q1 and wy = q2. By
Lemma 3, there exist two-equal-disjoint paths
P(a,x) and Q(c,y) of CQn(u, p1). Then, let H1 be a
subgraph of HCC(1, n) consists of V (CQn(u, pi))
∪ V (CQn(ū, qj)) with 3 ≤ i, j ≤ 2n−1 + 1 and
let HCC(1, n) − CQn(u, p1) ∪ CQn(u, p2) ∪
CQn(ū, q1) ∪ CQn(ū, q2) ∪ H1 be a subgraph
called H2. For two vertices x1 = (u, p3, q1)
and y1 = (u, p2n , q2), by Observation 1, there
exist two paths P(x,x1) traverses every vertex of
V (CQn(ū, q1)) ∪ {x, x1} and Q(y,y1) traverses
every vertex of V (CQn(ū, q2)) ∪ {y, y1} (See Fig.
11). Let w and z be two vertices in CQn(u, p2)
with w, z /∈ {b, d}, w′′ ∈ H1, and z′′ ∈ H2. By
Lemma 4, there exist two Hamiltonian paths
P(x1,w′′) of H1 and Q(y1,z′′) of H2. Therefore, we
can obtain two-equal-disjoint paths P(a,b) = 〈a,
P(a,x), x, P(x,x1), x1, P(x1,w′′), w′′, w, P(w,b) b〉
and Q(c,d) = 〈c, Q(c,y), y, Q(y,y1), y1, Q(y1,z′′), z′′,
z, Q(z,d), d〉.

Figure 11: Illustration of Subcase 2.3.1.

Subcase 2.3.2 ua 6= ub

Without loss of generality, let va = p1 and vb =

q2n . Let x = (u, p1, wx) and y = (u, p1, wy) be
two distinct vertices with x, y /∈ {a, c} and wx,
wy 6= vb. Without loss of generality, let wx = q1

and wy = q2. By Lemma 3, there exist two-equal-
disjoint paths P(a,x) and Q(c,y) of CQn(u, p1).
For two distinct vertices x1 = (u, p2, q1) and y1 =
(u, p2, q2), by Observation 1, there exist two paths
P(x,x1) traverses every vertex of V (CQn(ū, q1))
∪ {x, x1} and Q(y,y1) traverses every vertex of
V (CQn(ū, q2)) ∪ {y, y1} (See Fig. 12). Let t =
(ū, q2n , wt) and z = (ū, q2n , wz) be two distinct
vertices with t, z /∈ {b, d} and wt, wz 6= va.
Without loss of generality, let wt = p2n and wz

= p2n−1 . By Lemma 3, there exist two-equal-
disjoint paths P(t,b) and Q(z,d) of CQn(ū, q2n).
For two distinct vertices t1 = (ū, q2n−1 , p2n) and
z1 = (ū, q2n−1 , p2n−1), by Observation 1, there
exist two paths P(t1,t) traverses every vertex of
V (CQn(u, p2n)) ∪ {t1, t} and Q(z1,z) traverses
every vertex of V (CQn(u, p2n−1)) ∪ {z1, z}.
Then, let H1 be a subgraph of HCC(1, n) consists
of V (CQn(u, pi)) ∪ V (CQn(ū, qj)) with 3 ≤
i, j ≤ 2n−1 and let HCC(1, n) − CQn(u, p1) ∪
CQn(u, p2) ∪ CQn(ū, q1) ∪ CQn(ū, q2) ∪ H1 ∪
CQn(u, p2n−1) ∪ CQn(u, p2n) ∪ CQn(ū, q2n−1) ∪
CQn(ū, q2n) be a subgraph called H2. Let x2 and
y2 be two arbitrary vertices in CQn(u, p2) with
x2, y2 /∈ {x1, y1}, x′′2 ∈ H1, and y′′2 ∈ H2 and let t2
and z2 be two arbitrary vertices in CQn(ū, q2n−1)
with t2, z2 /∈ {t1, z1}, t′′2 ∈ H1, and z′′2 ∈ H2.
By Lemma 3, there exist two-equal-disjoint
paths P(x1,x2) and Q(y1,y2) of CQn(u, p2) and
two-equal-disjoint paths P(t2,t1) and Q(z2,z1) of
CQn(ū, q2n−1). By Lemma 4, there exist two
Hamiltonian paths P(x′′2 ,t′′2 ) of H1 and Q(y′′2 ,z′′2 ) of
H2. Therefore, we can obtain two-equal-disjoint
paths P(a,b) = 〈a, P(a,x), x, P(x,x1), x1, P(x1,x2),
x2, x′′2 , P(x′′2 ,t′′2 ), t′′2 , t2, P(t2,t1), t1, P(t1,t), t, P(t,b),
b〉 and Q(c,d) = 〈c, Q(c,y), y, Q(y,y1), y1, Q(y1,y2),
y2, y′′2 , Q(y′′2 ,z′′2 ), z′′2 , z2, Q(z2,z1), z1, Q(z1,z), z,
Q(z,d), d〉.

Figure 12: Illustration of Subcase 2.3.2.

Subcase 2.4 a and c are both in CQn(ua, va); b
is in CQn(ub, vb); d is in CQn(ud, vd).
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Without loss of generality, let va = p1. Let x
= (u, p1, wx) and y = (u, p1, wy) be two distinct
vertices with x, y /∈ {a, c}, wx, wy 6= vb, and
wx, wy 6= vd. Without loss of generality, let
wx = q2 and wy = q1. By Lemma 3, there
exist two-equal-disjoint paths P(a,x) and Q(c,y)

of CQn(u, p1). For two distinct vertices x1 =
(u, p2, q2) and y1 = (u, p2, q1), by Observation 1,
there exist two paths P(x,x1) traverses every vertex
of V (CQn(ū, q2)) ∪ {x, x1} and Q(y,y1) traverses
every vertex of V (CQn(ū, q1)) ∪ {y, y1} (See Fig.
13). Let H1 be a subgraph of HCC(1, n) consists
of V (CQn(u, pi)) ∪ V (CQn(ū, qj)) with 3 ≤ i, j
≤ 2n−1 + 1 and let HCC(1, n) − CQn(u, p1) ∪
CQn(u, p2) ∪ CQn(ū, q1) ∪ CQn(ū, q2) ∪ H1 be
a subgraph called H2. Without loss of generality,
let b be in H1 and d be in H2. Let x2 and y2

be two distinct vertices with x2, y2 /∈ {x1, y1},
x′′2 ∈ H1, and y′′2 ∈ H2. Next we consider the
position of b and d in three conditions: (1) ub =
ud = ua, (2) ub = ua and ud 6= ua, and (3) (ub

= ud) 6= ua. If ub = ud = ua, we can obtain two
Hamiltonian paths P(x′′2 ,b) of H1 and Q(y′′2 ,d) of
H2 by Lemma 4. If ub = ua and ud 6= ua, we
can obtain a Hamiltonian path P(x′′2 ,b) of H1 by
Lemma 4 and whether y′′2 and d are in the same
CQn, we can obtain a Hamiltonian path Q(y′′2 ,d)

of H2 by either Lemma 5 or Lemma 6. Moreover,
if (ub = ud) 6= ua, whether x′′2 and b are in the
same CQn, we can obtain a Hamiltonian path
P(x′′2 ,b) of H1 by either Lemma 5 or Lemma 6.
Similarly, whether y′′2 and d are in the same CQn,
we can obtain a Hamiltonian path Q(y′′2 ,d) of H2

by either Lemma 5 or Lemma 6. Therefore, there
exist two-equal-disjoint paths P(a,b) = 〈a, P(a,x),
x, P(x,x1), x1, P(x1,x2), x2, x′′2 , P(x′′2 ,b), b〉 and
Q(c,d) = 〈c, Q(c,y), y, Q(y,y1), y1, Q(y1,y2), y2, y′′2 ,
Q(y′′2 ,d), d〉. ¤

Figure 13: Illustration of Subcase 2.4.

After verifying Theorem 1, we ready to prove
our main result. We present our main result as
Theorem 2 that HCC(k, n) is globally two-equal-

disjoint path coverable for k ≥ 1, n ≥ 5.

Theorem 2 For k ≥ 1, n ≥ 5, HCC(k, n) is
globally two-equal-disjoint path coverable.

Proof. We verify this theorem by induction on
k. Theorem 1 provides our base case of this the-
orem. By induction hypothesis, we can assume
HCC(k, n) is globally two-equal-disjoint path cov-
erable. Next we have to verify HCC(k + 1, n) is
globally two-equal-disjoint path coverable. Let a,
b and c, d be two distinct source-destination pairs
of HCC(k+1, n). We establish two disjoint paths
P(a,b) and Q(c,d). Furthermore, the two disjoint
paths must satisfy |P(a,b)| = |Q(c,d)| = 2k+2n − 1.
According to the relative positions of the four ver-
tices, we divide the proof into the following four
cases.
Case 1 a, b, c, and d are all in the same
HCC(k, n), say Hk(i), i ∈ {0, 1}, of HCC(k +
1, n).
Without loss of generality, let a, b, c, and d are
all in Hk(0). By the hypothesis, there are two
disjoint paths 〈a, P0, b〉 and 〈c, Q0, d〉 in Hk(0),
where |P0| = |Q0| = 2k+2n−1 − 1. Let (w, x)
be an edge on P0 and (y, z) be an edge on Q0,
and then let P0 = 〈a, P 1

0 , w, x, P 2
0 , b〉 and Q0

= 〈c,Q1
0, y, z, Q2

0, d〉. Besides, we also have two
paths P1 joining w′′ and x′′ and Q1 joining y′′

and z′′ with length 2k+2n−1 − 1 in Hk(1). Let
P = 〈a, P 1

0 , w, w′′, P1, x
′′, x, P 2

0 , b〉 and Q =
〈c,Q1

0, y, y′′, Q1, z
′′, z,Q2

0, d〉. Hence it’s obvious
that P and Q are two disjoint paths of length
2k+2n − 1. (See Fig. 14)

Figure 14: Illustration of Case 1 in Theorem 2.

Case 2 a, b, and c are in the same HCC(k, n),
say Hk(i), i ∈ {0, 1}, of HCC(k + 1, n); d is in
Hk (̄i).
Without loss of generality, let a, b, and c be in
Hk(0) and d be in Hk(1). Then let y be a vertex
in Hk(0) with y /∈ {a, b, c, d′′}. By the hypothesis,
there are two disjoint paths 〈a, P0, b〉 and (c,Q0, y〉
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in Hk(0), where |P0| = |Q0| = 2k+2n−1−1. Let
(w, x) be an edge on P0 that w 6= d′′ and x 6=
d′′, and then let P0 = 〈a, P 1

0 , w, x, P 2
0 , b〉. Simi-

larly, we also have two paths P1 and Q1 of length
2k+2n−1 − 1 with end vertices w′′, x′′, y′′ and d
in Hk(1). Note that w′′ 6= d and x′′ 6= d.
Let P = 〈a, P 1

0 , w, w′′, P1, x
′′, x, P 2

0 , b〉 and Q =
〈c,Q0, y, y′′, Q1, d〉. Therefore, it’s obvious that P
and Q are two disjoint paths of length 2k+2n − 1.
(See Fig. 15)

Figure 15: Illustration of Case 2 in Theorem 2.

Case 3 a and b are both in the same HCC(k, n),
say Hk(i), i ∈ {0, 1}, of HCC(k + 1, n); c and d
are both in Hk (̄i).
Without loss of generality, let a and b be in Hk(0);
and let c and d be in Hk(1). There exist two dis-
joint paths P(a,b) and Q(c,d) with |P(a,b)| = |Q(c,d)|
= 2k+2n − 1. (See Fig. 16)

Figure 16: Illustration of Case 3 in Theorem 2.

Case 4 a and c are both in the same HCC(k, n),
say Hk(i), i ∈ {0, 1}, of HCC(k + 1, n); b and d
are both in Hk (̄i).
Without loss of generality, let a and c be in Hk(0);
and let b and d be in Hk(1). Then let w and x be
arbitrary two vertices in Hk(0) except a and c and
w′′ /∈ {b, d}, x′′ /∈ {b, d}. By the hypothesis, there
are two disjoint paths (a, P0, w) and (c,Q0, x) in
Hk(0), where |P0| = |Q0| = 2k+2n−1 − 1. By the
hypothesis again, there are also two paths P1 and
Q1 of length 2k+2n−1 − 1 with end vertices w′′, b,

x′′ and d in Hk(1). Let P = 〈a, P0, w, w′′, P1, b〉
and Q = 〈c,Q0, x, xv, Q1, d〉. Accordingly, it’s ob-
vious that P and Q are two disjoint paths of length
2k+2n − 1. (See Fig. 17) ¤

Figure 17: Illustration of Case 4 in Theorem 2.

4 Conclusion

The problem of many-to-many disjoint paths
in networks is important and has received some
attention because of its application in high perfor-
mance and fault-tolerant routings. In this paper,
we discussed the two-equal-disjoint path coverable
problem and verify the hierarchical crossed cube
HCC(k, n) are globally two-equal-disjoint path
coverable for k ≥ 1 and n ≥ 5.
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