Circuits of Each Even Length in Hypercubes *

Yue–Li Wang^{1,†}, Chien–Yi Li¹ and Hung–Chang Chan²

¹ Department of Information Management,

National Taiwan University of Science and Technology, Taipei, Taiwan ² Department of Computer Science and Information Engineering, Yuanpei University, Hsinchu, Taiwan, ROC

Abstract

A circuit in a graph G is an alternating sequence of vertices and edges of the form $v_1, e_1, v_2, e_2, v_3, \ldots, v_n, e_n, v_{n+1}$ in which edge $e_i =$ $v_i v_{i+1}$, for $i = 1, 2, \ldots, n$ and $v_{n+1} = v_1$. Note that vertices in a circuit can occur repeatedly while no edge can be repeated in a circuit. In this paper, we are concerned with a circuit of every even length k for $4 \leq k \leq \theta'(Q_n)$ in hypercube Q_n where $\theta'(Q_n) = 2^{n-1}(n-1)$ if n is odd and $\theta'(Q_n) = 2^{n-1}n - 4$ otherwise for $n \geq 3$.

1 Introduction

In this paper, all considered digraphs G = (V, E) are simple, i.e., there is at most one edge between any pair of vertices where V(G) and E(G) are the vertex and arc sets, respectively. For definitions of graph theoretic terms, we follow [25]. However, for ease of readability, we introduce some of them as follows. A *path* is an alternating sequence of distinct vertices and edges of the form $v_1, e_1, v_2, e_2, v_3, \ldots, v_{n-1}, e_{n-1}, v_n$ in which edge $e_i = v_i v_{i+1}$, for $i = 1, 2, \ldots, n -$ 1. A *circuit* is also an alternating sequence $v_1, e_1, v_2, e_2, v_3, \ldots, v_{n-1}, e_{n-1}, v_n$ in which all edges are distinct while vertices might be repeated. A circuit is called a *cycle* if all vertices are distinct except $v_1 = v_n$. A circuit is called an *eulerian circuit* if it contains all the edges in E(G). A graph with an eulerian circuit is called an *eulerian graph*. Let E' be a subset of E. We use G - E' to denote the graph with vertex set V and edge set E - E'.

A graph of n vertices is said to be *s*-pancyclic for some $3 \leq s \leq n$ if it contains a cycle of each length t for $s \leq t \leq n$. If s = 3, then *s*-pancyclic is the so-called pancyclic [1, 3, 12, 22]. A graph of n vertices is said to be bipancyclic if it contains a cycle of each even length t for $4 \leq t \leq n$. The concept of pancyclicity has been extended to vertex-pancyclicity [13] and edge-pancyclicity [2]. A bipartite graph is vertex-bipancyclic [21] if every vertex lies on a cycle of every even length t for $4 \leq t \leq n$. Similarly, a bipartite graph is edgebipancyclic if every edge lies on a cycle of every even length t for $4 \leq t \leq n$.

Path and cycle are two of the most fundamental networks for parallel and distributed computation, and suitable for designing simple algorithms with low communication costs. The pancyclicity of a network represents its power of embedding cycles of all possible lengths. It is an important measurement for determining whether the topology of a network is suitable for an application in which embedding rings of arbitrary length into the topology is required. Pancyclic graphs (or bipancyclic) and its related problems have been studied intensively, e.g., WK-recursive networks [4, 9], arrangement graphs [5], Möbius cubes [6, 14, 16], cross cubes [7], bijective connection graphs[8], hypercubes [10, 24], cube-connected cycles [11], augmented cubes [15], butterfly graphs [17], pancake graphs [18], twisted cubes [20, 26, 27], and so on.

In [23], Wang, Guo, Hung and Chan extended the concept of pancyclic to pancircuitous. A graph

^{*}This work was supported in part by the National Science Council of the Republic of China under the contract NSC97-2221-E-011-158-MY3.

[†]All correspondence should be addressed to Professor Yue–Li Wang, Department of Information Management, National Taiwan University of Science and Technology, Taipei, Taiwan, ROC(Email: ylwang@cs.ntust.edu.tw).

G of *n* vertices, for $n \ge 3$, is said to be *x*pancircuitous if it contains a circuit of each length *k* for $3 \le k \le x$ and no circuit of length x+1 exists in *G*. If *G* is *x*-pancircuitous, then *x* is called the pancircuitous number of *G*, denoted $\theta(G)$. In this paper, we define that a graph is *x*-bipancircuitous if it contains a circuit of each even length *k* for $4 \le k \le x$ and no circuit of length x + 2 exists in *G*. We use $\theta'(G)$ to denote the pancircuitous number *x* for *x*-bipancircuitous graph *G*. In this paper, we shall find out $\theta'(Q_n)$, $n \ge 2$, for hypercubes Q_n which will be introduced in Section 2.

2 Bipancircuitous of Hypercubes

Let u= $u_{n-1}u_{n-2}\cdots u_0$ and v= $v_{n-1}v_{n-2}\cdots v_1v_0$ be two *n*-bit binary strings. The Hamming distance h(u, v) between u and v is the number of different bits in their corresponding strings. If only one bit is different between them, say u_k and v_k for some $0 \leq k < n$, then u and v are denoted by v^k and u^k , respectively. The *n*dimensional hypercube, denoted Q_n , consists of all n-bit binary strings as its vertices and two vertices u and v are adjacent if and only if h(u, v) = 1. Thus, Q_n is a bipartite graph with partite sets $\{u|w(u) \text{ is odd}\}\$ and $\{u|w(u) \text{ is even}\}\$, where w(u)stands for the number of 1's in $u_{n-1}u_{n-2}\cdots u_0$. It is well-known that $d_{Q_n}(u, v) = h(u, v)$. An edge e = uv in $E(Q_n)$ is of dimension k if $u = v^k$ (and $v = u^k$). For an edge e = uv which is not of dimension k, denote by $e_b^k = u^k v^k$, $e_1^k = u u^k$, and $e_2^k = vv^k.$

For convenience, we use Q_{n-1}^0 to denote the subgraph of Q_n induced by $\{x \in V(Q_n) | x_0 = 0\}$ and Q_{n-1}^1 to denote the subgraph of Q_n induced by $\{x \in V(Q_n) | x_0 = 1\}$. Thus, Q_{n-1}^0 and Q_{n-1}^1 are isomorphic to Q_{n-1} . By the above definition, for an edge $e = uv \in E(Q_{n-1}^0)$, $e_b^0 = u^0v^0 \in E(Q_{n-1}^1)$ while $e_1^0 = uu^0$ and $e_2^0 = vv^0$ are two edges of dimension 0. Note that both uu^0 and vv^0 are not in $E(Q_{n-1}^0) \cup E(Q_{n-1}^1)$. Let C_1 and C_2 be two circuits in Q_{n-1}^0 and Q_{n-1}^1 , respectively, in which C_1 contains edge e and C_2 contains edge e_b^0 . Denote by $C_1 \circ C_2$ the circuit containing all edges in $((E(C_1) \cup E(C_2)) \setminus \{e, e_b^k\}) \cup \{e_1^k, e_2^k\}$. It is obvious that $|C_1 \circ C_2| = |C_1| + |C_2|$ where $|C_x|$ denotes the length of circuit C_x .

Theorem 1 (Theorem 2 in [19]) Q_n is (n - 2)-edge-fault-tolerant edge-bipancyclic.

Proposition 2 $\theta'(Q_3) = 8.$

Theorem 3 For any hypercube Q_n , $n \ge 3$,

$$\theta'(Q_n) = \begin{cases} 2^{n-1}(n-1) & \text{if } n \text{ is odd} \\ 2^{n-1}n-4 & \text{if } n \text{ is even} \end{cases}$$

Proof. We prove this theorem by induction on n. By Proposition 2, the basis holds for n = 3. Note that every vertex in Q_n is of degree n, and the numbers of vertices and edges in Q_n are 2^n and $2^{n-1}n$, respectively. In the induction step, there are two cases to consider for n > 3.

Case 1: n is even.

Since n is even, every vertex in Q_n is of even degree. This means that Q_n is an eulerian graph and the length of an eulerian circuit in Q_n is $2^{n-1}n$. Clearly, removing one, two or three edges from Q_n does not yield an eulerian subgraph. However, removing any C_4 from Q_n , the resulting graph is an eulerian subgraph. Therefore, $\theta'(Q_n) \leq 2^{n-1}n-4$. By the induction hypothesis, there exit circuits of every even length from 4 to $2^{n-2}(n-2)$ in both Q_{n-1}^0 and Q_{n-1}^1 . All we have to prove is that there exist circuits of each even length from $2^{n-2}(n-2)+2$ to $2^{n-1}n-4$ in Q_n . In the following, we describe how to construct those circuits.

(1) Constructing a circuit of length $2^{n-2}(n-2) + 2$.

Assume that C_{ℓ} is a circuit of length $2^{n-2}(n-2)$ in Q_{n-1}^0 and e = uv is an edge in C_{ℓ} . It is obvious that edge e_b^0 is in Q_{n-1}^1 , and e_1^0 and e_2^0 are of dimension 0. Note that both e_1^0 and e_2^0 are not in $E(Q_{n-1}^0) \cup E(Q_{n-1}^1)$. Thus, after adding e_b^0 , e_1^0 , and e_2^0 to and removing e from C_{ℓ} , a circuit of length $2^{n-2}(n-2)+2$ can be constructed.

(2) Constructing circuits of each even length from $2^{n-2}(n-2) + 4$ to $2^{n-1}(n-2)$.

Assume that C_{ℓ} is a circuit of length $2^{n-2}(n-2)$ in Q_{n-1}^0 and e = uv is an edge in C_{ℓ} . For circuits C_r of each even length from 4 to $2^{n-2}(n-2)$, we may assume without loss of generality that e_b^0 is also an edge of C_r . Thus, $C_{\ell} \circ C_r$ is also a circuit in Q_n whose length is even and is in the range from $2^{n-2}(n-2) + 4$ to $2^{n-1}(n-2)$.

(3) Constructing circuits of each even length from $2^{n-1}(n-2) + 2$ to $2^{n-1}n - 4$.

By Theorem 1, Q_n is bipancyclic. Thus, there are cycles C_m of each even length from 4 to $2^n - 2$ in Q_n for $n \ge 4$. After removing all of the edges in C_m from Q_n , namely $Q_n - E(C_m)$, the resulting graph is still an eulerian subgraph. Since $n \ge 4$ and exact two incidence edges of each vertex in C_m are removed, $Q_n - E(C_m)$ is connected. Notice that the number of edges in $Q_n - E(C_m)$ is even and is in the range from $2^{n-1}(n-2)+2$ to $2^{n-1}n-4$. Thus, this lemma holds for neven.

Case 2: n is odd.

Since n is odd, every vertex in Q_n is of odd degree. Removing 2^{n-1} matching edges from Q_n yields an eulerian graph. Note that those 2^{n-1} matching edges cannot be all in the same dimension. This means that the length of a longest circuit in Q_n is $2^{n-1}n - 2^{n-1} = 2^{n-1}(n-1)$. By the induction hypothesis, there exit circuits of every even length from 4 to $2^{n-2}(n-1) - 4$ in both Q_{n-1}^0 and Q_{n-1}^1 . In the following, we introduce how to construct circuits of each even length from $2^{n-2}(n-1) - 2$ to $2^{n-1}(n-1) - 2$.

(1) Constructing a circuit of length $2^{n-2}(n-1) - 2$.

Let C_{ℓ} be a circuit of length $2^{n-2}(n-1) - 4$ in Q_{n-1}^0 and e = uv an edge in C_{ℓ} . After adding e_b^0 , e_1^0 , and e_2^0 to and removing e from C_{ℓ} , a circuit of length $2^{n-2}(n-1) - 2$ can be constructed.

- (2) Constructing a circuit of length $2^{n-2}(n-1)$. Since Q_{n-1}^0 itself is an eulerian graph, there is a circuit of length $2^{n-2}(n-1)$, i.e., all edges in Q_{n-1}^0 .
- (3) Constructing a circuit of length $2^{n-2}(n-1) + 2$.

Let C_{ℓ} be an eulerian circuit of length $2^{n-2}(n-1)$ in Q_{n-1}^0 and e = uv is an edge in C_{ℓ} . It is obvious that edge e_b^0 is in Q_{n-1}^1 , and e_1^0 and e_2^0 are of dimension 0. Note that both e_1^0 and e_2^0 are not in $E(Q_{n-1}^0) \cup E(Q_{n-1}^1)$. Thus, after adding e_b^0 , e_1^0 , and e_2^0 to and removing e from C_{ℓ} , a circuit of length $2^{n-2}(n-1) + 2$ can be constructed.

(4) Constructing circuits of each even length from $2^{n-2}(n-1) + 4$ to $2^{n-1}(n-1) - 4$.

Let C_{ℓ} be an eulerian circuit of length $2^{n-2}(n-1)$ in Q_{n-1}^0 and C_r a circuit of even length in the range from 4 to $2^{n-2}(n-1)-4$ in Q_{n-1}^1 . We may assume without loss generality that edge e = uv in C_{ℓ} has a corresponding edge e_b^0 in C_r . Thus, by constructing $C_{\ell} \circ C_r$, all circuits of each even length from $2^{n-2}(n-1) + 4$ to $2^{n-1}(n-1) - 4$ can be constructed in Q_n .

(5) Constructing a circuit of length $2^{n-1}(n-1) - 2$.

Assume that C_{ℓ} is an eulerian circuit in Q_{n-1}^0 and C_r is a symmetric eulerian circuit of C_{ℓ} in Q_{n-1}^1 . That is, if C_{ℓ} is the circuit $u_1 u_2 \cdots u_{|C_{\ell}|}$, then C_r is the circuit $u_1^0 u_2^0 \cdots u_{|C_{\ell}|}^0$. Let uv and vw be two successive edges in C_{ℓ} . Adding edges uu^0 and ww^0 to and removing edges uv, vw, u^0v^0 , v^0w^0 from $E(C_{\ell}) \cup E(C_r)$ yields a circuit of length $2^{n-1}(n-1)-2$. This completes the proof. \Box

References

- B. Alspach, Cycles of each length in regular tournaments, *Canadian Mathematical Bulletin* 10 (1967) 283–286.
- [2] B. Alspach and D. Hare, Edge-pancyclic blockintersection graphs, *Discrete Mathematics* 97 (1991) 17–24.
- [3] J.A. Bondy, Pancyclic Graphs I, Journal of Combinatorial Theory, Series B 11 (1971) 80– 84.
- [4] G.H. Chen and D.R. Duh, Topological properties, communication, and computation on WK-recursive networks, *Networks* 24(6) (1994) 303–317.
- [5] K. Day and A. Tripathi, Embedding of cycles in arrangement graphs, *IEEE Transactions on Computers* 12 (1993) 1002–1006.
- [6] J.X. Fan, Hamilton-connectivity and cycleembedding of Möbius cubes, *Information Pro*cessing Letters 82 (2002) 113–117.
- [7] J.X. Fan, X. Lin and X.H. Jia, Nodepancyclicity and edge-pancyclicity of crossed cubes, *Information Processing Letters* 93 (2005) 133–138.
- [8] J.X. Fan and X.H. Jia, Edge-pancyclicity and path-embeddability of bijective connection graphs, *Information Sciences* 178 (2008) 340– 351.
- [9] J.F. Fang, Y.R. Wang and H.L. Huang, The *m*pancycle-connectivity of a WK-Recursive network, *Information Sciences* 177 (2007) 5611– 5619.

- [10] J.F. Fang, The bipancycle-connectivity of the hypercube, *Information Sciences* 178 (2008) 4679–4687.
- [11] A. Germa, M.C. Hydemann and D. Sotteau, Cycles in the cubeconnected cycle graph, *Discrete Applied Mathematics* 83 (1999) 135–155.
- [12] F. Harary and L. Moser, The theory of round robin tournaments, *The American Mathematical Monthly* 73 (1966) 231–246.
- [13] A. Hobbs, The square of a block is vertex pancyclic, Journal of Combinatorics Theory Series B 20 (1976) 1–4.
- [14] S.Y. Hsieh and C.H. Chen, Pancyclicity on Möbius cubes with maximal edge faults, *Par-allel Computing* 30 (2004) 407–421.
- [15] H.C. Hsu, L.C. Chiang, Jimmy J.M. Tan and L.H. Hsu, Fault hamiltonicity of augmented cubes, *Parallel Computing* 31 (2005) 130–145.
- [16] W.T. Huang, W.K. Chen and C.H. Chen, Pancyclicity of Möbius cubes, in: *Proceedings* of the 9th International Conference on Parallel and Distributed Systems (ICPADS'02) 2002, pp. 591–596.
- [17] S.C. Hwang and G.H. Chen, Cycles in butterfly graphs, *Networks* 35 (2000) 161–171.
- [18] A. Kanevsky and C. Feng, On the embedding of cycles in pancake graphs, *Parallel Comput*ing 21 (1995) 923–936.
- [19] T.K. Li, C.H. Tsai, Jimmy J.M. Tan, and L.H. Hsu, Bipanconnected and edge-faulttolerant bipancyclic of hypercubes, *Information Processing Letters* 87 (2003) 107–110.
- [20] M.J. Ma and J.M. Xu, Panconnectivity of locally twisted cubes, *Applied Mathematics Let*ters 19(7) (2006) 673–677.
- [21] J. Mitchem and E. Schmeichel, Pancyclic and bipancyclic graphsXa survey, in: the Proceedings First Colorado Symposium on Graphs and Applications, Boulder, CO, Wiley-Interscience, New York, 1985, pp. 271–278.
- [22] J.W. Moon, On subtournaments of a tournament, Canadian Mathematical Bulletin 9 (1966) 297–301.
- [23] Y.L. Wang, J.L. Guo, C.H. Hung and H.C. Chan, Circuits of Each Length in Tournaments, manuscript, 2010.

- [24] H.L. Wang, J.W. Wang and J.M. Xu, Edge-fault-tolerant bipanconnectivity of hypercubes, *Information Sciences* 179 (2009) 404–409.
- [25] D.B. West, Introduction to Graph Theory (Prentice Hall, Upper Saddle River, NJ, 2001).
- [26] X.F. Yang, G.M. Megson and D.J. Evans, Locally twisted cubes are 4-pancyclic, *Applied Mathematics Letters* 17(8) (2004) 919–925.
- [27] M.C. Yang, T.K. Li, Jimmy J.M. Tang and L.H. Hsu, On embedding cycles into faulty twisted cubes, *Information Sciences* 176 (2006) 676–690.