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Abstract 
 

3-D scanning is an important issue in 
nowadays, and the application of the bit 
conversion in Gray-Code is one of the ways in 
decreasing consumption and increasing 
precision. The problem of finding a average bit 
conversion of Gray-Code is equal to the problem 
of finding the Balanced Hamiltonian Cycle in 
hypercube. 

The Balanced Hamiltonian Cycle in 
hypercube means a Hamiltonian Cycle C in 
hypercube that for the set of all i-dimensional 
edge E(C)i in E(C), �|�����| � 	����
	� � 1,  
for i ≠ j. We can separate the problem into two 
cases, n ≠ 2k and n = 2k. In this paper, we have 
proved that there are no Balanced Hamiltonian 
Cycles in hypercube Qn as n ≠ 2k. For the case of 
n = 2k, we find the way to construct a Balanced 
Hamiltonian Cycle in Qn, for k = 1, 2 and 3. 
 
 
1  Introduction 
 

In the application of 3-D scanning, the 
research of optimal encode will use gray-scale 
encode to signify the information of n-bits, 
which has mentioned in the reference [2], [3], [8] 
and [10]. The result after identification will 
decrease the consumption of resource and 
increase the precision. However, dealing with 
such information that contains many 
transformations between 1 and 0 will cause some 
problem, like that will spend much more cost in 
identification. What we proposed is a way to 
decrease the cost in dealing with such problems. 
Thus, we hope to decrease the transformations 
between 0 and 1 in the same dimension. 
  In a graph G = (V, E), V is the set of all 
vertices of G. E is the set of all edges of G. P = 
x1e1x2e2…xn, for xi ∈ V(G), ei ∈ E(G), 1 ≤ i ≤ n, 
is called a path of G if all vertices xi in P are 
distinct, and x1 is called origin vertex, xn is called 
the terminus vertex. A cycle is defined as a path 
except that x1 = xn. A Hamiltonian cycle of G is 
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defined as a cycle of G that contains all vertices 
of G.  

Qn = (V, E) is a hypercube if V(Qn) = 
{ x1x2…xn | xi ∈ {0, 1}, i = 1, 2, …, n}, E(Qn) = 
{ xy  | x, y ∈ V(Qn), ∑ ���⊕��� � 1�

��� }. The 
dimension of Qn is n. It is well known that Qn = 
(K2)

n. The set of i-th dimensional edges of a 
Hamiltonian Cycle C of Qn means that the set 
����� � ��� |�, � ∈ �����, ��⊕�� � 1� . If a 
Hamiltonian Cycle C in Qn satisfied that 
�|�����| � 	����
	� � 1,  for 1 � � � � � � , 
then we call C a Balanced Hamiltonian Cycle. 
  The way of bit-changing of Gray-Code by the 
definitions above. This question is quietly the 
same as the problem of the Balanced 
Hamiltonian Cycle in Qn. Thus, we hope that we 
can solve the problem of bit-changing of 
Gray-Code by researching the problem of the 
Balanced Hamiltonian Cycle. 
 
 
2  The Balanced Hamiltonian Cycle 
of n ≠≠≠≠ 2k 
 

In this section, we consider the case for n ≠ 2k, 
for any positive integer k. We prove that there is 
no any Balanced Hamiltonian Cycles in Qn for n 
≠ 2k. First, we give two Lemmas, in order to 
support the proof of Theorem 1. These two 
Lemmas are shown as below: 
 
Lemma 1. For each set E(C)i that contains all 
i-th dimensional edges of Balanced Hamiltonian 
Cycle C, |�����| is even. 
 
Proof. For any positive inter n, Qn can be 
divided into two components ����

�  and ����
�  

which are both isomorphic to Qn-1 that without 
i-th dimensional edges for some i ∈ {1, 2, …, n}. 
If there exists a Balanced Hamiltonian Cycle C 
in Qn such that  |�����| is odd for some integer 
i ∈ {1, 2, …, n}. Without lost of generality, we 
say i = 0 and the origin vertex of C in ����

� . 
After tracing all edges of C, we have the 
terminate vertex of C is in ����

�  because 
|�����| is odd. Then the origin vertex and the 
terminate vertex of the Balanced Hamiltonian 
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Cycle C are different. That is a contradiction. So 
|�����| is even for any 1 ≤ i ≤ n.          □ 
 
Lemma 2. For each set E(C)i that contains all 
i-th dimensional edges of Balanced Hamiltonian 
Cycle C,  2� �⁄ # � |�����| � $2� �⁄ %. 
 
Proof. Since the definition of Balanced 
Hamiltonian Cycle C is that for the set E(C)i for 
all i-th dimensional edges of C, �|�����| �
	����
	� � 1, for 1 � � � � � �, and |�����| 
� 2� , we have |����| � ∑ |�����|�

��� � 2� . 
Hence, without lost of generality, there exists 0 ≤ 
m < n such that  |�����| � |����'| � ( �
|����)| � * + 1, and |����),�| � |����),'| 
� ( � |�����| � *, for some positive integer k. 
So ∑ |�����|�

���  � �� � -�* + -�* + 1� � 
�* + - . So �* � ∑ |�����|�

��� � 2� � �* +
� � ��* + 1�.  Thus, �2� �⁄ � � 1 � * � 2� �⁄ . 
So  2� �⁄ # � |�����| � $2� �⁄ %.          □ 
 
Theorem 1. There is no Balanced Hamiltonian 
Cycle in Qn when n ≠ 2k for any positive integer 
k. 
 
Proof. Suppose that there exists a Balanced 
Hamiltonian Cycle C in Qn. Then for the set 
E(C)i that contain all i-th dimensional edges of C, 
we know |�����| �  2� �⁄ # or $2� �⁄ % for all 
1 ≤ i ≤ n by Lemma 2. Since n ≠ 2k, then  2� �⁄ # 
and $2� �⁄ % must be two continuous integers. 

So we have that one of  2� �⁄ # and $2� �⁄ % 
is odd. That is, |�����| is odd for some i ∈ {1, 
2, …, n}. That is a contradiction by Lemma 1. 
So it is proved that there is no any Balanced 
Hamiltonian Cycles in Qn when n ≠ 2k for any 
positive integer k.                       □ 
 
 
3  The Balanced Hamiltonian Cycle 
in Q2, Q4 and Q8 
 

In this section, we first propose the Balanced 
Hamiltonian Cycle in Q2 and Q4 as shown in 
Figures 1 and 2. Then we propose a scheme to 
find a Balanced Hamiltonian Cycle in Q8. In 
Figure 1, it is easy to see �'. � �'  is a 
Balanced Hamiltonian Cycle of itself. For 
�'/ � �0, since 24 / 4 = 4, we have |�����| � 4 
for any 1 ≤ i ≤ n and any Balanced Hamiltonian 
Cycle C of Q4. Figure 2 give a Balanced 
Hamiltonian Cycle in Q4. 

In the following, we give a scheme for finding 
a Balanced Hamiltonian Cycle of �'2 � �3 . 
Note that the calculations of the footnode in the 
following steps are taken modula by 16. 

 

 
Figure 1. A Balanced Hamiltonian Cycle in Q2. 

 

 
Figure 2. A Balanced Hamiltonian Cycle C in 

Q4. 
 
Algorithm: Finding_BHC_of_Q8 
Input: Q8 = (K2)

8 = ((K2)
4)2 = (Q4)

2 
Output: a Balanced Hamiltonian Cycle C* of Q8 

Begin 
Step 1. Copy sixteen Balanced Hamiltonian 
Cycles C in Q4. Then take them as sixteen 
supernodes in the structure of the Balanced 
Hamiltonian Cycle C in Q4. We denote these 
sixteen supernodes as S0, S1, …, S15, and denote 
the corresponding vertices in each supernode Si 
as �


�, 0 ≤ i, j ≤ 15, That is, �

� ∈ V (Si) , 0 ≤ i, j 

≤ 15 as shown in Figure 3. 

 
Figure 3. The structure of the Balanced 

Hamiltonian Cycle in Q8 with supernodes which 
is the Balanced Hamiltonian Cycle in Q4. 

 
Step 2. Define four spanning subgraphs 
4�

� , 4�
� , 4'

�  and 45
�  of the Balanced 

Hamiltonian Cycle Si in Q4, for 0 ≤ i ≤ 15, 
denoted by �64


�7 � ��8��, for 0 ≤ j ≤ 3, and 

��9
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where  
�64�

� 7 � ��

��
,�

� | � � 2=, 0 � = � 7�,  

�64�
�7 � @�
��

� �

� , �


��
,�
� 	 j = 4t – 2, 1 ≤ t ≤ 4}, 

�64'
� 7 � @�
��

� �

�	 � � 2=, 1 � = � 8�,   

�645
� 7 � @�
��

� �

�, �


��
,�
� 	 � � 4=, 0 � = � 3�.  

 

 
 

Figure 4. Four spanning subgraphs of the 
Balanced Hamiltonian Cycle Si. 

 
Step 3. Let 8�

C � 4�� DEF0�
� , for 0 ≤ i ≤ 15, and 

���G� H I S�
C�9

���  shown as Figure 5. 

 
Figure 5. The structure of the Balanced 

Hamiltonian Cycle in Q8 with supernodes which 
is replaced by 4�

� , 4�
� , 4'

�  and 45
� . 

 
Step 4. For 0 ≤ i ≤ 15, if �
��

� �

� , �


��
,�
� K

��8�
C� for some 0 ≤ j ≤ 15. Detect the two 

neighborhood supernodes ��8L
C � and ��8M

C� of 
��8�

C�. If �
��
L �


L K ��8L
C �, then add the edge 

�
��
L �
��

�  into E(C*). If �

M�
,�

M K ��8M
C� , then 

add the edge �
,�
M �
,�

�  into E(C*). For all 
isolated points �)

� K ��8�
C� , add two edges 

�)
� �)

L  and �)
� �)

M  into E(C*). Then C* will be 
eight disjoint cycles that through all vertices of 
Q8 now. Figure 6 is one of these cycle. 
 
Step 5. Replace three spanning subgraphs 8�

C , 
8'

C , and 80
C  in C* into the three spanning 

subgraphs N1, N2 and N3, respectively, shown as 
Figure 7.  
 
End of Algorithm 
 
 

Figure 6. One of the eight cycles in C* after executing step 4. 
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Figure 7. Three spanning subgraphs of Q4. 

 
Theorem 2. There is a Balanced Hamiltonian 
Cycle in Q8. 
 
Proof. The Output C*  of Algorithm 
Finding_BHC_of_Q8 is stated in Appendix. One 
can check it is a Balanced Hamiltonian Cycle of 
Q8.                          □ 

 

4  Conclusion 
 

In this paper, we give a method to find a 
Balanced Hamiltonian Cycle in hypercube Q2, 
Q4 and Q8. We also prove that there is no 
balanced Hamiltonian Cycle in hypercube Qn for 
n ≠ 2k for any positive integer k. By observing 
the regularity, we expect to find a solution for 
constructing a Balanced Hamiltonian Cycle in 
Qn, when n = 2k for any positive integer k ≥ 4 in 
the future. 
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Appendix  
 

The Output C* of Algorithm Finding_BHC_of_Q8 

 

 1  00000000  53  11101110 105  01010110 157  01001011 209  11110101 
 2  00001000  54  10101110 106  01010111 158  00001011 210  11110001 
 3  00011000  55  10101100 107  01110111 159  00001001 211  11010001 
 4  00010000  56  11101100 108  01111111 160  01001001 212  11010011 
 5  00010100  57  11001100 109  01111110 161  01101001 213  11011011 
 6  01010100  58  11001101 110  11111110 162  01101101 214  11001011 
 7  01010101  59  11101101 111  11111100 163  01001101 215  11001001 
 8  00010101  60  11101001 112  01111100 164  01001100 216  11011001 
 9  10010101  61  11101011 113  01011100 165  01001110 217  11111001 
10  10010001  62  10101011 114  01011101 166  00001110 218  11111101 
11  00010001  63  10100011 115  01111101 167  00001111 219  11011101 
12  00010011  64  11100011 116  01111001 168  01001111 220  11011100 
13  00011011  65  11000011 117  01111011 169  01101111 221  11011110 
14  01011011  66  11000001 118  11111011 170  01100111 222  11001110 
15  01011001  67  11100001 119  11110011 171  01000111 223  11001111 
16  00011001  68  11100101 120  01110011 172  01000110 224  11011111 
17  10011001  69  11100100 121  01010011 173  01000010 225  11111111 
18  10011101  70  01100100 122  01010001 174  01100010 226  11110111 
19  00011101  71  01100000 123  01110001 175  01100110 227  11010111 
20  00011100  72  00100000 124  01110101 176  00100110 228  11010110 
21  00011110  73  00110000 125  01110100 177  00110110 229  11010010 
22  01011110  74  00111000 126  11110100 178  00110111 230  10010010 
23  01011111  75  10111000 127  11110000 179  00100111 231  10010110 
24  00011111  76  10110000 128  01110000 180  00101111 232  10000110 
25  10011111  77  10110100 129  01010000 181  00101110 233  00000110 
26  10010111  78  00110100 130  01011000 182  01101110 234  00000111 
27  00010111  79  00110101 131  01111000 183  01101100 235  10000111 
28  00010110  80  10110101 132  01111010 184  00101100 236  10001111 
29  00010010  81  10100101 133  01110010 185  00111100 237  10001110 
30  01010010  82  10100001 134  00110010 186  00111101 238  10011110 
31  01011010  83  10110001 135  00111010 187  00101101 239  10011100 
32  00011010  84  10110011 136  10111010 188  00101001 240  10001100 
33  10011010  85  10111011 137  10101010 189  00101011 241  00001100 
34  10011000  86  00111011 138  10101000 190  01101011 242  00001101 
35  10001000  87  00111001 139  00101000 191  01100011 243  10001101 
36  10001010  88  10111001 140  00101010 192  00100011 244  10001001 
37  10000010  89  10101001 141  00100010 193  00110011 245  10001011 
38  11000010  90  10101101 142  00000010 194  00110001 246  10011011 
39  11001010  91  10111101 143  00001010 195  00100001 247  10010011 
40  11011010  92  10111100 144  01001010 196  00100101 248  10000011 
41  11111010  93  10111110 145  01101010 197  00100100 249  00000011 
42  11111000  94  00111110 146  01101000 198  10100100 250  00000001 
43  11101000  95  00111111 147  01001000 199  10100000 251  10000001 
44  11101010  96  10111111 148  01000000 200  11100000 252  10000101 
45  11100010  97  10101111 149  01000100 201  11000000 253  10000100 
46  10100010  98  10100111 150  00000100 202  11001000 254  10010100 
47  10100110  99  10110111 151  00000101 203  11011000 255  10010000 
48  11100110 100  10110110 152  01000101 204  11010000 256  10000000 
49  11000110 101  10110010 153  01100101 205  11010100  
50  11000111 102  11110010 154  01100001 206  11000100  
51  11100111 103  11110110 155  01000001 207  11000101  
52  11101111 104  01110110 156  01000011 208  11010101  
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