
Appropriate Item Partition for Improving the Mining Performance

Tzung-Pei Hong
1,2

, Jheng-Nan Huang
1
, Kawuu W. Lin

3
 and Wen-Yang Lin

1

1
Department of Computer Science and Information Engineering

National University of Kaohsiung
2
Department of Computer Science and Engineering

National Sun Yat-sen University
3
Department of Computer Science and Information Engineering

National Kaohsiung University of Applied Sciences

Abstract

Along with the progress of information

techniques and the increase of information need,

some databases in the real world grow very

quickly and their sizes become very huge. If the

FP-Growth procedure is directly executed on these

databases to mine association rules, the computer

memory may not allow all nodes of a FP-tree

generated from a huge database. In this paper, a

sophisticated mining approach with a flexible

partition of items is proposed to effectively derive

association rules under the constraint of memory

limitation. The experimental results show that the

proposed approach can make the mining process

under the memory limitation always feasible.

1 Introduction

In the past, many algorithms for mining

association rules from transactions were proposed

[1][5][6][7][8][9][10][11][12], most of which were

based on the Apriori algorithm [1], which

generated and tested candidate itemsets level by

level. This may cause iterative database scan and

high computational cost. Han et al. thus proposed

the Frequent-Pattern-tree (FP-tree) structure for

efficiently mining association rules without

generation of candidate itemsets [2]. The FP-tree

[2] was used to compress a database into a tree

structure which stored only large items. It was

condensed and complete for finding all the

frequent patterns. The construction process was

executed tuple by tuple, from the first transaction

to the last one. After that, a recursive mining

procedure called FP-Growth was executed to

derive frequent patterns from the FP-tree. They

showed the approach could have a better

performance than Apriori.

However, the FP-Growth procedure will be

inefficient because of the high page fault rate in

the mining process. Han et al. then proposed the

concept of database projection [4] to solve the

memory problem. Their approach used “data

copy” to generate a set of independent databases,

with the number of domain items in each database

smaller than a threshold β, which is indicated by

users. The approach needs many I/O operations

and extra disk space in building independent

databases.

Nan et al. then proposed the concept of

grouping domain items [3] to solve the memory

problem. The sizes of the groups might, however,

be very unbalanced, thus it is possible for a group

to be still too large to be handled due to the

memory limitation. The paper thus focuses on

solving or easing off the mining problems incurred

from memory limitation. A sophisticated mining

approach with a flexible partition of items is

proposed to effectively derive association rules

under the constraint of memory limitation. This

approach is based on the branch-and-bound search

strategy to find the best partition under the

criterion that the cross-group itemsets should be

the least. The domain items that appear in a

transaction database are divided into a set of

groups under the constraint that the number of

items in each group cannot exceed a threshold.

The purpose of the phase is to assure the

processing can satisfy the memory limitation. The

groups in the partition may thus be independent or

dependent according to the given data. The

proposed approach can make the mining process

under the memory limitation always feasible.

The remaining parts of this paper are organized

as follows. Some related researches are reviewed

in Section 2. The proposed method for dividing a

big group into a set of smaller dependent groups is

detailed in Section 3. The experimental results are

described in Section 4. The conclusions and future

work are finally given in Section 5.

2 Literature Survey

Han et al. [2] proposed a tree based data

structure named FP-tree and the corresponding

mining algorithm named FP-Growth for

discovering frequent patterns. The algorithm

requires two scans on a database to complete the

mining task. The first scan is to calculate the

The 27th Workshop on Combinatorial Mathematics and Computation Theory

263

support of each item. In the meantime, it also

creates a header table recording the item name, its

corresponding support and the first node-link

linking to the first node in the FP-tree carrying the

same item name. The items of the header table are

sorted descendingly by the support. In the second

scan, for each transaction, the items with support

smaller than the threshold are filtered out and the

remaining items are sorted in descending order by

the support value. The sorted items of each

transaction are inserted to the tree, namely FP-tree.

The structure of a FP-tree consists of a root node

labelled as null, a set of item-prefix subtrees as the

children of root, and a header table. The structure

of the nodes of FP-tree is as <item-name, count

(support), node-link>, in which the item-name is

the item name used for identification, the count is

the number of transactions reaching this node by

the same path from root, and the node-link is a

pointer linking to the next node in the FP-tree with

the same item name. To insert a transaction, P,

into the FP-tree, T, we check whether T has a child,

n, such that n.item-name is identical to the

item-name of the first element of P. If the node

exists, the count of n is increased by 1. Otherwise,

it creates a new node, m, with the same item name

as n. Meanwhile, the count of m is set to 1, the

parent link is set to T, and its node-link is set to

the nodes with the same item-name via the

node-link structure. We recursively perform the

insertion in order for each item in P until each

item is inserted into the FP-tree. After the FP-tree

is constructed, FP-growth is used for discovering

the frequent patterns. An item of the header table

is selected to construct the conditional FP-tree by

inserting all of the prefix paths of the item, which

can be retrieved by node-link structure in header

table. The name of the item is called the

conditional pattern base. Then the FP-growth is

executed recursively and the conditional pattern

base is cascaded by new one in each recursion

until the conditional FP-tree contains only a single

path or is an empty tree. The frequent patterns can

be easily generated by the cascaded conditional

pattern base and the FP-tree. After processing each

item in header table, all of the frequent patterns

are obtained.

3 Item Partition by Tree Search

The Proposed Algorithm

INPUT:

1. A set of n transactions in a database with a set

of m items {I1, I2, …, Im} named DIL (Domain

Item List);

2. A minimum support threshold named

min_support.

3. A number threshold β for constraining the

number of items in each group of a partition.

OUTPUT:

1. A proper partition P from the DIL with the

item number in each group equal to or less than

β.

2. The association relations between each big

group and its refined sub-groups.

The proposed item-partition algorithm:

PHASE 1:

STEP 1: Generate all the 2-itemsets from the given

items and calculate their counts.

STEP 2: If the count of an itemset is larger than the

threshold, min_support, then put it in the set

of frequent 2-itemsets (FI).

STEP 3: Initially set the partition P to have m groups,

with each consisting of only one item in

DIL.

STEP 4: The two groups with the two items in a

frequent 2-itemset will be merged together

if they belong to different groups for

dependency consideration.

STEP 5: Repeat the above step (STEP 4) until there

is no frequent 2-itemsets or only one group

in the partition.

STEP 6: Output the partition into Phase 2 for

possible finer division.

PHASE 2:

STEP 7: If in the partition there is at least one big

group (with the item number larger than the

number threshold β), do the next step;

otherwise, exit the algorithm and output the

partition.

STEP 8: Use the “Refine-partition” procedure,

which is based on the branch-and -bound

strategy, to divide each big group into a set

of small groups (with their item numbers

equal to or smaller than β).

STEP 9: Set the association relations between each

big group and its refined sub-groups for the

usage of later mining.

STEP 10: Output the final partition and the

association relations between each big

group and its refined sub-groups.

Note that after step 10, a proper partition with no

or little inter-group dependency can be found. The

partition may then be used to improve the efficiency

of data mining under some situations. For example,

mining association rules under memory limitation in

a good application of it. Next, the “Refine-Partition”

procedure, which divides each big group into a set of

small groups, is introduced. Basically, it is based on

the branch-and-bound strategy. It is stated as follows.

The 27th Workshop on Combinatorial Mathematics and Computation Theory

264

For each big group, the procedure first finds

how many sub-groups are enough for it. It can be

easily done by dividing the item number of the

original group over the item number threshold β and

finding the ceiling of the result. This will cause the

minimum number of sub-groups for the group. This

is also what we desire since the sub-groups will

depend on each other and the minimum number of

subgroups can reduce the computation time for the

later mining process. Then, the procedure will try to

find the sub-groups with less inter-group dependency

and with the item number of each equal to or less

than the item number threshold β.

The inter-group dependency is measured by the

number of infrequent 2-itemsets in each group. It is a

relative measure. That is, if the number of infrequent

2-itemsets in a group is small, then the number of

frequent 2-itemsets is large and the group is much

self-contained. Thus, the total of the numbers of the

infrequent 2-itemsets in all the groups is used to

measure the fitness of the partition. The minimum

the value is, the better the partition. Since the total

number of frequent 2-itemsets is known, it means

that the number of inter-group 2-itemsets in this way

is the minimum among all the possible partitions.

Note that only 2-itemsets are used here to measure

the goodness of partition. Itemsets with more items

can also be used to measure but they will raise the

complexity of the real implementation and the

computation time. The procedure is based on the

branch-and-bound strategy. The content of each node

includes two parts, the decided part and the

undecided part. The sub-groups which have been

decided in a search branch are put in the decided part.

All the remaining items are then put in the undecided

part. After each search level, one more sub-group

will be decided and moved from the undecided part

to the decided part. The details of the procedure are

written below.

The “Refine-Partition” procedure

INPUT: A big group (with the item number larger

than the number threshold β).

OUTPUT: A set of small groups (with the item

number equal to or larger than the

number threshold β) with the minimum

total of the numbers of the infrequent

2-itemsets in all the groups.

STEP 1: Initially set the upper bound as an infinite

value.

STEP 2: Set the score of each infrequent 2-itemset

generated from the big group is 1 and that

of each frequent one is 0.

STEP 3: Initially set the decided part of the root

node of the search tree as null and the

undecided part as the originally big group

to be refined with its lower bound being 0.

The root node is the currently only one

unexplored node.

STEP 4: Generate the child nodes from the

unexplored node. Each child node is

formed by moving one possible sub-group

from the undecided part to the decided part.

The sub-group must contain the first item

in the originally undecided part. The

possible item number of the subgroup is

between the ceiling and the floor of the

average item number of a sub-group from

the group to be divided.

STEP 5: Calculate the lower bound of each child

node by the following substeps.

SUBSTEP 5.1: Calculate the scores (Sdecide) of

the decided part by the

summation of the scores of

the 2-itemsets covered in the

decided part.

 SUBSTEP 5.2: Calculate the number n of the

2-itemsets generated from

the final refinement of the

undecided part as:

where R is the item number in the current

undecided part and β is the item number

threshold defined in the above algorithm.

SUBSTEP 5.3: Calculate the lower bound

(Sunecide) of the undecided

part as the summation of the

lowest n scores among the

possible 2-itemsets generated

from the current undecided

part.

SUBSTEP 5.4: Calculate the lower bound of

the node as the summation of

Sdecide and Sundecide.

STEP 6: If the lower bound of a node is equal to or

larger than the kept upper bound, then stop

the search from the node.

STEP 7: Choose the node with the minimum lower

bound among all the unexplored nodes. If

several nodes have the same minimum lower

bound, choose the one with the deepest level

among them.

STEP 8: If the child chosen has been a feasible

partition, its lower bound becomes its

actual fitness value. Compare the value

with the previously kept upper bound. If

the new value is smaller than the previous

one, replace the upper bound with the

current one.

STEP 9: Repeat STEPs 4 to 8 until there are no

un-explored nodes.

),2),mod(()2,(

RCC
R

n

The 27th Workshop on Combinatorial Mathematics and Computation Theory

265

Note that in Step 4, the sub-group to be newly

formed must contain the first item in the originally

undecided part. The purpose is to avoid generating

redundant branches, which are of the same

partition but with different group orders.

4 Experimental Results

To evaluate the performance of the proposed

algorithm, we use IBM’s Quest Synthetic Data

Generator to generate the workload data for

mining. The experiments were conducted on a PC

equipped with an AMD Athlon 64 Processor

3200+ and 2GB of available RAM. The program

is written in Java and runs on Windows 7

platform.

In the following experiments, we investigate the

performance of the proposed algorithm in terms of

execution time by varying the number of partition

size to 4, 5 and 10. In addition, we will also

observe the number of covered infrequent

2-itemset. The number of transactions, minimum

support and number of items of the dataset are 100,

30% and 20, respectively.

Figure 1 shows the number of covered

infrequent 2-itemset when the partition size is set

to 4, 5 and 10. Figure 2 shows the execution time

when the partition size is set to 4, 5 and 10.

Obviously, the required execution time decreases

with the increase in partition size dramatically.

Note that the required execution time of partition

size set to 10 is only 5015 (ms), which is much

better than that of partition size being 4, 294734

(ms). This demonstrates the good performance of

the proposed algorithm.

Figure 1. The impact of the number of covered

infrequent 2-itemset when varying the partition

size.

Figure 2. The impact of the execution time when

varying the partition size.

5 Conclusions and Future Work

The paper focuses on solving or easing off the

mining problems incurred from memory limitation.

A sophisticated mining approach with a flexible

partition of items is proposed to effectively derive

association rules under the constraint of memory

limitation. This approach is based on the

branch-and-bound search strategy to find the best

partition under the criterion that the cross-group

itemsets should be the least. The domain items that

appear in a transaction database are divided into a

set of groups under the constraint that the number

of items in each group cannot exceed a threshold.

The proposed approach can make the mining

process under the memory limitation always

feasible.

References

[1] R. Agrawal, T. Imielinksi and A. Swami,

“Mining association rules between sets of items in

large database,“ The ACM SIGMOD Conference,

pp. 207-216, 1993.

[2] J. Han, J. Pei, and Y. Yin, ”Mining frequent

patterns without candidate generation” The 2000

ACM SIGMOD International Conference on

Management of Data, 2000.

[3] A. Nanopoulos, A. N. Papadopoulos, and Y.

Manolopoulos, “Mining association rules in very

large clustered domains”, Information Systems,

Vol. 32, pp. 649–669, 2007.

[4] J. Han, J. Pei, Y. Yin, R. Mao, Mining frequent

patternswithout candidate generation: a

frequent-pattern tree approach, Data Min. Knowl.

Discovery 8 (2004) 53–87.

[5] R. Agrawal and R. Srikant, “Fast algorithm for

mining association rules,” The International

Conference on Very Large Data Bases, pp.

487-499, 1994.

[6] R. Agrawal, R. Srikant and Q. Vu, “Mining

association rules with item constraints,” The Third

International Conference on Knowledge

Discovery in Databases and Data Mining, pp.

67-73, 1997.

[7] T. Fukuda, Y. Morimoto, S. Morishita and T.

Tokuyama, "Mining optimized association rules

for numeric attributes," The ACM

SIGACT-SIGMOD-SIGART Symposium on

Principles of Database Systems, pp. 182-191,

1996.

[8] J. Han and Y. Fu, “Discovery of multiple-level

association rules from large database,” The

Twenty-first International Conference on Very

Large Data Bases, pp. 420-431, 1995.

[9] H. Mannila, H. Toivonen, and A.I. Verkamo,

“Efficient algorithm for discovering association

rules,” The AAAI Workshop on Knowledge

The 27th Workshop on Combinatorial Mathematics and Computation Theory

266

Discovery in Databases, pp. 181-192, 1994.

[10] J. S. Park, M. S. Chen, P. S. Yu, “Using a

hash-based method with transaction trimming for

mining association rules,” IEEE Transactions on

Knowledge and Data Engineering, Vol. 9, No. 5,

pp. 812-825, 1997.

[11] R. Srikant and R. Agrawal, “Mining

generalized association rules,” The Twenty-first

International Conference on Very Large Data

Bases, pp. 407-419, 1995.

[12] K. Hu, L. Diao, Y. Lu, and C. Shi, “A

heuristic optimal reduct algorithm,“ Lecture Notes

in Computer Science, Vol. 1983, Springer, Berlin,

2000, pp. 139-144.

[13] R. Agrawal and R. Srikant, ”Mining

sequential patterns,” The Eleventh IEEE

International Conference on Data Engineering, pp.

3-14, 1995.

The 27th Workshop on Combinatorial Mathematics and Computation Theory

267

	Abstract0F(
	p21.pdf
	Abstract

	p21.pdf
	Abstract

	p37.pdf
	. Introduction
	. Queue layout of FQn

	p38.pdf
	Introduction
	Preliminaries
	Main results
	Concluding remarks

	p53.pdf
	Abstract
	Acknowledgement
	References

	p56.pdf
	Abstract

	論文整編
	Abstract0F(
	p21.pdf
	Abstract

	p21.pdf
	Abstract

	p37.pdf
	. Introduction
	. Queue layout of FQn

	p38.pdf
	Introduction
	Preliminaries
	Main results
	Concluding remarks

	p53.pdf
	Abstract
	Acknowledgement
	References

	p56.pdf
	Abstract

	論文整編
	Abstract0F(
	p21.pdf
	Abstract

	p21.pdf
	Abstract

	p37.pdf
	. Introduction
	. Queue layout of FQn

	p38.pdf
	Introduction
	Preliminaries
	Main results
	Concluding remarks

	p53.pdf
	Abstract
	Acknowledgement
	References

	p56.pdf
	Abstract

