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Abstract

An ordered labeled tree is a tree which nodes are
labeled and in which the left-to-right order among
siblings is significant. Given two ordered labeled
trees P and T , the constrained tree inclusion prob-
lem is to determine whether it is possible to ob-
tain P from T by deleting degree-one or degree-
two nodes. G. Valiente proposed a bottom up algo-
rithm which solves the problem in O(|P ||T |) time
and space. In this paper, a top down matching al-
gorithm is presented, which solves the problem in
O(|P ||T |) time and O(|P ||leaves(T )|) space.

1 Introduction

As appeared in almost every branch of algo-
rithm design, tree is an important data structure.
Any possible operations of it may lead to interest-
ing applications. Among the operations, editing is
the most basic one and it does have been studied
thoroughly [5, 2, 7]. But sometimes even the prim-
itive editing is considered too powerful. Generally,
an editing operation is one of the three: deletion,
insertion, and substitution. If only deletion is al-
lowed, the original tree editing problem is reduced
to tree inclusion problem. The reduction can be
applied even further that deletion is only possible
for nodes with degree one or two. This more re-
stricted problem, which is the focus of this paper,
is called constrained tree inclusion problem.

Let T be a tree, and x, y are nodes in T with
y being the parent of x. Let delete(T, x) denote
the tree obtained from T by removing the node x.
The children of x become the children of y. An
example of deletion operation is given in Figure 1.

The tree inclusion problem is defined as follows.
Given two trees P and T , the pattern and the
text tree respectively, can we obtain P by delet-
ing some nodes from T ? That is, is there a se-
quence x1, . . . , xk of nodes such that T0 = T, Ti =
delete(Ti−1, xi) for i = 1, . . . , k, and then, we have

T : b y

b b x

b b

b

delete(T, x) b y

b b b b

Figure 1: The effect of removing a node from a
tree.

Tk = P? If this is the case, we say P is included in
T. In constrained tree inclusion, these deletion op-
erations are allowed on degree-one nodes (leaves)
and degree-two nodes (with one child) only. For
distinction, we say P is c-included in T if P can be
obtained from T by deleting degree-one or degree-
two nodes.

Although tree inclusion is just a special case of
the general tree editing problem, it has its moti-
vation on Internet. Bille and Gørtz [1] give a good
explanation on the relationship between tree in-
clusion and Internet. When surfing the net, one
often submits queries to search engines to find the
information. The structure of web pages written
in HTML is just a tree and the query is just an-
other small tree. In order to determine whether
a document satisfies the query, tree inclusion test
should be made. This is why the tree inclusion
problem deserves its special treatment.

Due to the generality of tree inclusion, the solu-
tion to a tree inclusion query is not sensitive to the
structure of the query [6]. Many structural forms
of the same pattern (that is, many different pat-
tern trees with the same labeling) may be included
in the same text tree. For instance, three different
structural forms of the same query (pattern tree)
are shown in Fig. 2 which are all included in the
same text tree.

The need to distinguish the structure aroused
the design of constrained tree inclusion. Gabriel
[6] proposed algorithms which run in O(m1.5n)
time for unordered trees with m and n nodes,
and in O(mn) time for ordered trees, both us-
ing O(mn) additional space. In this paper, a
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P1 : a

b c d e

P2 : a

b b

c d e
P3 : a

b b

c b

d e

T : b

b a

b b b

b c b

d

b b b

b e

b

Figure 2: Three forms of the same query are all
included at the node labeled a in the text tree.

top down algorithm, for ordered trees, is pro-
posed which solves the problem in O(mn) time
but O(|P ||leaves(T )|) space is used.

2 Notation

Assume T is an ordered labeled tree with root
Tr. If the number of nodes of T is greater than
one, T consists of a root Tr and the immediate
subtrees T1, . . . , Tk. For any node x in T , a sub-
tree of T consisting of x and its descendants is de-
noted by T (x). Let label(x), post(x) and pre(x),
respectively, denote the label of node x, the pos-
torder number of x and the preorder number of
node x. Let V (T ) denote the set of nodes of T
and outdeg(x) denotes the number of children of
node x. Notation leaf [x] is boolean and it indi-
cates if x is a leaf or an internal node.

The set of left relatives of a node x, denoted
by lr(x), are the nodes that precede x both in
preorder and postorder. The definition is lr(x) is
the set of nodes y such that pre(y) < pre(x) and
post(y) < post(x). The right relatives of x are
those nodes that follow x both in preorder and
postorder. A node on the right (left) side of x is
a node in rr(x) (lr(x)). For example, in Figure
3, the first number companied with the label of
each node is a preorder number, and the second is
a postorder number. So pre(a) = 1, post(a) = 7.
The left relatives of node c is {b, g}. Node f is on
the right side of c.

a, 1, 7

b, 2, 2

g, 3, 1

c, 4, 4

d, 5, 3

e, 6, 5 f, 7, 6

Figure 3: A labeled tree with preorder and pos-
torder numbers.

3 Embedding

This section discusses tree inclusion is equiva-
lent to tree embedding and constrained tree inclu-
sion has its special treatment for tree embedding.

Let P and T be two trees. An embedding of
P in T is an injection f : V (P ) → V (T ) if the
following conditions hold:

1. f preserves labels: label(x) = label(f(x)),
∀x ∈ V (P );

2. f preserves ancestors: x is an ancestor of y iff
f(x) is an ancestors of f(y), ∀x, y ∈ V (P );

3. f preserves the left-to-right order of nodes:
pre(x) < pre(y) iff pre(f(x)) < pre(f(y)),
∀x, y ∈ V (P ).

Kilpeläinen [4] has shown that P is included in
T iff there is an embedding of P in T . So tree in-
clusion problem can be solved in the way of node
mapping [3]. To solve constrained tree inclusion
in the same way, one more condition must be in-
volved in tree embedding:

Lemma 3.1. Let P and T be two trees. Assume
there is an embedding of P in T and p is mapped
to t for some node p of P and some node t of T .
P is c-included in T iff at most one child of p is
mapped to one child of t.

It is easy to see why the condition is necessary
and sufficient for constrained tree inclusion. If P
is c-included in T and more than one child of p
are mapped to one child of t, there must exist a
node t with degree at least three to be deleted,
contradicting the deletion operation of constrained
tree inclusion. If the condition is hold, it is obvious
that all deleted nodes are with degree one or two.

For example, P1 in Fig. 2 is not c-included in
T since T (c), T (d), T (e) of P are all embedded in
one immediate subtree of T (a) in T . P3, however,
is c-included in T since all nodes of P3 follow this
condition.

The above discussion, thus, suggests a top down
approach which is shown in Algorithm 1: First
parent node p is compared with nodes of T (t) in
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preorder, looking for nodes with the same label. If
some node is found, the children of p are processed
in similar way except the starting point in T (t)
should be chosen such that it follows the all con-
ditions of tree embedding (the ancestor and left-
to-right order are preserved; at most one child of
p is mapped to one child of t).

The time complexity of Algorithm 1 is, how-
ever, exponential. Consider P a b-leaf with n a-
ancestors and T a chain of 2n a-nodes. For some
node p of P and some node t of T , t is compared
with p again and again in Algorithm 1; more than
(

2n
n

)

node comparisons are made by the algorithm.
Next section will show how to avoid the repetitive
computation.

Algorithm 1 TopDown(p, t)

1. if label(p) = label(t) then
2. if leaf [p] then
3. return success
4. i← 1; j ← 1
5. while i ≤ outdeg(p) and j ≤ outdeg(t)

do
6. result← TopDown(pi, tj)
7. if result =success then
8. i = i+ 1
9. j = j + 1

10. if i > outdeg(p) then
11. return success
12. for j = 1 to outdeg(t) do
13. result← TopDown(p, tj)
14. if result =success then
15. return success
16. return fail

4 The Improved Algorithm

Although previous top down approach conducts
many repetitions, the comparisons involved with
Pr, the root of the pattern tree, is an exception.
Each node of T is compared with Pr at most once
and the comparisons are done in preorder. This
simple fact can be easily deduced from the code.

If the compared nodes are saved, the property
of Pr can be extended to other nodes of P . Let’s
see how this work is done.

Let us examine when the nodes of P are com-
pared. Each node of P , except Pr, is compared
with some node of T only when its parent’s label
has been compared successfully (line 1 of Algo-
rithm 1). Then the while loop is executed and
the comparison is invoked (line 6). If we can

avoid the repetitive invocation of TopDown() in
while loop, repetitive comparisons will not occur.
The avoidance is achieved in two steps. First,

Algorithm 2 ImpTopDown(p, t)

1. for i = 1 to outdeg(p) do
2. // pli[0] : (tm, tn, r0)
3. if pre(t) ≥ pre(tn) then
4. remove pli[0]
5. if label(p) = label(t) then
6. if leaf [p] then
7. return (t, success)
8. i← 1; j ← 1
9. while i ≤ outdeg(p) and j ≤ outdeg(t) do

10. if tj in pli[0] : (tm, tn, r0) then
11. if (tj is ancestor of tn or tj = tn) and

r0 = success then
12. i = i+ 1
13. j = j + 1
14. else
15. m← tj
16. for k = j to outdeg(t) do
17. n, r ← ImpTopDown(pi, tk)
18. if r = success then
19. break
20. if t in range pli[0] then
21. insert (m,n, r) before pli[1]
22. else
23. insert (m,n, r) before pli[0]
24. j = k + 1
25. if r = success then
26. i = i+ 1
27. if i > outdeg(p) then
28. return (t, success)
29. node, result← (t, fail)
30. for j = 1 to outdeg(t) do
31. node, result← ImpTopDown(p, tj)
32. if result =success then
33. break
34. return (node, result)

when TopDown(pi, tj) (line 6) succeeds, a range
of nodes, (tm : tn), is saved (m,n ∈ N , m ≤ n).
(tm : tn) indicates a range of nodes with preorder
numbers from m to n. Those nodes have been
compared with pi. Since each pi might have a
couple of ranges during the course of Algorithm
1, a list of ranges is maintained by pi. Second,
when parent’s label is compared successfully and
children are ready to be compared again (line 5),
the saved list are employed to cut the unnecessary
invocation, thus avoiding the repetition.

It seems that each element of a list has to be
checked to avoid repetition. But it is sufficient
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only to check the first element of a list.
Let pli denote the list of pi and pli[k] denote

the k-th element of pli. The improved algorithm
is shown in Algorithm 2. In Algorithm 2, line 2
asserts the value of pli[0] is (tm, tn, r0). Line 10-13
indicates the avoidance of repetitive comparisons.
Line 15-23 shows how a range is created and in-
serted into a list.

4.1 Example

Given two ordered trees P and T in Fig 4, the
trace of Algorithm 2 is shown in table 1. The first
column of table 1 presents the invocations gen-
erated by ImpTopDown(Pr, Tr) and the returned
pair by each invocation. The second column shows
what happened in each invocation, where we pay
more attention on the status of the saved lists and
how the unnecessary invocation is cut. Each node
of T is identified with ti in which i is the preorder
number, so is each node of P .

You may find out it is possible to check the
first element of a list when cutting the unnecessary
invocation. Next subsection shows the correctness
of this property.

P : a, 1

b, 2 c, 3 d, 4

T : a, 1

a, 2

x, 3 b, 4 a, 5

x, 6 a, 7

b, 8 c, 9 d, 10

c, 11

x, 12

c, 13 x, 14

Figure 4: Two trees.

4.2 Checking the Front

For some invocation ImpTopDown(p, t), sup-
pose that pi is a child of p and pli =
[(tm0 , tn0 , r0), (tm1 , tn1 , r1), . . . , (tmk

, tnk
, rk)] with

the order tnq
∈ lr(tmq+1 ) for q = 0, . . . , k − 1. For

some element (tmq
, tnq

, rq) of p
l
i and some child tj

of t, if pre(t) ≥ pre(tnq
), then pre(tj) > pre(tnq

),
which indicates (tmq

, tnq
, rq) is of no use to test

the repetitive comparison of pi with tj . Thus,
(tmq

, tnq
, rq) is removed from pli. For example in

table 1, when ImpTopDown(p1, t4) is invoked, the
element (t2, t4, succ) is removed from pl2.

In addition to removing the useless elements,
the generated range in each invocation has to be

inserted at the proper position of pli to preserve the
order of pli. Due to the preservation of the order,
it is sufficient to check only the first element of pli
to avoid the repetitive comparison. Let’s see how
the order is kept.

When the useless elements are removed, t is ei-
ther in the range of pli[0] (pre(tm0) ≤ pre(t) <
pre(tn0)) or on the left side of tm0 . The latter
case implies tj ∈ lr(m0), which indicates tj has
not been compared with pi. Thus, a range is gen-
erated and inserted at the front of pli. For instance,
(t5, t9) in Fig 5 is inserted at the front of pl3.

P a, 1 pl3 = [(t5, t9), (t13, t13)]

b, 2 c, 3 d, 4

a, 1 T

a, 2

x, 3 b, 4 a, 5

x, 6 a, 7

b, 8 c, 9 d, 10

c, 11

x, 12

c, 13 x, 14

Figure 5: Insertion at the front of pl3.

When t is in the range of pli[0], tj is either in the
same range or on the right side of tn0 . The former
case indicates tj has been compared with pi. An
instance of this case is shown in Fig. 6, where the
comparison of p2 with t3 is avoided. The latter
case implies tj ∈ lr(m1) (since t ∈ lr(m1)). Thus
the generated range is inserted before the second
element of pli. For example, (t11, t11) in Fig. 7 is
inserted at index 1 of pl3.

P a, 1 pl2 = [(t2, t4)]

b, 2 c, 3 d, 4

a, 1 T

a, 2

x, 3 b, 4 a, 5

x, 6 a, 7

b, 8 c, 9 d, 10

c, 11

x, 12

c, 13 x, 14

Figure 6: The avoidance of the repetitive compar-
ison indicated by a dashed line.

4.3 Complexity

The improved algorithm has an important
property which can be easily deduced from above
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Table 1: Trace of Algorithm 2.
Invocation: Explanation:

Imp a, 1 a, 1 pl2, p
l

3, p
l

4 are all empty.
. Imp b, 2 a, 2 compare children (line 17)
. . Imp b, 2 x, 3
. . ret (t3, fail)
. . Imp b, 2 b, 4
. . ret (t4, succ)

. ret (t4, succ) pl2 = [(t2, t4, succ)] (line 23)

. Imp c, 3 c, 13

. ret (t13, succ) pl3 = [(t13, t13, succ)]

. Imp d, 4 x, 14

. ret (t14, fail) pl4 = [(t14, t14, succ)]

. Imp a, 1 a, 2 nothing is removed;

. . pl2 = [(t2, t4, succ)], p
l

3 = [(t13, t13, succ)], p
l

4 = [(t14, t14, fail)]).
. . the comparison of p2 with t3, t4 are avoided (line 10). (See Fig. 6.)

. . compare p3 with t5. t5 is not in range pl3[0].

. . Imp c, 3 a, 5

. . . Imp c, 3 x, 6

. . . ret (t6, fail)

. . . Imp c, 3 a, 7

. . . . Imp c, 3 b, 8

. . . . ret (t8, fail)

. . . . Imp c, 3 c, 9

. . . . ret (t9, succ)

. . . ret (t9, succ)

. . ret (t9, succ) pl3 = [(t5, t9, succ), (t13, t13, succ)] (See Fig. 5.)

. . Imp d, 4 x, 12

. . ret (t12, fail) pl4 = [(t12, t12, fail), (t14, t14, fail)]

. . Imp a, 1 x, 3 nothing is removed.

. . ret (t3, fail)

. . Imp a, 1 b, 4 (t2, t4, succ) is removed from pl2. p
l

2 = [], pl3 = [(t5, t9, succ), (t13, t13, succ)],

. . pl4 = [(t12, t12, fail), (t14, t14, fail)]

. . ret (t4, fail)

. . Imp a, 1 a, 5 nothing is removed.

. . . Imp b, 2 x, 6

. . . ret (t6, fail)

. . . Imp b, 2 a, 7

. . . . Imp b, 2 b, 8

. . . . ret (t8, succ)

. . . ret (t8, succ) pl2 = [(t6, t8, succ)]

. . . Imp c, 3 c, 11

. . . ret (t11, succ) pl3 = [(t5, t9, succ), (t11, t11, succ), (t13, t13, succ)](line 21) (See Fig. 7.)

. . . Imp a, 1 x, 6 nothing is removed. pl2 = [(t6, t8, succ)], p
l

4 = [(t12, t12, fail), (t14, t14, fail)]

. . . pl3 = [(t5, t9, succ), (t11, t11, succ), (t13, t13, succ)]

. . . ret (t6, fail)

. . . Imp a, 1 a, 7 nothing is removed. the comparison of p2 with t8 is avoided.

. . . the comparison of p3 with t9 is avoided.

. . . compare p4 with t10, t10 is not in range pl4[0]

. . . . Imp d, 4 d, 10 nothing is removed.

. . . . ret (t10, fail)

. . . ret (t7, succ)

. . ret (t7, succ)

. ret (t7, succ)
ret (t7, succ)
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P a, 1 pl3 = [(t5, t9), (t11, t11), (t13, t13)]

b, 2 c, 3 d, 4

a, 1 T

a, 2

x, 3 b, 4 a, 5

x, 6 a, 7

b, 8 c, 9 d, 10

c, 11

x, 12

c, 13 x, 14

Figure 7: Insertion before the second element of
pl3.

discussion and is formalized in the following
lemma.

Lemma 4.1. Given two trees, P and T , each node
of T is compared with p at most once for all p ∈
V (P ) in the algorithm.

And this lemma implies the following theorem.

Theorem 4.2. Given two trees P and T , the pro-
posed algorithm tests whether P is c-included in T
in time O(mn), where m and n are the number of
the nodes of P and T , respectively.

Proof. The dominant operations of the algorithm
are the invocations of ImpTopDown() , the tests
of pli[0] (line 10), and removing pli[0]. Each in-
vocation of ImpTopDown() contains exactly one
comparison. So, from the previous lemma, it can
be deduced that the number of invocation of Imp-
TopDown() is O(mn).

For a certain node p of P and a certain t of
T , when the labels of p and t are compared suc-
cessfully, line 10 is tested. And the number of the
tests is O(outdeg(t)). Since p compares each node
of T at most once, the total number of the tests,
for a certain p, is O(n). Thus the total number of
the tests of pli[0], for all nodes of P , is O(mn).

In similar deduction, the number of removing
pli[0] is O(mn). Therefore, the time complexity of
the algorithm is O(mn).

For the list of some node p of P , since the
elements of the list are not overlapped, the
space used by the list is O(|leaves(T )|). So the
space complexity of the improved algorithm is
O(|P ||leaves(T )|).

5 Conclusion

We have presented a top down algorithm for
constrained tree inclusion on ordered trees, which

improves the previous one [6] in space complexity.
The key idea is the use of the saved list to avoid
the repetitive computation. Constant-time check-
ing of the list enables us to run the algorithm in
O(|P ||T |) time.
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