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Abstract

In this paper, we aim to develop a suitable ho-
motopy theory and fundamental groups of finite
topological graphs by Khalimsky arcs. The notions
developed are considered for the investigation of
the algebraic invariants of topological graphs for
their topological and graphical classifications. The
present work is a precursor of approaching the gen-
eral homotopy theory, fundamental groups, and
fixed (and almost fixed) point theorems [6] of topo-
logical graphs.

1 Topological Graphs and Khalim-
sky Arcs

In order to relate topology with graphs, as pro-
posed by Smyth in [3, 4], a topological space may
be considered as the limit of an inverse sequence
of finite graphs. The graphs in such a sequence
are considered as increasingly better discrete rep-
resentations of the space, and that the sequence as
a whole approximates the space is justified math-
ematically by the fact that the space may be de-
rived from its limit via a quotienting operation.
Thus a formal framework, topological graphs, is
a structure which embodies topology as well as a
binary relation, thereby constituting a generaliza-
tion of ordered topological spaces to accommodate
standard topological spaces and general graphs.

A topological graph (X,T,R) is a structure such
that T is a topology, R is a closed reflexive binary
relation satisfying (∀u, v ∈ T, x ∈ u & R(u) ⊆
v ⇒ y ∈ v) ⇒ xRy. A graph morphism from
the topological graph (X,TX , RX) to the topo-
logical graph (Y, TY , RY ) is a continuous function
w.r.t. the topologies TX and TY , which is relation
preserving. For a topological graphG = (X,T,R),
we say G is compact Hausdorff if (X,T ) is com-
pact Hausdorff. Moreover, G is said to be con-
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Figure 1: Khalimsky digital line

nected if for every partition {u, v} of X into T -
open sets, there exist x ∈ u, y ∈ v such that xRy
or yRx. For more information about topological
graphs, please refer [3, 4, 5, 8].

Note 1.1. Without any further notice, the topo-
logical graphs are finite; the maps between two
topological graphs are graph morphisms.

We say a connected topological graph G sat-
isfying the COTS (connected ordered topological
space [2]) condition if and only if for any three
distinct points x, y, z ∈ G, one of {x, y, z} sepa-
rates the other two.

Definition 1.2. [5] A continuum is a compact
connected topological graph. A linear topologi-
cal graph is a connected locally connected (read
as usual) topological graph satisfying the COTS
condition. An arc is a second countable contin-
uum satisfying the COTS condition.

The so-called Khalimsky integer line is defined
to be the set of all integers Z with its natural
order together with its interval alternating topol-
ogy Tia, where Tia is a topology defined by sets
of types (−∞, 2i], [2j,∞), i, j ∈ Z (or alternately
(−∞, 2i − 1], [2j − 1,∞), i, j ∈ Z) as a subbasis.
The Khalimsky digital line then can be defined as
a finite connected subspace of the Khalimsky in-
teger line. Fig.1 shows a portion of a standard
Khalimsky digital line.

第二十八屆 組合數學與計算理論研討會論文集 ＩＳＢＮ：978-986-02-7580-3

204



a

b

c

d

e

f

g

Figure 2: Khalimsky arc

From Theorem 2.7 of [2], for any Khalimsky
digital line A with two end points a and b, there
are only two natural linear orderings ≺ and ≻
(=≺−1) such that we can embed into A. For con-
venient, we may say that we travel A from the
point a to the point b if a ≺ b, and we denote it
by aAb; otherwise we denote it by bAa if and only
if a ≻ b.

Theorem 1.3. [7] Let A be a Khalimsky digital
line with at least three points. Then A has two
end points which are both closed or open (but not
both) w.r.t. the topology of COTS if and only if (♯A
mod 2) = 1, where ♯A is the numbers of points of
A.

Notice that a Khalimsky digital line is not nec-
essarily an arc by regarding it as a topological
space, i.e., with identity relation, since it is not
compact if it contains infinite points. With the
specialization pre-ordering embedded into a Khal-
imsky digital line, regarded as its relation, we can
convey a Khalimsky digital line into a directed
graph. As for a good example we can convey the
Khalimsky digital line in Fig. 1 into a directed
graph in Fig. 2.

Definition 1.4. [7] G = (B, T,R) is a Khalimsky
arc if B is the set of all points of a Khalimsky
digital line A, T is the interval topology induced
by the linear ordering ≺ (or ≻) of A, and R is
the specialization pre-ordering≤ induced from the
COTS topology of A.

2 Homotopy of Topological Graphs
by Khalimsky Arcs

The material presented in this section can be
found in [7].

For any point c of a Khalimsky digital line aAb,
we denote the successor (resp. predecessor) of c
by c+ (resp. c−) the immediate adjacent point of
c such that c− ≺ c ≺ c+ when c 6∈ {a, b} and
c− ≡ a if and only if c ≡ a & c+ ≡ b if and only
if c ≡ b. Let A be a Khalimsky arc and c ∈ A.
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Figure 3: A,B ∈ pS

We say c is a minimal point of A if and only if
c ≤ c − & c ≤ c+, and c is a maximal point if
and only if c− ≤ c & c+ ≤ c. It is obvious that
c+ and c− (if exists) are minimal (resp. maximal)
if and only if c is maximal (resp. minimal) when c
is any point of a Khalimsky arc:

Lemma 2.1. Let A be a Khalimsky arc with at
least three points. Then A has two end points
which are both minimal or maximal (but not both)
if and only if (♯A mod 2) = 1.

Let S be the collection of all Khalimsky arcs A
which satisfy the condition (♯A mod 2) = 1. By
Lemma 2.1, A is a Khalimsky arc with two end
points which are both minimal or maximal (or a
singleton Khalimsky arc, which is a Khalimsky arc
containing a single point). Therefore it is clear
that S can be classified into two classes whose
intersection is a set containing all singleton Khal-
imsky arcs. One class denoted by pS contains all
elements of S with two minimal end points (and
all singleton Khalimsky arcs); the other class de-
noted by cS contains all elements of S with two
maximal end points (and all singleton Khalimsky
arcs).

Definition 2.2. Let A,B ∈ pS such that ♯A = n
with two end points a and a′, and ♯B = m with
two end points b and b′. We define A▽B ∈ pS to
be a Khalimsky arc with n + m − 1 points such
that the first n− 1 points of A▽B are considered
as points of A and the last m − 1 points of A▽B
are considered as points of B. And the topology
of A▽B is the interval topology of the points of
A▽B, where the concatenation point of A▽B is
one of {a▽b, a▽b′, a′▽b, a′▽b′} which is depended
on the initial and final points of A and B. The
operator is called lexicographic union or oriented
union.

Clearly A▽B defined in Definition 2.2 is well-
defined as the concatenation point of A▽B is al-
ways minimal. For example, the Fig 4 shows
the lexicographic union of two Khalimsky arcs
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Figure 4: A▽B ∈ pS

A,B ∈ pS in Fig 3. Moreover, we can extend Def-
inition 2.2 into any arbitrary finite lexicographic
union of Khalimsky arcs in pS. Also it is easy to
check Definition 2.2 is still valid if we replace pS

by cS.

Definition 2.3. Let A ∈ pS, B ∈ cS be two
Khalimsky arcs, and G is a topological graph. We
call the maps f : A→ G and g : B → G a p-path
and a c-path of G respectively.

Theorem 2.4. Let G1 = (X,TX , RX) and
G2 = (Y, TY , RY ) be topological graphs. Then
(X × Y, TX×Y , RX×Y ) is a topological graph,
where TX×Y is the product topology of TX and
TY , RX×Y = {((x, y), (x′, y′)) | (x, x′) ∈
RX & (y, y′) ∈ RY }.

We denote G1 × G2 = (X × Y, TX×Y , RX×Y ).
From Theorem 2.4, it is easy to check that TX×Y is
Hausdorff if TX and TY are Hausdorff, and RX×Y

is symmetric if RX and RY are symmetric.

Definition 2.5. Let (X,TX , RX), (Y, TY , RY )
be topological graphs, f and g are maps of
(X,TX , RX) into (Y, TY , RY ). We say f is p-
homotopic to g if there exists a Khalimsky arc
A ∈ pS, and a map H : (X,TX , RX) × A →
(Y, TY , RY ) such that H(x, a) = f(x), H(x, b) =
g(x) for all x ∈ X , where a, b are end points of A.
We write f ≈p g if f is p-homotopic to g.

Similarly, we have c-homotopy if we replace A ∈
pS by A ∈ cS in Definition 2.5. We denote f ≈c g
if f is c-homotopic to g.

Definition 2.6. With notations and terminology
are same as Definition 2.5, we say f is homotopic
to g if f is p-homotopic to g or f is c-homotopic
to g. we denote f ≈ g if f is homotopic to g.

Definition 2.7. G1 = (X,TX , RX), G2 =
(Y, TY , RY ) are topological graphs, and f, g are
maps of G1 into G2. We say f and g are p-
homotopic (resp. c-homotopic, homotopic) rela-
tive to G, G is a subgraph of G1, if there ex-
ists a Khalimsky arc A ∈ pS (A ∈ cS, A ∈ S),

and a homotopy H : G1 × A → G2 such that
H(w, c) = f(w) = g(w) for all w ∈ G & c ∈ A.
The homotopy H is called a p-homotopy (resp. c-
homotopy, homotopy) relative to G and we write
f ≈p

G g (resp. f ≈c
G g, f ≈G g).

It is clear that we have f ≈p g ⇔ f ≈p

G g,
f ≈c g ⇔ f ≈c

G g, and f ≈ g ⇔ f ≈G g if and
only if G = ∅.

Theorem 2.8. With notations and terminology
are same as Definitions 2.5, 2.6, and 2.7, the ho-
motopy ≈p (resp. ≈c, ≈) and ≈p

G (resp. ≈c
G, ≈G)

are equivalence relations.

3 Khalimsky Fundamental Groups
of Topological Graphs

This section is an extension of the previous sec-
tion Homotopy of Topological Graphs by Khalim-
sky Arcs . In this section, we develop the theory of
fundamental groups of topological graphs mainly
based on the Khalimsky arcs with two end points
which are both minimal (∈ pS). This may be
due to the reason that two minimal end points are
closed in the original COTS topology of the Khal-
imsky digital lines. However, it should be empha-
sized that the Khalimsky arcs with two maximal
end points (∈ cS) are also suitable for the same
development.

Definition 3.1. Let A,B ∈ pS, and f : aAb →
G, g : cBd → G be two p-paths of G with f(b) =
g(c). We call the map f ∗ g : A▽B → G such that

f ∗ g(x) =


f(x), if x ∈ A,

f(b) = g(c), if x = b▽c,

g(x), if x ∈ B,

the product of f and g.

Definition 3.2. Let f : A→ G and g : B → G be
two p-paths of G, where A,B ∈ pS. We say f is
path-homotopy to g if there exist Khalimsky arcs
C,D ∈ pS, and surjective maps f̂ : C → A, ĝ :
C → B, and a homotopy H : c0Cc1 × d0Dd1 → G

such that H(c, d0) = f ◦ f̂(c), H(c, d1) = g ◦ ĝ(c),

and H(c0, d) = f ◦ f̂(c0) = g ◦ ĝ(c0), H(c1, d) =

f ◦ f̂(c1) = g ◦ ĝ(c1), for all c ∈ C, d ∈ D. We
denote fp ≈

pg if the p-path f is path-homotopy
to the p-path g.

In other words, two p-paths f : A → G and
g : B → G are said to be path-homotopy if there
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exists an extended Khalimsky arc c0Cc1 ∈ pS with

two surjective maps f̂ : C → A, ĝ : C → B such
that f ◦ f̂≈p

{c0,c1}
g ◦ ĝ.

Lemma 3.3. p ≈
p is reflexive.

Proof. Let f : aAb → G be a p-path, then clearly
the Khalimsky arc aAb and the identity map idA :
A → A satisfy f ◦ idA = f≈p

{a,b}f = f ◦ idA.

Therefore p ≈
p is reflexive.

Lemma 3.4. p ≈
p is symmetric.

Proof. Let fp ≈
pg, where f : A→ G and g : B →

G are two p-paths of G, we claim gp ≈
pf .

By Definition 3.2, fp ≈
pg means that there ex-

ists a Khalimsky arc c0Cc1 ∈ pS and two surjec-

tive maps f̂ : c0Cc1 → A, ĝ : c0Cc1 → B such that

f ◦f̂≈p

{c0,c1}
g◦ĝ. From Theorem 2.8, ≈p

{c0,c1}
is an

equivalence relation (hence symmetric). Therefore

we have g ◦ ĝ≈p

{c0,c1}
f ◦ f̂ , and which implies p ≈

p

is symmetric.

Lemma 3.5. p ≈
p is transitive.

Proof. Suppose fp ≈
pg and gp ≈

ph, where f :
A→ G, g : B → G, and h : C → G are p-paths of
G.

The relation fp ≈
pg means that there exist

Khalimsky arcs d0Dd1 , e0Ee1 ∈ pS, and two sur-

jective maps f̂ : d0Dd1 → A, ĝ : d0Dd1 → B,
and a homotopy H : d0Dd1 × e0Ee1 → G, such

that H(d, e0) = f ◦ f̂(d), H(d, e1) = g ◦ ĝ(d), and

H(d0, e) = f ◦ f̂(d0) = g ◦ ĝ(d0), H(d1, e) =

f ◦ f̂(d1) = g ◦ ĝ(d1), for all d ∈ D, e ∈ E.

The relation gp ≈
ph means that there exist

Khalimsky arcs m0Mm1 , n0Nn1 ∈ pS, and two sur-

jective maps g̃ : m0Mm1 → B, ĥ : m0Mm1 → C,
and a homotopy K : m0Mm1 × n0Nn1 → G, such

that K(m,n0) = g ◦ g̃(m), K(m,n1) = h ◦ ĥ(m),

andK(m0, n) = g◦g̃(m0) = h◦ĥ(m0),K(m1, n) =

g ◦ g̃(m1) = h ◦ ĥ(m1), for all m ∈M,n ∈ N .

As ĝ and g̃ are surjective maps, hence they
define a same path which itself is the Khalim-
sky arc B, therefore ĝ and g̃ are path-homotopy.
By the definition of ĝp ≈

pg̃, there exist Khalim-
sky arcs s0Ss1 , t0Tt1 ∈ pS, and two surjective
maps g′ : s0Ss1 → d0Dd1 , g

′′ : s0Ss1 → m0Mm1 ,
and a homotopy L : s0Ss1 × t0Tt1 → B, such
that L(s, t0) = ĝ ◦ g′(s), L(s, t1) = g̃ ◦ g′′(s), and
L(s0, t) = ĝ ◦ g′(s0) = g̃ ◦ g′′(s0), L(s1, t) =
ĝ ◦ g′(s1) = g̃ ◦ g′′(s1), for all s ∈ S, t ∈ T .

Define F : s0Ss1 × I → G by

F (s, i) =


H(g′(s), i), if i ∈ E,

g(L(s, i)), if i ∈ T ,

K(g′′(s), i), if i ∈ N,

where I = e0Ee1▽t0Tt1▽n0Nn1 ∈ pS.
F is well-defined as if x = e1▽t0, then we have

F (s, x) = H(g′(s), e1) = g ◦ ĝ(g′(s)) = g(ĝ ◦
g′(s)) = g(L(s, t0)) = F (s, x). And if x = t1▽n0,
then we have F (s, x) = g(L(s, t1)) = g(g̃◦g′′(s)) =
g ◦ g̃(g′′(s)) = K(g′′(s), n0) = F (s, x).

Clearly f̂◦g′ : s0Ss1 → A and ĥ◦g′′ : s0Ss1 → C

are surjective maps as f̂ , g′, ĥ, and g′′ are surjec-
tive maps.

We claim F is a homotopy relative to {s0, s1}

of f ◦ (f̂ ◦ g′) and h ◦ (ĥ ◦ g′′). It is trivial that
F is relation-preserving. Moreover, with a simi-
lar proof of Theorem 2.8, F can be shown to be
continuous by the pasting lemma.

For showing F (s, t0) = f ◦ (f̂ ◦ g′(s)) and

F (s, n1) = h ◦ (ĥ ◦ g′′(s)), it is trivial as we

have F (s, t0) = H(g′(s), t0) = f ◦ f̂(g′(s)) =

f ◦ (f̂ ◦ g′(s)) and F (s, n1) = K(g′′(s), n1) =

h ◦ ĥ(g′′(s)) = h ◦ (ĥ ◦ g′′(s)).

For showing F (s0, i) = (f ◦ (f̂ ◦ g′))(s0) = (h ◦

(ĥ ◦ g′′))(s0) and F (s1, i) = (f ◦ (f̂ ◦ g′))(s1) =

(h ◦ (ĥ ◦ g′′))(s1), we have the following equations:

(1) F (s0, i)

=



H(g′(s0), i)

= H(d0, i) =


f ◦ f̂(d0)

‖

g ◦ ĝ(d0)

i ∈ E,

g(L(s0, i))

=


g(ĝ ◦ g′(s0)) = g(ĝ(d0))

‖

g(g̃ ◦ g′′(s0)) = g(g̃(m0))

i ∈ T ,

K(g′′(s), i)

= K(m0, i) =


g ◦ g̃(m0)

‖

h ◦ ĥ(m0)

i ∈ N,

(2) (f ◦ (f̂ ◦ g′))(s0) = f(f̂ ◦ g′(s0)) = f(f̂(d0)) =

f ◦ f̂(d0)

(3) (h◦(ĥ◦g′′))(s0) = h(ĥ◦g′′(s0)) = h(ĥ(m0)) =

h ◦ ĥ(m0)

From the equations (1), (2) and (3), it is clear

that we have F (s0, i) = (f ◦ (f̂ ◦ g′))(s0) = (h ◦

第二十八屆 組合數學與計算理論研討會論文集 ＩＳＢＮ：978-986-02-7580-3

207



(ĥ ◦ g′′))(s0). The proof of showing F (s1, i) =

(f ◦ (f̂ ◦ g′))(s1) = (h ◦ (ĥ ◦ g′′))(s1) is similar.

Therefore we have f ◦(f̂ ◦g′)≈p

{s0,s1}
h◦(ĥ◦g′′),

and which implies fp ≈
ph by Definition 3.2.

Theorem 3.6. p ≈
p is an equivalence relation.

Proof. Directly follows from Lemmas 3.3, 3.4,
and 3.5.

Let G be a topological graph and f is a p-path
ofG. We denote the equivalence class of f by [f ] =
{g|fp ≈

pg, g is a p-path of G}. By the naturalistic
of the equivalence relation p ≈

p, clearly we have
either [f ] = [g] or [f ] ∩ [g] = ∅ for any pair of
p-paths f and g.

If f ∗ g is a well-defined product of two p-
paths f and g, we define the product of two path-
homotopy classes [f ] and [g] by [f ] ∗ [g] = [f ∗ g].

Theorem 3.7. The product ∗ is well-defined on
path-homotopy classes.

Proof. Let f1p ≈
pf2 and g1p ≈

pg2 such that fi ∗
gj is well-defined for i, j = 1, 2, where fi :

a(i)0A
i
a(i)1

→ G, gj : b(j)0B
j
b(j)1

→ G are p-paths

of G. We claim fi ∗gjp ≈
pfk ∗gl for i, j, k, l = 1, 2.

Clearly it is sufficient to show that f1∗g1p ≈
pf2∗g2

only, since p ≈
p is an equivalence relation.

The relation f1p ≈
pf2 means that there exist

Khalimsky arcs c0Cc1 , d0Dd1 ∈ pS and two sur-

jective maps f̂1 : c0Cc1 → A1, f̂2 : c0Cc1 → A2

and a homotopy H : c0Cc1 × d0Dd1 → G such that

H(c, d0) = f1 ◦ f̂1(c), H(c, d1) = f2 ◦ f̂2(c) and

H(c0, d) = f1 ◦ f̂1(c0) = f2 ◦ f̂2(c0), H(c1, d) =

f1 ◦ f̂1(c1) = f2 ◦ f̂2(c1) for all c ∈ C, d ∈ D.

The relation g1p ≈
pg2 means that there exist

Khalimsky arcs m0Mm1 , n0Nn1 ∈ pS and two sur-
jective maps ĝ1 : m0Mm1 → B1, ĝ2 : m0Mm1 → B2

and a homotopy K : m0Mm1 × n0Nn1 → G such
that K(m,n0) = g1◦ ĝ1(m), K(m,n1) = g2◦ ĝ2(m)
and K(m0, n) = g1 ◦ ĝ1(m0) = g2 ◦ ĝ2(m0),
K(m1, n) = g1 ◦ ĝ1(m1) = g2 ◦ ĝ2(m1) for all
m ∈M,n ∈ N .

Firstly we show fi ◦ f̂i(c1) = gj ◦ ĝj(m0) for

i, j = 1, 2. It is clear f1 ◦ f̂1(c1) = f2 ◦ f̂2(c1)
and g1 ◦ ĝ1(m0) = g2 ◦ ĝ2(m0) by the relations

f1p ≈
pf2 and g1p ≈

pg2. Moreover, fi ◦ f̂i(c1) =

fi(a(i)1) and gj ◦ ĝj(m0) = gj(b(j)0) since f̂i and

ĝj are surjective maps (hence f̂i(c1) = a(i)1 and

ĝj(m0) = b(j)0. Therefore we have fi◦f̂i(c1) = gj◦
ĝj(m0) as fi(a(i)1) = gj(b(j)0) by the assumption
that fi ∗ gj is well-defined.

Define F : X × Y → G by

F (x, y) =


H(x, y), if x ∈ c0Cc1 , y ∈ d0Dd1,

K(x, n0), if x ∈ m0Mm1 , y ∈ d0Dd1 ,

H(x, d1), if x ∈ c0Cc1 , y ∈ n0Nn1 ,

K(x, y), if x ∈ m0Mm1 , y ∈ n0Nn1 ,

where X = c0Cc1▽m0Mm1 , Y = d0Dd1▽n0Nn1 ∈
pS.

For the following proof, let i, j = {1, 2}. We
have F is well-defined as:

• F (c1▽m0, y) is unique for all y ∈ Y :

F (c1, y) =


H(c1, y)

= fi ◦ f̂i(c1), if y ∈ d0Dd1 ,

H(c1, d1)

= fi ◦ f̂i(c1), if y ∈ n0Nn1 ,

F (m0, y) =


K(m0, n0)

= gj ◦ ĝj(m0), if y ∈ d0Dd1 ,

K(m0, y)

= gj ◦ ĝj(m0), if y ∈ n0Nn1 ,

so we have F (c1, y) = fi ◦ f̂i(c1) =
gj ◦ ĝj(m0) = F (m0, y), hence
F (c1▽m0, y) = F (c1, y) = F (m0, y); which
shows F (c1▽m0, y) is unique for all y ∈ Y .

• F (x, d1▽n0) is unique for all x ∈ X :

F (x, d1) =


H(x, d1)

= f2 ◦ f̂2(x), if x ∈ c0Cc1

H(x, n0)
= g1 ◦ ĝ1(x), if x ∈ m0Mm1


= F (x, n0)

so we have F (x, d1▽n0) = F (x, d1) =
F (x, n0), hence F (x, d1▽n0) is unique for all
x ∈ X .

Clearly f̂i and ĝj are p-paths of

(a(i)0A
i
a(i)1

)▽(b(j)0B
j
b(j)1

), therefore we have

f̂i ∗ ĝj : X → Ai
▽Bj is well-defined as

f̂i ∗ ĝj(c1▽m0) = f̂i(c1) = a(i)1▽b(j)0 = ĝj(m0).

Also we have f̂i ∗ ĝj is surjective as f̂i and ĝj are
surjective.

Following we prove F is a homotopy relative to
{c0,m1} of (f1∗g1)◦(f̂1∗ĝ1) and (f2∗g2)◦(f̂2∗ĝ2).

We claim (fi ∗ gj) ◦ (f̂i ∗ ĝj) = (fi ◦ f̂i) ∗ (gj ◦ ĝj)

first, where (fi ◦ f̂i) ∗ (gj ◦ ĝj) : X → Ai
▽Bj is

defined by (fi ◦ f̂i)∗(gj ◦ ĝj)(x) = (fi ◦ f̂i)(x) if x ∈

C, (fi◦ f̂i)∗(gj ◦ ĝj)(x) = (gj ◦ ĝj)(x) if x ∈M , and
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(fi ◦ f̂i) ∗ (gj ◦ ĝj)(c1▽m0) = a(i)0▽b(j)1. Clearly

the definition of (fi ◦ f̂i) ∗ (gj ◦ ĝj) is well-defined,
and in fact it is a surjective map. If x ∈ C, then
we have (fi ∗ gj) ◦ (f̂i ∗ ĝj)(x) = (fi ∗ gj)(f̂i(x)) =

fi(f̂i(x)) = fi ◦ f̂i(x) = (fi ◦ f̂i) ∗ (gj ◦ ĝj)(x). If

x ∈ M , then we have (fi ∗ gj) ◦ (f̂i ∗ ĝj)(x) =
(fi ∗ gj)(ĝj(x)) = gj(ĝj(x)) = gj ◦ ĝj(x) = (fi ◦

f̂i) ∗ (gj ◦ ĝj)(x). Moreover, we have (fi ∗ gj) ◦

(f̂i ∗ ĝj)(x) = a(i)0▽b(j)1 = (fi ◦ f̂i)∗ (gj ◦ ĝj)(x) if

x = c1▽m0. Therefore we have (fi∗gj)◦(f̂i∗ ĝj) =

(fi ◦ f̂i) ∗ (gj ◦ ĝj).
By the definition of F , it is trivial that F

is relation-preserving. Moreover, similar to the
proof (3) of Theorem 2.8, F can be proved to be
continuous by the pasting lemma.

For showing F (x, d0) = (f1 ∗ g1) ◦ (f̂1 ∗ ĝ1)(x)

and F (x, n1) = (f2 ∗ g2) ◦ (f̂2 ∗ ĝ2)(x), we have

F (x, d0) =

{
H(x, d0) = f1 ◦ f̂1(x), if x ∈ C
K(x, n0) = g1 ◦ ĝ1(x), if x ∈M

}
= (f1 ◦ f̂1) ∗ (g1 ◦ ĝ1)(x)

= (f1 ∗ g1) ◦ (f̂1 ∗ ĝ1)(x);

and

F (x, n1) =

{
H(x, d1) = f2 ◦ f̂2(x), if x ∈ C
K(x, n1) = g2 ◦ ĝ2(x), if x ∈M

}
= (f2 ◦ f̂2) ∗ (g2 ◦ ĝ2)(x)

= (f2 ∗ g2) ◦ (f̂2 ∗ ĝ2)(x).

For showing F (c0, y) = (fi ∗ gi) ◦ (f̂i ∗ ĝi)(c0)

and F (m1, y) = (fi ∗ gi) ◦ (f̂i ∗ ĝi)(m1), we have

• F (c0, y) = (fi ∗ gi) ◦ (f̂i ∗ ĝi)(c0) :

F (c0, y) =



H(c0, y)

= fi ◦ f̂i(c0)
= fi(a(i)0), if y ∈ D
H(c0, d1)

= fi ◦ f̂i(c0)
= fi(a(i)0), if y ∈ N


= fi(a(i)0) = (fi ∗ gi)(a(i)0)

= (fi ∗ gi) ◦ (f̂i ∗ ĝi)(c0).

• F (m1, y) = (fi ∗ gi) ◦ (f̂i ∗ ĝi)(m1) :

F (m1, y) =



K(m1, n0)
= gi ◦ ĝi(m1)
= gi(b(i)1), if y ∈ D
K(m1, y)
= gi ◦ ĝi(m1)
= gi(b(i)1), if y ∈ N


= gi(b(i)1) = (fi ∗ gi)(b(i)1)

= (fi ∗ gi) ◦ (f̂i ∗ ĝi)(m1).

Therefore we have shown (f1 ∗ g1) ◦ (f̂1 ∗

ĝ1)≈
p

{c0,m1}
(f2 ∗g2)◦ (f̂2 ∗ ĝ2)

3, and hence we have

f1 ∗ g1p ≈
pf2 ∗ g2, which implies ∗ is well-defined

on path-homotopy classes.

Definition 3.8. Let G be a topological graph and
A ∈ pS. For x ∈ G, we say the p-path ex : A →
G, ex(a) = x for all a ∈ A is constant (based
at x). For any p-path f : cBd → G, we call the
constant p-path ex (resp. ey) is a left (resp. right)
identity p-path of f if f(c) = x (resp. f(d) = y).
We denote the left (resp. right) identity p-path of
f : cBd → G by ef(c) (resp. ef(d)).

Theorem 3.9. Let A ∈ pS, and f : a0Aa1 → G
be a p-path of G. Then we have [ef(a0)] ∗ [f ] =
[f ] = [f ] ∗ [ef(a1)].

Proof. We shall prove that [ef(a0)]∗ [f ] = [f ] only,
since the proof of [f ] = [f ] ∗ [ef(a1)] is similar.
Let ef(a0) be a constant p-path with co-domain
any Khalimsky arc b0Bb1 ∈ pS. We claim ef(a0) ∗
f : I → G is path-homotopy to f , where I =

b0Bb1▽a0Aa1 .

Let f̂ : I → a0Aa1 be defined by f̂(x) = a0 if

x ∈ B, f̂(x) = a0 if x = b1▽a0, f̂(x) = x if x ∈ A,
and idI : I → I be an identity map from I into I.
Clearly f̂ and idI are surjective maps.

It is easy to check that (ef(a0) ∗ f) ◦ idI and

f ◦ f̂ are homotopic relative to {b0, a1}, since for
any x ∈ I, we have

(ef(a0) ∗ f) ◦ idI(x) = (ef(a0) ∗ f)(x)

=

 f(a0), if x ∈ B
f(a0), if x = b1▽a0
f(x), if x ∈ A


= f ◦ f̂(x).

hence (ef(a0) ∗ f) ◦ idI and f ◦ f̂ define the same

function, which implies (ef(a0) ∗ f) ◦ idI and f ◦ f̂
are automatically homotopic relative to {b0, a1}
by the reflexivity of the equivalence relation ≈p

∗.
Therefore we have ef(a0) ∗ fp ≈

pf , and hence
[ef(a0)] ∗ [f ] = [f ].

Definition 3.10. Let f : a0Aa1 → G be a p-path
of the topological graph G. We call the p-path g :

a1Aa0 → G, Ff(a) = Fg(a), ∀a ∈ A, the inverse
p-path of f , where F is the forgetful functor which
forgets the binary relation. We denote the inverse

p-path of f by
←−
f .

3In fact F is a homotopy relative to {c0, c1▽m0,m1} of

(f1 ∗ g1) ◦ (f̂1 ∗ ĝ1) and (f2 ∗ g2) ◦ (f̂2 ∗ ĝ2).
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Lemma 3.11. f : a0Aa1 → G and g : b0Bb1 →

G are p-paths of the topological graph G, and
←−
f ,

←−g are the inverse p-paths of f and g respectively.

Then we have fp ≈
pg if and only if

←−
f p ≈

p←−g .

Proof. We shall prove (fp ≈
pg) ⇒ (

←−
f p ≈

p←−g )
only, the inverse proof is similar.

The relation fp ≈
pg means that there exist

Khalimsky arcs c0Cc1 , d0Dd1 ∈ pS and two sur-

jective maps f̂ : c0Cc1 → A, ĝ : c0Cc1 → B
and a homotopy H : c0Cc1 × d0Dd1 → G such

that H(c, d0) = f ◦ f̂(c), H(c, d1) = g ◦ ĝ(c) and

H(c0, d) = f ◦ f̂(c0) = g ◦ ĝ(c0), H(c1, d) =

f ◦ f̂(c1) = g ◦ ĝ(c1) for all c ∈ C, d ∈ D.

For showing
←−
f p ≈

p←−g , define f̃ : c1Cc0 → a1Aa0

and g̃ : c1Cc0 → b1Bb0 by f̃(c) = f̂(c) and g̃(c) =
ĝ(c) for all c ∈ C. Clearly f̃ and g̃ are surjective
maps.

Moreover, it is easy to check that
←−
f ◦ f̃(c+) =

f ◦ f̂(c−) and←−g ◦ g̃(c+) = g ◦ ĝ(c−) for all c ∈ C.
Remember that we have defined c+ = c and c− =
c if c is the final point and the initial point of C
respectively.

Define K : c1Cc0 × d0Dd1 → G by

K(c+, d) = H(c−, d),

for all c ∈ C, d ∈ D.

We checkK is a homotopy relative to {c1, c0} of
←−
f ◦ f̃ and←−g ◦ g̃. ClearlyK is a map. And we have

K(c+, d0) = H(c−, d0) = f ◦ f̂(c−) =
←−
f ◦ f̃(c+)

and K(c+, d1) = H(c−, d1) = g ◦ ĝ(c−) = ←−g ◦
g̃(c+). Finally K is trivially relative to {c1, c0}
as H is relative to {c1, c0}. So we have shown
←−
f ◦ f̃ ≈c

{c1,c0}
←−g ◦ g̃, and which implies

←−
f p ≈

p←−g .

Hence we have (fp ≈
pg)⇒ (

←−
f p ≈

p←−g ).

Theorem 3.12. f : a0Aa1 → G is a p-path of the

topological graph G, and
←−
f : a1Aa0 → G is the in-

verse p-path of f . Then we have [f ]∗[
←−
f ] = [ef(a0)]

and [
←−
f ] ∗ [f ] = [ef(a1)], where ef(a0) : b0Bb1 → G

and ef(a1) : c0Cc1 → G are the left and right iden-
tity p-paths of f respectively.

Proof. We shall only prove that [f ]∗[
←−
f ] = [ef(a0)],

the proof of [
←−
f ] ∗ [f ] = [ef(a1)] is similar.

By Lemma 3.11, the problem of showing [f ] ∗

[
←−
f ] = [ef(a0)] is equivalent to show that f ∗
←−
f p ≈

pef(a0). Define g : I → b0Bb1 and h : I →

a0Aa1▽a1Aa0 by

g(i) =

{
i, if i ∈ B,

b1, others;
h(i) =


a0, if i ∈ B,

a0, if i = b1▽a0,

i, others.

where I = b0Bb1▽a0Aa1▽a1Aa0 . It is clear that g
and h are surjective maps.

In order to show ef(a0)p ≈
pf ∗
←−
f ,we define H :

I × a0Aa1 → G by

H(i, a) =



ef(a0) ◦ g(i), if i ∈ B,
f ◦ h(i), if i ≺ a,

f ◦ h(a), if i = a,

f ◦ h(a), if i ≻ a.

, if i ∈ a0Aa1 ,
←−
f ◦ h(i), if i ≺ a,
←−
f ◦ h(a), if i = a,
←−
f ◦ h(a), if i ≻ a.

, if i ∈ a1Aa0 ;

where the ordering ≺ defined in the definition of
H is w.r.t. a0Aa1 .

It is easy to check that H is well-defined,
since we have H(b1▽a0, a) = ef(a0) ◦ g(b1▽a0) =
ef(a0)(b1) = f(a0) = f ◦ h(a0) = H(b1▽a0, a) and

H(a1▽a1, a) = f ◦ h(a1) = f(a1) =
←−
f (a1) =

←−
f ◦h(a1) = H(a1▽a1, a). Also it is trivial that H
is continuous and relation-preserving. Hence H is
a map.

For showing H is a homotopy of ef(a0) ◦ g and

(f ∗
←−
f ) ◦ h, we have

H(i, a0) =



ef(a0) ◦ g(i), if i ∈ B
f ◦ h(a0)
= f(a0)
= ef(a0) ◦ g(i), if i ∈ a0Aa1←−
f ◦ h(a0)

=
←−
f (a0) = f(a0)

= ef(a0) ◦ g(i), if i ∈ a1Aa0


= ef(a0) ◦ g(i).

H(i, a1) =


ef(a0) ◦ g(i)
= f(a0) = f ◦ h(i)

=
←−
f ◦ h(i), if i ∈ B

f ◦ h(i), if i ∈ a0Aa1←−
f ◦ h(i), if i ∈ a1Aa0


= ((f ◦ h) ∗ (

←−
f ◦ h))(i) = (f ∗

←−
f ) ◦ h(i).

For showing H is relative to {b0, a0}, we have

(1)


H(b0, a) = ef(a0) ◦ g(b0) = ef(a0)(b0) = f(a0),

ef(a0) ◦ g(b0) = ef(a0)(b0) = f(a0),

(f ∗
←−
f ) ◦ h(b0) = (f ∗

←−
f )(a0) = f(a0);
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hence we have H(b0, a) = ef(a0) ◦g(b0) = (f ∗
←−
f )◦

h(b0), and

(2)


H(a0, a) =

←−
f ◦ h(a0) =

←−
f (a0) = f(a0),

ef(a0) ◦ g(a0) = ef(a0)(b1) = f(a0),

(f ∗
←−
f ) ◦ h(a0) = (f ∗

←−
f )(a0) = f(a0);

hence we have H(a0, a) = ef(a0)◦g(a0) = (f ∗
←−
f )◦

h(a0).

Therefore we have shown that H is a homotopy

relative to {b0, a0} of ef(a0) ◦ g and (f ∗
←−
f ) ◦ h,

which implies ef(a0)p ≈
pf ∗

←−
f . Hence we have

[f ] ∗ [
←−
f ] = [ef(a0)].

Theorem 3.13. f : a0Aa1 → G, g : b0Bb1 → G,
and h : c0Cc1 → G are p-paths of the topological
graph G, then we have ([f ]∗[g])∗[h] = [f ]∗([g]∗[h]).

Proof. The proof of this theorem is much easier
than the similar case of the classical homotopy
theory in algebraic topology.

We claim (f ∗ g) ∗ hp ≈
pf ∗ (g ∗ h). In fact,

we shall show that (f ∗ g) ∗ h = f ∗ (g ∗ h), and
then (f ∗ g) ∗ h is automatically path-homotopic
to f ∗ (g ∗ h).

Clearly we have f ∗ g : a0Aa1▽b0Bb1 → G and
g ∗ h : b0Bb1▽c0Cc1 → G are defined by

(1) f ∗ g(x) =


f(x), if x ∈ A,

f(a1) = g(b0), if x = a1▽b0,

g(x), if x ∈ B;

(2) g ∗ h(x) =


g(x), if x ∈ B,

g(b1) = h(c0), if x = b1▽c0,

h(x), if x ∈ C.

So from the equations (1) and (2), we have (f ∗
g) ∗h : (a0Aa1▽b0Bb1)▽c0Cc1 → G and f ∗ (g ∗h) :

a0Aa1▽(b0Bb1▽c0Cc1)→ G are defined by

(3) (f ∗ g) ∗ h(x) =


f ∗ g(x), x ∈ A▽B
f ∗ g(b1)
= h(c0), x = b1▽c0
h(x), x ∈ C


=


f(x), x ∈ A,
f(a1) = g(b0), x = a1▽b0,
g(x), x ∈ B,
g(b1) = h(c0), x = b1▽c0,
h(x), x ∈ C;

(4) f ∗ (g ∗ h)(x) =


f(x), x ∈ A
f(a1)
= g ∗ h(b0), x = a1▽b0
g ∗ h(x), x ∈ B▽C


=


f(x), x ∈ A,
f(a1) = g(b0), x = a1▽b0,
g(x), x ∈ B,
g(b1) = h(c0), x = b1▽c0,
h(x), x ∈ C;

Therefore from the equations (3) and (4), the
problem of showing (f ∗g)∗h = f ∗(g∗h) can be re-
duced to a simple problem of showing the associa-
tivity of the operator- lexicographic union ▽, that
is, (a0Aa1▽b0Bb1)▽c0Cc1 = a0Aa1▽(b0Bb1▽c0Cc1).
By Definition 2.2 of the lexicographic union ▽, it
is trivial that ▽ is an associative operator. Hence
we have (f ∗ g) ∗ h = f ∗ (g ∗ h). So we have
([f ] ∗ [g]) ∗ [h] = [f ] ∗ ([g] ∗ [h]).

Denote pSG to be the set of all p-paths in a
topological graph G, and let π(G) = pSG/p ≈

p.
Hence π(G) is the set of path-homotopy classes of
p-paths in G. Then π(G) becomes a groupoid un-
der the operation ∗, but loses to be a group due
to the lack of satisfying the closure axiom and the
uniqueness identity axiom. We may call (π(G), ∗)
the Khalimsky fundamental groupoid of the topo-
logical graph G.

Definition 3.14. A pointed topological graph is
a pair (G, x) consisting of a topological graph G =
(X,T,R) and a base point x ∈ X .

By Definition 2.3, we have the following defini-
tion of p-loops.

Definition 3.15. Let aAb ∈ pS be a Khalimsky
arc, and (G, x) is a pointed topological graph. We
call the p-path f : aAb → (G, x) a p-loop (based
at x) of (G, x) if f(a) = f(b)(= x).

Like the definition of simple loops in general
graph theory, we say a p-loop f : aAb → G is
simple if f(c) 6= f(d) for all c, d ∈ A\{a, b}, c 6= d.

By Definition 3.1, we have the product of p-
loops based at x is well-defined. That is, for any
pair of p-loops based at x, f : aAb → (G, x) and
g : cBd → (G, x), we have f ∗ g : A▽B → (G, x)
the product of p-loops f and g. Moreover, by the
mathematical induction, the product of p-loops
base at x (resp. p-paths) is well-defined for any
positive integer numbers of p-loops based at x
(resp. p-paths), i.e., we have f1 ∗ f2 ∗ . . . ∗ fn =
(f1 ∗f2 ∗ . . .∗fn−1)∗fn for any f1, f2, . . . , fn−1, fn
the p-loops based at x (or f1, f2, . . . , fn−1, fn the
p-paths such that the image of the final point of
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fi equal to the image of the initial point of fi+1,
for all 1 ≤ i ≤ n− 1).

Let (G, x) be a pointed topological graph and
pS(G,x) be the set of all p-loops in G. Clearly
from Theorems 3.7, 3.9, 3.12, and 3.13, π(G, x) =
pS(G,x)/p ≈

p becomes a group under the opera-
tion ∗. Therefore we have the following theorem:

Theorem 3.16. (π(G, x), ∗) is a group.

We call (π(G, x), ∗) the Khalimsky fundamen-
tal group of the pointed topological graph (G, x).
Sometimes we shall use the notation π(G, x) to in-
dicate the Khalimsky fundamental group of (G, x)
if there has no other operators.

4 Some Properties of the Khalim-
sky Fundamental Groups of Topo-
logical Graphs

Definition 4.1. A topological graph G is said to
be path-connected if given any pair of points x, y ∈
G, there exists a Khalimsky arc a0Aa1 ∈ pS and a
p-path f ∈ pSG such that f(a0) = x and f(a1) =
y.

Lemma 4.2. Every path-connected topological
graph is connected.

Proof. Let G be a path-connected topological
graph. Suppose G is not connected, then there
exists a partition U, V of G such that U, V 6= ∅.
If x ∈ U and y ∈ V , clearly there exists a Khal-
imsky arc a0Aa1 ∈ pS and a p-path f ∈ pSG

such that f(a0) = x and f(a1) = y as G is path-
connected. So f−1(U) and f−1(V ) becomes a par-
tition of a0Aa1 . Contradiction, since a0Aa1 is con-
nected.

Theorem 4.3. Let G be a topological graph, and
x, y ∈ G are two points of G. If there exists a
p-path α from x to y, then (π(G, x), ∗) is group-
isomorphic to (π(G, y), ∗).

Proof. We define a map ψ : (π(G, x), ∗) →
(π(G, y), ∗) by ψ([f ]) = [←−α ] ∗ [f ] ∗ [α].

Clearly ψ is well-defined as ∗ is well-defined on
the path-homotopy classes. Moreover, it is trivial
that [←−α ] ∗ [f ] ∗ [α] ∈ (π(G, y), ∗) as f is a p-loop.

We check ψ is a group-isomorphism between
(π(G, x), ∗) and (π(G, y), ∗):

1. ψ is a group-homomorphism: We have ψ([f ]∗
[g]) = ψ([f ∗g]) = [←−α ]∗[f ∗g]∗[α] = [←−α ]∗([f ]∗
[g])∗[α] = [←−α ]∗([f ]∗[ex]∗[g])∗[α] = [←−α ]∗([f ]∗

([α] ∗ [←−α ]) ∗ [g]) ∗ [α] = ([←−α ] ∗ [f ] ∗ [α]) ∗ ([←−α ] ∗
[g] ∗ [α]) = ψ([f ]) ∗ ψ([g]). Here we have used
the properties of the left identity, inverse and
associativity of the Khalimsky fundamental
groups.

2. ψ has a inverse: Let φ : (π(G, y), ∗) →
(π(G, x), ∗) be defined by φ([h]) = [α] ∗ [h] ∗
[←−α ]. A similar proof as above can easily
show that φ is well-defined and is a homo-
morphism. We claim ψ and φ are the inverse
to each other. For each [h] ∈ (π(G, y), ∗),
we have ψ(φ([h])) = ψ([α] ∗ [h] ∗ [←−α ]) =
[←−α ] ∗ ([α] ∗ [h] ∗ [←−α ]) ∗ [α] = ([←−α ] ∗ [α]) ∗
[h] ∗ ([←−α ] ∗ [α]) = [ey] ∗ [h] ∗ [ey] = [h]. Simi-
larly, for each [f ] ∈ (π(G, x), ∗), we shall have
φ(ψ([f ])) = [f ].

Therefore from (1) and (2) above, ψ is a group-
isomorphism of (π(G, x), ∗) and (π(G, y), ∗).
Therefore (π(G, x), ∗) and (π(G, y), ∗) are group-
isomorphic.

Lemma 4.4. If G is a path-connected topological
graph, and x, y ∈ G are any two points of G, then
(π(G, x), ∗) is group-isomorphic to (π(G, y), ∗).

Proof. Trivial.

Definition 4.5. A topological graph G is said to
be simple connected if G is path-connected and
(π(G, x), ∗) is a trivial group for some x ∈ G,
hence for every x ∈ G.

Theorem 4.6. G is a simple connected topological
graph. If f, g ∈ pSG with the same initial and final
points, then fp ≈

pg.

Proof. We claim [f ] = [g]. Suppose f and g have
initial and final points x and y, then clearly f ∗←−g
is a p-loop based at x. So we have [f ∗ ←−g ] = [ex].
By the identity and associativity axioms of the
Khalimsky fundamental group, we have [g] = [ex ∗
g] = [(f ∗ ←−g ) ∗ g] = [f ∗ (←−g ∗ g)] = [f ∗ ey] = [f ].
So we have [f ] = [g], and hence fp ≈

pg.

Lemma 4.7. (G, x), (G′, x′) are pointed topologi-
cal graphs, and Φ : (G, x)→ (G′, x′) is a map with
Φ(x) = x′. Then we have

1. f ∈ pS(G,x) ⇒ Φ(f) ∈ pS(G′,x′),

2. fp ≈
pg ⇒ Φ(f)p ≈

pΦ(g).

Proof. (1) is trivial, and we claim (2) only. Since
we have fp ≈

pg, suppose H is a homotopy rela-

tive to {c0, c1} of f ◦ f̂ and g ◦ ĝ, where f̂ and
ĝ are surjective maps with common domain c0Cc1
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and respective co-domains the domains of f and
g. Then clearly Φ ◦ H is a homotopy relative to
{c0, c1} of (Φ ◦ f) ◦ f̂ and (Φ ◦ g) ◦ ĝ. So we have
Φ(f)p ≈

pΦ(g).

Theorem 4.8. (G, x), (G′, x′) are pointed topo-
logical graphs, and Φ : (G, x) → (G′, x′) is a map
with Φ(x) = x′. Then the map Φ∗ : (π(G, x), ∗)→
(π(G′, x′), ∗), Φ∗([f ]) = [Φ(f)] is well-defined, and
is a group-homomorphism.

Proof. By Lemma 4.7, it is clear that Φ∗ is
well-defined. We check that Φ∗ is a group-
homomorphism. Let f, g ∈ pS(G,x) such that
f : a0Aa1 → (G, x) and g : b0Bb1 → (G, x), then
we have Φ∗([f ] ∗ [g]) = Φ∗([f ∗ g]) = [Φ(f ∗ g)]. As
we have

Φ(f ∗ g) = Φ(

 f(x), x ∈ A
f(a1) = g(b0), x = a1▽b0
g(x), x ∈ B

)

=

 Φ ◦ f(x), x ∈ A
Φ(f(a1)) = Φ(g(b0)), x = a1▽b0
Φ ◦ g(x), x ∈ B


= Φ(f) ∗ Φ(g).

So we have Φ∗([f ] ∗ [g]) = [Φ(f) ∗Φ(g)] = [Φ(f)] ∗
[Φ(g)] = Φ∗([f ]) ∗ Φ∗([g]); which shows that Φ∗ is
a group-homomorphism.

With notations are same as Theorem 4.8, we
call Φ∗ the group-homomorphism induced by Φ.

Theorem 4.9. (G, x), (G′, x′) and (G′′, x′′) are
pointed topological graphs, and Φ : (G, x) →
(G′, x′) and Ψ : (G′, x′)→ (G′′, x′′) are maps such
that Φ(x) = x′ and Ψ(x′) = x′′. Then we have

1. (Ψ ◦ Φ)∗ = Ψ∗ ◦ Φ∗,

2. id∗ is the identity homomorphism;

where id : (G, x)→ (G, x) is the identity map.

Proof. Let f ∈ pS(G,x), then we have

1. (Ψ ◦ Φ)∗([f ]) = [Ψ ◦ Φ(f)] = Ψ∗([Φ(f)]) =
Ψ∗(Φ∗[f ]) = Ψ∗ ◦ Φ∗([f ]); and

2. id∗([f ]) = [id(f)] = [f ].

Theorem 4.10. Let (G, x) = (X,T,R, x) and
(G′, x′) = (X ′, T ′, R′, x′) be pointed topological
graphs, and Φ : (G, x) → (G′, x′) is a map
such that Φ(x) = x′. If Φ is a homeomor-
phism w.r.t. T and T ′, and is an isomorphism
w.r.t. R and R′, then the induced homomorphism
Φ∗ : (π(G, x), ∗) → (π(G′, x′), ∗) is a group-
isomorphism.

Proof. Let Ψ : (G′, x′) → (G, x) be the inverse of
Φ. Clearly we have = Φ◦Ψ = idG′ and Ψ◦Φ = idG.
So we have Φ∗ ◦ Ψ∗ = (Φ ◦ Ψ)∗ = (idG′)∗ and
Ψ∗ ◦ Φ∗ = (Ψ ◦ Φ)∗ = (idG)∗, where (idG′)∗
and (idG)∗ are the identity homomorphism of
(π(G′, x′), ∗) and (π(G, x), ∗) respectively. There-
fore Φ∗ is a group-isomorphism.
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