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Abstract

A circuit in a graph G is an alternating
sequence of wertices and edges of the form
V1, €1,V2,€2,V3,...,Un, €n, Unt1 N which edge e; =
Vivi41, for i = 1,2,...,n and v,41 = v1. Note
that vertices in a circuit can occur repeatedly while
no edge can be repeated in a circuit. In this
paper, we are concerned with a circuit of every
even length k for 4 < k < 0'(Qn) in hypercube
Qn where 0'(Q,) = 2" Y(n — 1) if n is odd and
0'(Q,) = 2" *n — 4 otherwise for n > 3.

1 Introduction

In this paper, all considered digraphs G =
(V, E) are simple, i.e., there is at most one edge
between any pair of vertices where V(G) and
E(G) are the vertex and arc sets, respectively.
For definitions of graph theoretic terms, we fol-
low [25]. However, for ease of readability, we in-
troduce some of them as follows. A path is an
alternating sequence of distinct vertices and edges
of the form wvy,ey,v2,€2,V3,...,Vn_1,€n_1,V, in
which edge e; = wvjv;4q, for i = 1,2,...,n —
1. A circuit is also an alternating sequence
V1,€1,V2,€2,V3,...,Upn—-1,En—1,Un in which all
edges are distinct while vertices might be repeated.
A circuit is called a cycle if all vertices are distinct
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except v1 = v,. A circuit is called an eulerian cir-
cugt if it contains all the edges in E(G). A graph
with an eulerian circuit is called an eulerian graph.
Let E' be a subset of E. We use G — E’ to denote
the graph with vertex set V' and edge set E — F’.

A graph of n vertices is said to be s-pancyclic
for some 3 < s < n if it contains a cycle of each
length ¢t for s <t < n. If s = 3, then s-pancyclic
is the so-called pancyclic [1, 3, 12, 22]. A graph
of n vertices is said to be bipancyclic if it con-
tains a cycle of each even length ¢ for 4 < ¢t < n.
The concept of pancyclicity has been extended to
vertex-pancyclicity [13] and edge-pancyclicity [2].
A Dbipartite graph is vertez-bipancyclic [21] if ev-
ery vertex lies on a cycle of every even length ¢ for
4 < t < n. Similarly, a bipartite graph is edge-
bipancyclic if every edge lies on a cycle of every
even length ¢ for 4 <t < n.

Path and cycle are two of the most fundamen-
tal networks for parallel and distributed computa-
tion, and suitable for designing simple algorithms
with low communication costs. The pancyclicity
of a network represents its power of embedding
cycles of all possible lengths. It is an important
measurement for determining whether the topol-
ogy of a network is suitable for an application in
which embedding rings of arbitrary length into the
topology is required. Pancyclic graphs (or bipan-
cyclic) and its related problems have been studied
intensively, e.g., WK-recursive networks [4, 9], ar-
rangement graphs [5], Mdbius cubes [6, 14, 16],
cross cubes [7], bijective connection graphs[8], hy-
percubes [10, 24], cube-connected cycles [11], aug-
mented cubes [15], butterfly graphs [17], pancake
graphs [18], twisted cubes [20, 26, 27], and so on.

In [23], Wang, Guo, Hung and Chan extended
the concept of pancyclic to pancircuitous. A graph
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G of n vertices, for n > 3, is said to be z-
pancircuitous if it contains a circuit of each length
k for 3 < k < z and no circuit of length z+1 exists
in G. If G is xz-pancircuitous, then z is called the
pancircuitous number of G, denoted #(G). In this
paper, we define that a graph is z-bipancircuitous
if it contains a circuit of each even length k for
4 < k < z and no circuit of length x + 2 exists
in G. We use §'(G) to denote the pancircuitous
number x for x-bipancircuitous graph G. In this
paper, we shall find out ¢'(Q,), n > 2, for hy-
percubes ), which will be introduced in Section
2.

2 Bipancircuitous of Hypercubes

Let v =  wup—1up—o---up and v =
Up—_1Un—_2 -+ U109 be two mn-bit binary strings.
The Hamming distance h(u,v) between u and v is
the number of different bits in their corresponding
strings. If only one bit is different between them,
say up and v for some 0 < k < n, then u and v
are denoted by v* and u”, respectively. The n-
dimensional hypercube, denoted @Q,,, consists of all
n-bit binary strings as its vertices and two vertices
u and v are adjacent if and only if h(u,v) = 1.
Thus, @, is a bipartite graph with partite sets
{u|w(u) is odd} and {u|w(u) is even}, where w(u)
stands for the number of 1’s in w,_1un,_o---ug.
It is well-known that dg, (v,v) = h(u,v). An
edge e = uv in E(Q,) is of dimension k if u = v¥
(and v = u*). For an edge e = uv which is not of

dimension k, denote by e’g = ykok, e’f = yu®, and

ek = voP.

For convenience, we use QY _; to denote the
subgraph of @,, induced by {z € V(Q,)|zo = 0}
and Q! _, to denote the subgraph of Q,, induced
by {LL’ € V(Qn)lwo = 1} ThUS7 Q?zfl and Qifl
are isomorphic to @,_1. By the above definition,
for an edge e = ww € E(QY_,), e) = u%° €
E(QL_,) while € = uu® and e = vo¥ are two
edges of dimension 0. Note that both uu® and vv°
are not in B(Q%_;) U E(QL_;). Let C; and Csq
be two circuits in Q% _; and QL _,, respectively,
in which C; contains edge e and Cs contains edge
9. Denote by C o Cy the circuit containing all
edges in ((E(C1) UE(C2)) \ {e,eb}) U{ek, eb}. Tt
is obvious that |C; o Cy| = |C1| + |C2| where |Cy|
denotes the length of circuit C.

Theorem 1 (Theorem 2 in [19]) @, is (n —
2)-edge-fault-tolerant edge-bipancyclic.

Proposition 2 ¢'(Q3) = 8.
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Theorem 3 For any hypercube Q,, n = 3,

v ={ o)

Proof. We prove this theorem by induction on n.
By Proposition 2, the basis holds for n = 3. Note
that every vertex in @, is of degree n, and the
numbers of vertices and edges in @, are 2" and
2"~ In, respectively. In the induction step, there
are two cases to consider for n > 3.

Case 1: n is even.

Since n is even, every vertex in Q,, is of even de-
gree. This means that @), is an eulerian graph and
the length of an eulerian circuit in @, is 2" !n.
Clearly, removing one, two or three edges from @,
does not yield an eulerian subgraph. However, re-
moving any Cy from @, the resulting graph is an
eulerian subgraph. Therefore, 0'(Q,,) < 2" 'n—4.
By the induction hypothesis, there exit circuits
of every even length from 4 to 2" 2(n — 2) in
both QY _; and QL_,. All we have to prove is
that there exist circuits of each even length from
27=2(n—2)+2t0 2" n—4in Q,. In the following,
we describe how to construct those circuits.

if n is odd

if n is even.

(1) Constructing a circuit of length 2"~2(n—2) +
2.

Assume that Cy is a circuit of length 272 (n—
2) in Q%_; and e = wv is an edge in Cy. It is
obvious that edge €) is in QL_;, and €} and
e9 are of dimension 0. Note that both ¢! and
eJ are not in E(Q%_,)UE(QL_,). Thus, after
adding e, e{, and €9 to and removing e from
Cy, a circuit of length 2"~2(n — 2) + 2 can be
constructed.

(2) Constructing circuits of each even length from
27 2(n —2) +4 to 2" 1 (n — 2).
Assume that Cy is a circuit of length 2772 (n—
2)in Q¥_; and e = wv is an edge in Cj.
For circuits C,. of each even length from 4 to
27=2(n — 2), we may assume without loss of
generality that e} is also an edge of C,.. Thus,
Cy o C, is also a circuit in @, whose length is

even and is in the range from 2" 2(n —2) +4
to 2"~ 1(n —2).

(3) Constructing circuits of each even length from
27~ (n —2) 4+ 2 to 2" In — 4.

By Theorem 1, @,, is bipancyclic. Thus, there
are cycles C, of each even length from 4
to 2" — 2 in @, for n > 4. After remov-
ing all of the edges in C,, from @,, namely
Qn — E(C,,), the resulting graph is still an
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eulerian subgraph. Since n > 4 and exact
two incidence edges of each vertex in C,, are
removed, @, — F(C,,) is connected. Notice
that the number of edges in Q, — E(Cy,) is
even and is in the range from 2"~ !(n —2) +2
to 2" !n — 4. Thus, this lemma holds for n
even.

Case 2: n is odd.

Since n is odd, every vertex in @, is of odd
degree. Removing 2"~! matching edges from Q,
yields an eulerian graph. Note that those 27!
matching edges cannot be all in the same dimen-
sion. This means that the length of a longest cir-
cuit in Q,, is 2" In — 2771 = 2""1(n — 1). By
the induction hypothesis, there exit circuits of ev-
ery even length from 4 to 2"~2(n — 1) — 4 in both

Y 1 and QL_;. In the following, we introduce
how to construct circuits of each even length from
2" 2(n—1)—2to 2" Y (n—1) -2

(1) Constructing a circuit of length 2" ~2(n—1) —
2.

Let Cy be a circuit of length 2"=2(n — 1) — 4
in Q%_; and e = wv an edge in Cy. After
adding €9, €7, and €3 to and removing e from
Cy, a circuit of length 2"~2(n — 1) — 2 can be
constructed.

(2) Constructing a circuit of length 2"=2(n — 1).

Since Q% _, itself is an eulerian graph, there is

a circuit of length 2"~2(n — 1), i.e., all edges

inQ%_,.

(3) Constructing a circuit of length 2"~2(n—1) +
2.

Let Cy be an eulerian circuit of length
27"2(n — 1) in QY _, and e = wv is an edge
in Cy. It is obvious that edge € is in QL _,,
and €) and €J are of dimension 0. Note that
both € and €3 are not in E(QY_ ) UE(QL_,).
Thus, after adding e}, €?, and €J to and re-
moving e from Cy, a circuit of length 2" ~2(n—

1) + 2 can be constructed.

(4) Constructing circuits of each even length from
2" 2(n—1)+4to2" Y (n—1)— 4.

Let C; be an eulerian circuit of length
27=2(n —1) in Q% _; and C, a circuit of even
length in the range from 4 to 2" 2(n —1) — 4
in QL_;. We may assume without loss gen-
erality that edge e = wv in Cy has a corre-
sponding edge eg in C.. Thus, by construct-
ing Cy o C., all circuits of each even length
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from 2" 2(n — 1) +4 to 2" 1(n — 1) — 4 can
be constructed in Q,,.

(5) Constructing a circuit of length 2"~ 1(n—1) —
2.

Assume that C; is an eulerian circuit in
Q"_, and C, is a symmetric eulerian cir-
cuit of Cp in QL ;. That is, if Cy is the
circuit uyug - ujc,)s then C) is the circuit
udug - - 'u?Czl‘ Let uv and vw be two succes-
sive edges in Cy. Adding edges uu® and ww®
to and removing edges uv, vw, u%°, vOw°
from E(C,) U E(C,) yields a circuit of length
27~1(n — 1) — 2. This completes the proof.]
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