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Abstract

A circuit in a graph G is an alternating
sequence of vertices and edges of the form
v1, e1, v2, e2, v3, . . . , vn, en, vn+1 in which edge ei =
vivi+1, for i = 1, 2, . . . , n and vn+1 = v1. Note
that vertices in a circuit can occur repeatedly while
no edge can be repeated in a circuit. In this
paper, we are concerned with a circuit of every
even length k for 4 6 k 6 θ′(Qn) in hypercube
Qn where θ′(Qn) = 2n−1(n − 1) if n is odd and
θ′(Qn) = 2n−1n− 4 otherwise for n > 3.

1 Introduction

In this paper, all considered digraphs G =
(V,E) are simple, i.e., there is at most one edge
between any pair of vertices where V (G) and
E(G) are the vertex and arc sets, respectively.
For definitions of graph theoretic terms, we fol-
low [25]. However, for ease of readability, we in-
troduce some of them as follows. A path is an
alternating sequence of distinct vertices and edges
of the form v1, e1, v2, e2, v3, . . . , vn−1, en−1, vn in
which edge ei = vivi+1, for i = 1, 2, . . . , n −
1. A circuit is also an alternating sequence
v1, e1, v2, e2, v3, . . . , vn−1, en−1, vn in which all
edges are distinct while vertices might be repeated.
A circuit is called a cycle if all vertices are distinct
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except v1 = vn. A circuit is called an eulerian cir-
cuit if it contains all the edges in E(G). A graph
with an eulerian circuit is called an eulerian graph.
Let E′ be a subset of E. We use G−E′ to denote
the graph with vertex set V and edge set E −E′.

A graph of n vertices is said to be s-pancyclic
for some 3 6 s 6 n if it contains a cycle of each
length t for s 6 t 6 n. If s = 3, then s-pancyclic
is the so-called pancyclic [1, 3, 12, 22]. A graph
of n vertices is said to be bipancyclic if it con-
tains a cycle of each even length t for 4 6 t 6 n.
The concept of pancyclicity has been extended to
vertex-pancyclicity [13] and edge-pancyclicity [2].
A bipartite graph is vertex-bipancyclic [21] if ev-
ery vertex lies on a cycle of every even length t for
4 6 t 6 n. Similarly, a bipartite graph is edge-
bipancyclic if every edge lies on a cycle of every
even length t for 4 6 t 6 n.

Path and cycle are two of the most fundamen-
tal networks for parallel and distributed computa-
tion, and suitable for designing simple algorithms
with low communication costs. The pancyclicity
of a network represents its power of embedding
cycles of all possible lengths. It is an important
measurement for determining whether the topol-
ogy of a network is suitable for an application in
which embedding rings of arbitrary length into the
topology is required. Pancyclic graphs (or bipan-
cyclic) and its related problems have been studied
intensively, e.g., WK-recursive networks [4, 9], ar-
rangement graphs [5], Möbius cubes [6, 14, 16],
cross cubes [7], bijective connection graphs[8], hy-
percubes [10, 24], cube-connected cycles [11], aug-
mented cubes [15], butterfly graphs [17], pancake
graphs [18], twisted cubes [20, 26, 27], and so on.

In [23], Wang, Guo, Hung and Chan extended
the concept of pancyclic to pancircuitous. A graph
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G of n vertices, for n > 3, is said to be x-
pancircuitous if it contains a circuit of each length
k for 3 6 k 6 x and no circuit of length x+1 exists
in G. If G is x-pancircuitous, then x is called the
pancircuitous number of G, denoted θ(G). In this
paper, we define that a graph is x-bipancircuitous
if it contains a circuit of each even length k for
4 6 k 6 x and no circuit of length x + 2 exists
in G. We use θ′(G) to denote the pancircuitous
number x for x-bipancircuitous graph G. In this
paper, we shall find out θ′(Qn), n > 2, for hy-
percubes Qn which will be introduced in Section
2.

2 Bipancircuitous of Hypercubes

Let u = un−1un−2 · · ·u0 and v =
vn−1vn−2 · · · v1v0 be two n-bit binary strings.
The Hamming distance h(u, v) between u and v is
the number of different bits in their corresponding
strings. If only one bit is different between them,
say uk and vk for some 0 6 k < n, then u and v
are denoted by vk and uk, respectively. The n-
dimensional hypercube, denoted Qn, consists of all
n-bit binary strings as its vertices and two vertices
u and v are adjacent if and only if h(u, v) = 1.
Thus, Qn is a bipartite graph with partite sets
{u|w(u) is odd} and {u|w(u) is even}, where w(u)
stands for the number of 1’s in un−1un−2 · · ·u0.
It is well-known that dQn

(u, v) = h(u, v). An
edge e = uv in E(Qn) is of dimension k if u = vk

(and v = uk). For an edge e = uv which is not of
dimension k, denote by ekb = ukvk, ek1 = uuk, and
ek2 = vvk.

For convenience, we use Q0
n−1 to denote the

subgraph of Qn induced by {x ∈ V (Qn)|x0 = 0}
and Q1

n−1 to denote the subgraph of Qn induced
by {x ∈ V (Qn)|x0 = 1}. Thus, Q0

n−1 and Q1
n−1

are isomorphic to Qn−1. By the above definition,
for an edge e = uv ∈ E(Q0

n−1), e0b = u0v0 ∈
E(Q1

n−1) while e01 = uu0 and e02 = vv0 are two
edges of dimension 0. Note that both uu0 and vv0

are not in E(Q0
n−1) ∪ E(Q1

n−1). Let C1 and C2

be two circuits in Q0
n−1 and Q1

n−1, respectively,
in which C1 contains edge e and C2 contains edge
e0b . Denote by C1 ◦ C2 the circuit containing all
edges in ((E(C1) ∪E(C2)) \ {e, ekb}) ∪ {ek1 , ek2}. It
is obvious that |C1 ◦ C2| = |C1|+ |C2| where |Cx|
denotes the length of circuit Cx.

Theorem 1 (Theorem 2 in [19]) Qn is (n −
2)-edge-fault-tolerant edge-bipancyclic.

Proposition 2 θ′(Q3) = 8.

Theorem 3 For any hypercube Qn, n > 3,

θ′(Qn) =

{
2n−1(n− 1) if n is odd
2n−1n− 4 if n is even.

Proof. We prove this theorem by induction on n.
By Proposition 2, the basis holds for n = 3. Note
that every vertex in Qn is of degree n, and the
numbers of vertices and edges in Qn are 2n and
2n−1n, respectively. In the induction step, there
are two cases to consider for n > 3.
Case 1: n is even.

Since n is even, every vertex in Qn is of even de-
gree. This means that Qn is an eulerian graph and
the length of an eulerian circuit in Qn is 2n−1n.
Clearly, removing one, two or three edges from Qn

does not yield an eulerian subgraph. However, re-
moving any C4 from Qn, the resulting graph is an
eulerian subgraph. Therefore, θ′(Qn) 6 2n−1n−4.
By the induction hypothesis, there exit circuits
of every even length from 4 to 2n−2(n − 2) in
both Q0

n−1 and Q1
n−1. All we have to prove is

that there exist circuits of each even length from
2n−2(n−2)+2 to 2n−1n−4 in Qn. In the following,
we describe how to construct those circuits.

(1) Constructing a circuit of length 2n−2(n−2)+
2.

Assume that C` is a circuit of length 2n−2(n−
2) in Q0

n−1 and e = uv is an edge in C`. It is
obvious that edge e0b is in Q1

n−1, and e01 and
e02 are of dimension 0. Note that both e01 and
e02 are not in E(Q0

n−1)∪E(Q1
n−1). Thus, after

adding e0b , e01, and e02 to and removing e from
C`, a circuit of length 2n−2(n− 2) + 2 can be
constructed.

(2) Constructing circuits of each even length from
2n−2(n− 2) + 4 to 2n−1(n− 2).

Assume that C` is a circuit of length 2n−2(n−
2) in Q0

n−1 and e = uv is an edge in C`.
For circuits Cr of each even length from 4 to
2n−2(n − 2), we may assume without loss of
generality that e0b is also an edge of Cr. Thus,
C` ◦Cr is also a circuit in Qn whose length is
even and is in the range from 2n−2(n− 2) + 4
to 2n−1(n− 2).

(3) Constructing circuits of each even length from
2n−1(n− 2) + 2 to 2n−1n− 4.

By Theorem 1, Qn is bipancyclic. Thus, there
are cycles Cm of each even length from 4
to 2n − 2 in Qn for n > 4. After remov-
ing all of the edges in Cm from Qn, namely
Qn − E(Cm), the resulting graph is still an
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eulerian subgraph. Since n > 4 and exact
two incidence edges of each vertex in Cm are
removed, Qn − E(Cm) is connected. Notice
that the number of edges in Qn − E(Cm) is
even and is in the range from 2n−1(n− 2) + 2
to 2n−1n − 4. Thus, this lemma holds for n
even.

Case 2: n is odd.
Since n is odd, every vertex in Qn is of odd

degree. Removing 2n−1 matching edges from Qn

yields an eulerian graph. Note that those 2n−1

matching edges cannot be all in the same dimen-
sion. This means that the length of a longest cir-
cuit in Qn is 2n−1n − 2n−1 = 2n−1(n − 1). By
the induction hypothesis, there exit circuits of ev-
ery even length from 4 to 2n−2(n− 1)− 4 in both
Q0

n−1 and Q1
n−1. In the following, we introduce

how to construct circuits of each even length from
2n−2(n− 1)− 2 to 2n−1(n− 1)− 2.

(1) Constructing a circuit of length 2n−2(n−1)−
2.

Let C` be a circuit of length 2n−2(n− 1)− 4
in Q0

n−1 and e = uv an edge in C`. After
adding e0b , e01, and e02 to and removing e from
C`, a circuit of length 2n−2(n− 1)− 2 can be
constructed.

(2) Constructing a circuit of length 2n−2(n− 1).

Since Q0
n−1 itself is an eulerian graph, there is

a circuit of length 2n−2(n− 1), i.e., all edges
in Q0

n−1.

(3) Constructing a circuit of length 2n−2(n−1)+
2.

Let C` be an eulerian circuit of length
2n−2(n − 1) in Q0

n−1 and e = uv is an edge
in C`. It is obvious that edge e0b is in Q1

n−1,
and e01 and e02 are of dimension 0. Note that
both e01 and e02 are not in E(Q0

n−1)∪E(Q1
n−1).

Thus, after adding e0b , e01, and e02 to and re-
moving e from C`, a circuit of length 2n−2(n−
1) + 2 can be constructed.

(4) Constructing circuits of each even length from
2n−2(n− 1) + 4 to 2n−1(n− 1)− 4.

Let C` be an eulerian circuit of length
2n−2(n− 1) in Q0

n−1 and Cr a circuit of even
length in the range from 4 to 2n−2(n− 1)− 4
in Q1

n−1. We may assume without loss gen-
erality that edge e = uv in C` has a corre-
sponding edge e0b in Cr. Thus, by construct-
ing C` ◦ Cr, all circuits of each even length

from 2n−2(n− 1) + 4 to 2n−1(n− 1)− 4 can
be constructed in Qn.

(5) Constructing a circuit of length 2n−1(n−1)−
2.

Assume that C` is an eulerian circuit in
Q0

n−1 and Cr is a symmetric eulerian cir-
cuit of C` in Q1

n−1. That is, if C` is the
circuit u1u2 · · ·u|C`|, then Cr is the circuit
u01u

0
2 · · ·u0|C`|. Let uv and vw be two succes-

sive edges in C`. Adding edges uu0 and ww0

to and removing edges uv, vw, u0v0, v0w0

from E(C`)∪E(Cr) yields a circuit of length
2n−1(n− 1)− 2. This completes the proof.�
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