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Abstract 

Along with the progress of information 

techniques and the increase of information need, 

some databases in the real world grow very 

quickly and their sizes become very huge. If the 

FP-Growth procedure is directly executed on these 

databases to mine association rules, the computer 

memory may not allow all nodes of a FP-tree 

generated from a huge database. In this paper, a 

sophisticated mining approach with a flexible 

partition of items is proposed to effectively derive 

association rules under the constraint of memory 

limitation. The experimental results show that the 

proposed approach can make the mining process 

under the memory limitation always feasible. 

 

 

1  Introduction 
 

In the past, many algorithms for mining 

association rules from transactions were proposed  

[1][5][6][7][8][9][10][11][12], most of which were 

based on the Apriori algorithm [1], which 

generated and tested candidate itemsets level by 

level. This may cause iterative database scan and 

high computational cost. Han et al. thus proposed 

the Frequent-Pattern-tree (FP-tree) structure for 

efficiently mining association rules without 

generation of candidate itemsets [2]. The FP-tree 

[2] was used to compress a database into a tree 

structure which stored only large items. It was 

condensed and complete for finding all the 

frequent patterns. The construction process was 

executed tuple by tuple, from the first transaction 

to the last one. After that, a recursive mining 

procedure called FP-Growth was executed to 

derive frequent patterns from the FP-tree. They 

showed the approach could have a better 

performance than Apriori. 

However, the FP-Growth procedure will be 

inefficient because of the high page fault rate in 

the mining process. Han et al. then proposed the 

concept of database projection [4] to solve the 

memory problem. Their approach used “data 

copy” to generate a set of independent databases, 

with the number of domain items in each database 

smaller than a threshold β, which is indicated by 

users. The approach needs many I/O operations 

and extra disk space in building independent 

databases. 

Nan et al. then proposed the concept of 

grouping domain items [3] to solve the memory 

problem. The sizes of the groups might, however, 

be very unbalanced, thus it is possible for a group 

to be still too large to be handled due to the 

memory limitation. The paper thus focuses on 

solving or easing off the mining problems incurred 

from memory limitation. A sophisticated mining 

approach with a flexible partition of items is 

proposed to effectively derive association rules 

under the constraint of memory limitation. This 

approach is based on the branch-and-bound search 

strategy to find the best partition under the 

criterion that the cross-group itemsets should be 

the least. The domain items that appear in a 

transaction database are divided into a set of 

groups under the constraint that the number of 

items in each group cannot exceed a threshold. 

The purpose of the phase is to assure the 

processing can satisfy the memory limitation. The 

groups in the partition may thus be independent or 

dependent according to the given data. The 

proposed approach can make the mining process 

under the memory limitation always feasible.  

The remaining parts of this paper are organized 

as follows. Some related researches are reviewed 

in Section 2. The proposed method for dividing a 

big group into a set of smaller dependent groups is 

detailed in Section 3. The experimental results are 

described in Section 4. The conclusions and future 

work are finally given in Section 5. 

2  Literature Survey 
 

Han et al. [2] proposed a tree based data 

structure named FP-tree and the corresponding 

mining algorithm named FP-Growth for 

discovering frequent patterns. The algorithm 

requires two scans on a database to complete the 

mining task. The first scan is to calculate the 
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support of each item. In the meantime, it also 

creates a header table recording the item name, its 

corresponding support and the first node-link 

linking to the first node in the FP-tree carrying the 

same item name. The items of the header table are 

sorted descendingly by the support. In the second 

scan, for each transaction, the items with support 

smaller than the threshold are filtered out and the 

remaining items are sorted in descending order by 

the support value. The sorted items of each 

transaction are inserted to the tree, namely FP-tree. 

The structure of a FP-tree consists of a root node 

labelled as null, a set of item-prefix subtrees as the 

children of root, and a header table. The structure 

of the nodes of FP-tree is as <item-name, count 

(support), node-link>, in which the item-name is 

the item name used for identification, the count is 

the number of transactions reaching this node by 

the same path from root, and the node-link is a 

pointer linking to the next node in the FP-tree with 

the same item name. To insert a transaction, P, 

into the FP-tree, T, we check whether T has a child, 

n, such that n.item-name is identical to the 

item-name of the first element of P. If the node 

exists, the count of n is increased by 1. Otherwise, 

it creates a new node, m, with the same item name 

as n. Meanwhile, the count of m is set to 1, the 

parent link is set to T, and its node-link is set to 

the nodes with the same item-name via the 

node-link structure. We recursively perform the 

insertion in order for each item in P until each 

item is inserted into the FP-tree. After the FP-tree 

is constructed, FP-growth is used for discovering 

the frequent patterns. An item of the header table 

is selected to construct the conditional FP-tree by 

inserting all of the prefix paths of the item, which 

can be retrieved by node-link structure in header 

table. The name of the item is called the 

conditional pattern base. Then the FP-growth is 

executed recursively and the conditional pattern 

base is cascaded by new one in each recursion 

until the conditional FP-tree contains only a single 

path or is an empty tree. The frequent patterns can 

be easily generated by the cascaded conditional 

pattern base and the FP-tree. After processing each 

item in header table, all of the frequent patterns 

are obtained. 

 

3  Item Partition by Tree Search 

The Proposed Algorithm 

INPUT: 

1. A set of n transactions in a database with a set 

of m items {I1, I2, …, Im} named DIL (Domain 

Item List); 

2. A minimum support threshold named 

min_support. 

3. A number threshold β for constraining the 

number of items in each group of a partition. 

OUTPUT: 

1. A proper partition P from the DIL with the 

item number in each group equal to or less than 

β.  

2. The association relations between each big 

group and its refined sub-groups. 

 

The proposed item-partition algorithm: 

PHASE 1: 

STEP 1: Generate all the 2-itemsets from the given 

items and calculate their counts.  

STEP 2: If the count of an itemset is larger than the 

threshold, min_support, then put it in the set 

of frequent 2-itemsets (FI). 

STEP 3: Initially set the partition P to have m groups, 

with each consisting of only one item in 

DIL. 

STEP 4: The two groups with the two items in a 

frequent 2-itemset will be merged together 

if they belong to different groups for 

dependency consideration. 

STEP 5: Repeat the above step (STEP 4) until there 

is no frequent 2-itemsets or only one group 

in the partition.  

STEP 6: Output the partition into Phase 2 for 

possible finer division. 

PHASE 2: 

STEP 7: If in the partition there is at least one big 

group (with the item number larger than the 

number threshold β), do the next step; 

otherwise, exit the algorithm and output the 

partition. 

STEP 8: Use the “Refine-partition” procedure, 

which is based on the branch-and -bound 

strategy, to divide each big group into a set 

of small groups (with their item numbers 

equal to or smaller than β). 

STEP 9: Set the association relations between each 

big group and its refined sub-groups for the 

usage of later mining.  

STEP 10: Output the final partition and the 

association relations between each big 

group and its refined sub-groups. 

  

Note that after step 10, a proper partition with no 

or little inter-group dependency can be found. The 

partition may then be used to improve the efficiency 

of data mining under some situations. For example, 

mining association rules under memory limitation in 

a good application of it. Next, the “Refine-Partition” 

procedure, which divides each big group into a set of 

small groups, is introduced. Basically, it is based on 

the branch-and-bound strategy. It is stated as follows.  
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For each big group, the procedure first finds 

how many sub-groups are enough for it. It can be 

easily done by dividing the item number of the 

original group over the item number threshold β and 

finding the ceiling of the result. This will cause the 

minimum number of sub-groups for the group. This 

is also what we desire since the sub-groups will 

depend on each other and the minimum number of 

subgroups can reduce the computation time for the 

later mining process. Then, the procedure will try to 

find the sub-groups with less inter-group dependency 

and with the item number of each equal to or less 

than the item number threshold β.  

The inter-group dependency is measured by the 

number of infrequent 2-itemsets in each group. It is a 

relative measure. That is, if the number of infrequent 

2-itemsets in a group is small, then the number of 

frequent 2-itemsets is large and the group is much 

self-contained. Thus, the total of the numbers of the 

infrequent 2-itemsets in all the groups is used to 

measure the fitness of the partition. The minimum 

the value is, the better the partition. Since the total 

number of frequent 2-itemsets is known, it means 

that the number of inter-group 2-itemsets in this way 

is the minimum among all the possible partitions. 

Note that only 2-itemsets are used here to measure 

the goodness of partition. Itemsets with more items 

can also be used to measure but they will raise the 

complexity of the real implementation and the 

computation time. The procedure is based on the 

branch-and-bound strategy. The content of each node 

includes two parts, the decided part and the 

undecided part. The sub-groups which have been 

decided in a search branch are put in the decided part. 

All the remaining items are then put in the undecided 

part. After each search level, one more sub-group 

will be decided and moved from the undecided part 

to the decided part. The details of the procedure are 

written below.  

The “Refine-Partition” procedure   

INPUT: A big group (with the item number larger 

than the number threshold β). 

OUTPUT: A set of small groups (with the item 

number equal to or larger than the 

number threshold β) with the minimum 

total of the numbers of the infrequent 

2-itemsets in all the groups.  

STEP 1: Initially set the upper bound as an infinite 

value. 

STEP 2: Set the score of each infrequent 2-itemset 

generated from the big group is 1 and that 

of each frequent one is 0. 

STEP 3: Initially set the decided part of the root 

node of the search tree as null and the 

undecided part as the originally big group 

to be refined with its lower bound being 0. 

The root node is the currently only one 

unexplored node. 

STEP 4: Generate the child nodes from the 

unexplored node. Each child node is 

formed by moving one possible sub-group 

from the undecided part to the decided part. 

The sub-group must contain the first item 

in the originally undecided part. The 

possible item number of the subgroup is 

between the ceiling and the floor of the 

average item number of a sub-group from 

the group to be divided.  

STEP 5: Calculate the lower bound of each child 

node by the following substeps. 

SUBSTEP 5.1: Calculate the scores (Sdecide) of 

the decided part by the 

summation of the scores of 

the 2-itemsets covered in the 

decided part. 

 SUBSTEP 5.2: Calculate the number n of the 

2-itemsets generated from 

the final refinement of the 

undecided part as: 

where R is the item number in the current 

undecided part and β is the item number 

threshold defined in the above algorithm.  

SUBSTEP 5.3: Calculate the lower bound 

(Sunecide) of the undecided 

part as the summation of the 

lowest n scores among the 

possible 2-itemsets generated 

from the current undecided 

part.  

SUBSTEP 5.4: Calculate the lower bound of 

the node as the summation of 

Sdecide and Sundecide.  

STEP 6: If the lower bound of a node is equal to or 

larger than the kept upper bound, then stop 

the search from the node.  

STEP 7: Choose the node with the minimum lower 

bound among all the unexplored nodes. If 

several nodes have the same minimum lower 

bound, choose the one with the deepest level 

among them.  

STEP 8: If the child chosen has been a feasible 

partition, its lower bound becomes its 

actual fitness value. Compare the value 

with the previously kept upper bound. If 

the new value is smaller than the previous 

one, replace the upper bound with the 

current one.    

STEP 9: Repeat STEPs 4 to 8 until there are no 

un-explored nodes.    
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Note that in Step 4, the sub-group to be newly 

formed must contain the first item in the originally 

undecided part. The purpose is to avoid generating 

redundant branches, which are of the same 

partition but with different group orders. 

4  Experimental Results 

To evaluate the performance of the proposed 

algorithm, we use IBM’s Quest Synthetic Data 

Generator to generate the workload data for 

mining. The experiments were conducted on a PC 

equipped with an AMD Athlon 64 Processor 

3200+ and 2GB of available RAM. The program 

is written in Java and runs on Windows 7 

platform. 

In the following experiments, we investigate the 

performance of the proposed algorithm in terms of 

execution time by varying the number of partition 

size to 4, 5 and 10. In addition, we will also 

observe the number of covered infrequent 

2-itemset. The number of transactions, minimum 

support and number of items of the dataset are 100, 

30% and 20, respectively.  

Figure 1 shows the number of covered 

infrequent 2-itemset when the partition size is set 

to 4, 5 and 10. Figure 2 shows the execution time 

when the partition size is set to 4, 5 and 10. 

Obviously, the required execution time decreases 

with the increase in partition size dramatically. 

Note that the required execution time of partition 

size set to 10 is only 5015 (ms), which is much 

better than that of partition size being 4, 294734 

(ms). This demonstrates the good performance of 

the proposed algorithm. 

Figure 1. The impact of the number of covered 

infrequent 2-itemset when varying the partition 

size. 

 

Figure 2. The impact of the execution time when 

varying the partition size. 

5  Conclusions and Future Work 

The paper focuses on solving or easing off the 

mining problems incurred from memory limitation. 

A sophisticated mining approach with a flexible 

partition of items is proposed to effectively derive 

association rules under the constraint of memory 

limitation. This approach is based on the 

branch-and-bound search strategy to find the best 

partition under the criterion that the cross-group 

itemsets should be the least. The domain items that 

appear in a transaction database are divided into a 

set of groups under the constraint that the number 

of items in each group cannot exceed a threshold. 

The proposed approach can make the mining 

process under the memory limitation always 

feasible. 
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