
Balancing a Complete Signed Graph by Changing Minimum
Number of Edge Signs

Po-Sun Wei and Bang Ye Wu∗

Computer Science and Information Engineering
National Chung Cheng University, ChiaYi, Taiwan 621, R.O.C.

Abstract

A signed graph is a simple undirected graph
G = (V,E) in which each edge is labeled by a sign
either +1 or -1. A signed graph is balanced if every
cycle has even numbers of negative edges. In this
paper we study the problem of balancing a complete
signed graph by changing minimum number of edge
signs. We give a simple algorithm for finding a so-
lution agreeing one half of the edges. We also de-
sign a branch-and-bound algorithm and show the
worst-case time complexity is O(n · 2min{n,k}), in
which n = |V | and k is the number of chang-
ing edges. By experiments on random graphs, we
show that our branch-and-bound algorithm is much
faster than a trivial one.

1 Introduction

A signed graph is a simple undirected graph
G = (V,E) in which each edge is labeled by
a sign either +1 or -1, i.e., there is a function
σ : E 7→ {1,−1}. A signed graph is balanced if
every cycle has even numbers of negative edges.
By the assumption that a social network usually
evolves toward to a balanced system via an effi-
cient way, computing the minimum number of sign
changes to balance a network may be helpful for
predicting how the system evolves or mining the
fake relations. In this paper, we study the follow-
ing optimization problem, named Sign Change,
how to balance a complete signed graph by chang-
ing minimum number of edge signs.

Problem: Minimum sign-changes prob-
lem (Sign Change)
Instance: A signed complete signed
graph G = (V,E = V × V, σ) in which
σ : E 7→ {1,−1}.
Goal: Minimize the number of changes

∗Corresponding author, E-mail:bangye@ccu.edu.tw

on edge-signs which makes the graph bal-
anced.

The concept of balanced signed graphs was in-
troduced by Harary [13] for the analysis of social
networks, in which a positive edge represents a
positive relation (such as “like”) and a negative
edge is for a negative relation (such as “dislike”).
A bibliography of signed graphs can be found in
[18]. Signed graphs also find other applications
and attract many researchers. In the literatures,
it also appeared in other forms. For example,
motivated by the mathematical analysis of large-
scale biological networks, DasGupta et al. [8] for-
mulated their problem as Balanced Subgraph,
called Undirected Labeling Problem, and
this problem also finds numerous other applica-
tions, e.g., in statistical physics and integrated cir-
cuit fabrication techniques [7, 18].

Given a signed graph G = (V,E), Balanced
Subgraph is to find a balanced subgraph with
maximum number of edges. Balanced Sub-
graph is a generalization of the NP-hard Maxi-
mum Cut problem. DasGupta et al. developed an
approximation algorithm that guarantees a solu-
tion with at least 87.9% of the number of edges of
an optimal solution. By their original definitions,
it may be not obvious to realize Balanced Sub-
graph is equivalent to Sign Change with only
difference on their objectives, maximizing number
of the remaining edges or minimizing the number
of changed edges. We shall give the explaination
later.

When all edges are labeled by −1, Balanced
Subgraph is reduced to the Edge Bipartiza-
tion problem, which asks for the minimum num-
ber of edges to delete to make a graph bipartite.
We can note that the Edge Bipartization and
the Maximum Cut problems are dual. The only
difference is their objective functions: minimizing
the deleted edges or maximizing the remaining
edges. The Edge Bipartization problem, also
known as (unweighted) Minimum Uncut prob-

The 29th Workshop on Combinatorial Mathematics and Computation Theory

1

lem, is Max SNP-hard. The best known approx-
imation algorithm finds in polynomial time a so-
lution of size O(k log k), where k is the size of an
optimal solution [4].

Balanced Subgraph is also known by the
name “correlation clustering” in the field of graph
clustering. The bridge between a subgraph prob-
lem to a clustering problem is due to Harary’s the-
orem: a signed graph is balanced if and only if it
can be partitioned into two clusters (vertex sub-
sets) such that every positive edge is within one
of the clusters and every negative edge crosses the
two clusters. In the general correlation clustering
problem, each item is represented by a vertex, a
positive or negative edge means that the two ver-
tices are similar or dissimilar, respectively. Given
a signed graph (1 for similar and -1 for dissimilar),
the objective is to produce a partitioning into clus-
ters that places similar objects in the same cluster
and dissimilar objects in different clusters, to the
extent possible. In general, the number of clus-
ters is not specified. The maximization version,
call it MaxAgree, seeks to maximize the num-
ber of agreements: the number of 1 edges inside
clusters plus the number of −1 edges across clus-
ters. The minimization version, denoted MinDis-
Agree, aims to minimize the number of disagree-
ments: the number of −1 edges within clusters
plus the number of 1 edges between clusters. A
natural variant of this problem is to restrict the
number of clusters to a fixed k, and we shall de-
note this version by MaxAgree[k]. It can be
easily realized that the problem is equivalent to
Balanced Subgraph when k = 2.

Shamir et al. [16] showed that MaxA-
gree(MinDisAgree), as well as MaxAgree[k]
(MinDisAgree[k]) for each k ≥ 2 is NP-hard.
They used the term “Cluster Editing” to refer
to this problem. The problem was also inde-
pendently formulated and considered in [5], and
a PTAS for MaxAgree and a constant factor
approximation algorithm for MinDisAgree were
given. There are several other results about ap-
proximation of the above and related problems in
[1, 2, 3, 6, 11, 14]. For more details, see [11]. Gi-
otis and Guruswami [11] provide a NP-hardness
proof and prove that both MaxAgree[k] and
MinDisAgree[k] admit a polynomial time ap-
proximation scheme for every fixed k ≥ 2 when
the input is a complete graph. The running
time for MaxAgree[k] is n ·kO(ε−3 log(k/(εδ))) and

nO(9k/ε2) log n for MinDisAgree[k].

There are some results from the field of fixed-
parameter algorithms [9, 10, 15]. A problem is

called fixed-parameter tractable with respect to a
parameter k if an instance of size n can be solved
in f(k) · nO(1) time, where f is an arbitrary func-
tion depending only on k. It is known that Edge
Bipartization is fixed-parameter tractable with
respect to the parameter k as the number of edges
to delete. More specifically, there is an algorithm
exactly solving Edge Bipartization inO(2k·m2)
time (m denoting the number of graph edges) [12].
In Optimal Edge Deletions for Signed Graph Bal-
ancing, they observe that Balanced Subgraph
easily reduces to Edge Bipartization and can
thus be solved with the same time complexity.

In this paper, we study some properties on
balanced signed graphs and develop algorithms
for Sign Change. We give a simple algorithm
for finding a solution agreeing one half of the
edges. We also design a branch-and-bound algo-
rithm and show the worst-case time complexity is
O(n · 2min{n,k}), in which n = |V | and k is the
number of changing edges. Compared with the
previous result O(2k ·m2), our algorithm is slightly
better but restricted to only complete graphs. By
experiments on random graphs, we show that our
branch-and-bound algorithm is much faster than
a trivial one.

The paper is organized as follows. In Section 2,
we give some notation and study some properties.
We present the algorithms in Section 3, and the
experiment results are given in Section 4. Finally,
some concluding remarks are given in Section 5.

2 Preliminaries and some proper-
ties

2.1 Notation and definitions

We shall use the following notation and terms
in graph theory.

For a graph G, V (G) and E(G) denote the ver-
tex and edge sets, respectively.

A clique is a complete subgraph. A k-clique
is a clique of k vertices. A k-cycle is a cycle of
k vertices. A 3-clique is also called as a triangle
which is also a 3-cycle. A cycle is positive if it
contains an even number of negative edges. In the
remaining paragraphs, the input graph is always
G = (V,E, σ) and we use n = |V | and m = |E|.
Let E+ be the set of positive edges, and E− be the
set of negative edges. A perfect 2-clustering of a
singed graph G = (V,E, σ) is bipartition (V1, V2)
of V such that σ(u, v) = −1 if and only if u and v
are in the different subsets.

The 29th Workshop on Combinatorial Mathematics and Computation Theory

2

The next theorem is due to Harary.

Theorem 1: A singed graph is balanced if and
only if there is a perfect 2-clustering [13].

For a bipartition (V1, V2), we mark each vertex
in V1 by +1 and each vertex in V2 by -1. That
is, we define a function r 7→ {+1,−1} such that
r(v) = +1 for any v ∈ V1 and r(v) = −1 for any
v ∈ V2. We say that an edge e = (u, v) agrees with
the bipartition if r(u)× r(v) = σ(u, v) and e is an
agreement, and for otherwise e is a disagreement.
We also abuse the term agreement to denote the
total number of agreeing edges.

By Theorem 1, any edge disagreeing with the
2-cluster must be deleted. And if we have same sit-
uation in Sign Change, then we have to change
the sign of those edges, too. So we can know that
Sign Change is equivalent to Balanced Sub-
graph. At a glance, the problem Sign Change
seems to look for an edge subset. However, by
Theorem 1, it is to find a bipartition with min-
imum disagreement and thus a brute force algo-
rithm takes O(2n · n2) time. The next theorem
appears in [17], which provides a simple method
to check if a complete graph is balanced.

Theorem 2: A complete signed graph is balanced
if and only if all triangles are positive [17].

2.2 Some properties

In this subsection, we present some observed
properties on complete balanced signed graphs.

Lemma 3 : If a complete signed graph G =
(V,E, σ) is balanced, then the absolute value of
the inner product of any two vectors of the adja-
cency matrix is n− 2.

Proof: Suppose that |V1| = k1 and |V2| = k2, in
which V1 and V2 is the two clusters in Theorem 1.
The matrix has the form shown in Figure 1.

Figure 1: The adjacency matrix of G.

• If both vertices are in V1, the inner product is
(k1 − 2)× (1× 1)+ 2× (0× 1)+ k2 × ((−1)×
(−1)) = k1 + k2 − 2 = n− 2.

• The case that both vertices are in V2 is simi-
lar.

• If one vertex is in V1 and other vertex is in V2,
the inner product is (k1 − 1) × (1 × (−1)) +
(k2 − 1)× ((−1)× 1) = −(n− 2).

By definition any graph with one or two ver-
tices is always balanced. But it is interesting to
know if there is always a balanced triangle in a
complete graph. Let p(n) denote the maximum
number of positive edges in a complete n-vertex
graph such that there is no any balanced triangle.
The next lemma is a necessary condition of which
there must be a balanced triangle.

Lemma 4: p(n) = n2/4 if n is an even number,
and p(n) = (n− 1)(n+ 1)/4 if n is odd.

Proof: Let G be a complete signed graph with-
out any balanced triangle. LetG+ = G[E+] be the
subgraph induced by all the positive edges. First,
we show that G+ is a bipartite graph. Apparently,
if there exists a 3-cycle in G+, the 3-cycle is bal-
anced triangle. Suppose that (v1, v2, . . . vk, v1) is
an induced k-cycle in G+ with k an odd number
larger than three. Then, both (v1, v3) and (v1, v4)
are negative edges in G, and (v1, v3, v4) is a bal-
anced triangle in G.

Since G+ is a bipartite graph, p(n) is the the
maximum number of edges of any bipartite graph
with n vertices, and the maximum is achieved
when the cardinalities of the two vertex subsets
are as equal as possible.

3 Algorithms

3.1 An 2-approximation algorithm

By Theorem 1, the optimal balanced graph cor-
responds to a 2-clustering, and we can have a sim-
ple algorithm with agreement at least one half of
|E|. Let (v1, v2, . . . , vn) be an arbitrary ordering
of the vertices. We first put v1 into V1 and then
put each incoming vertex into V1 or V2 greedily.
That is, in each iteration, we put the incoming
vertex into one cluster such that the number of

The 29th Workshop on Combinatorial Mathematics and Computation Theory

3

agreement of its incident edges is maximized. Let
d+(v, Vi) = |E+ ∩ {(u, v) : u ∈ Vi}| be the num-
ber of positive edges from v to any vertices in Vi.
Similarly, let d−(v, Vi) = |E− ∩ {(u, v) : u ∈ Vi}|.

Algorithm 1 Greedy algorithm
Input: A complete signed graph G = (V,E).
Output: A bipartition P = (V1, V2) of V .

(V1, V2)← (∅, ∅);
let V = {v1, v2, . . . , vn} in which the vertices are arbi-
trarily labeled;
for i← 1 to n do

if d+(vi, V1) + d−(vi, V2) ≥ d−(vi, V1) + d+(vi, V2)
then

put vi into V1;
else

put vi into V2;
end if

end for
output (V1, V2).

Lemma 5: Algorithm 1 finds a bipartition with
agreements at least |E|/2.

Proof: By definition (d−(vi, V1)+d+(vi, V2))+
(d+(vi, V1) + d−(vi, V2)) is the total number of
edges from vi to V1 ∪ V2. By the greedy strategy
used in the algorithm, at least one half of these
edges agree with the bipartition. Summing up
the agreements for all vi, the total agreement is
at least one half of the number of edges.

A complete signed graph with even number of
vertices and all negative edges is a simple tight ex-
ample for the approximation algorithm (as shown
in Figure 2). For this extreme example, the algo-
rithm finds a bipartition with n

2 vertices in either
side. The ratio of the number of agreements to the
number of edges is (n2 × n

2)/
(
n
2

)
= n/(2n− 2).

Figure 2: A tight example for the approximation
algorithm.

3.2 Exact algorithms

To find an exact solution, we choose the first
vertex v1 as a basic, and then we need to deter-
mine for each vertex that it is in the same or the
different cluster of v1.

Let V1 be the cluster which v1 belongs to. By a
(n − 1)-vector R =< r2, r3, . . . , rn >, we denote
a partial solution such that, for each 2 ≤ i ≤ n,
ri = 1 means that vi must be in V1; ri = −1 for
vi ∈ V2; and ri = 0 if it is not determined yet. Let
U be the set of undetermined vertices.

For a partial solution, we can compute the num-
ber of sign-changes of all pairs of determined ver-
tices. Also we can estimate a lower bound for any
undetermined vertex. The algorithm uses a stack
to contain all partial solutions to be explored. So
it’s a depth-first-search tree-searching algorithm.

Define

g(V1, V2)

= |E− ∩ {(u, v) : u, v ∈ V1}|
+|E− ∩ {(u, v) : u, v ∈ V2}|
+|E+ ∩ {(u, v) : u ∈ V1, v ∈ V2}|

= d−(V1) + d−(V2) + d+(V1, V2) (1)

which is the number of edges to be changed for
partitioning V1 ∪ V2 into V1 and V2.

Define

h(V1, V2)

=
∑
v∈U

min{d−(v, V1) + d+(v, V2),

d−(v, V2) + d+(v, V1)} (2)

which is a lower bound of the number of edges
to be changed to partitioning U . Therefore
f(V1, V2) = g(V1, V2) + h(V1, V2) is a lower bound
function. If it is not less than the current best
solution, we need not push it into the stack.

The two functions g and h can be computed
from the previous values to reduce the computa-
tion cost. Precisely speaking, we have

g(V1 + x, V2)

= g(V1, V2) + d−(x, V1) + d+(x, V2) (3)

and

g(V1, V2 + x)

= g(V1, V2) + d−(x, V2) + d+(x, V1) (4)

in which V1 + x denote V1 ∪ {x} for short. For
v /∈ V1 ∪ V2, let h1(v, V1, V2) = d−(v, V1) +
d+(v, V2) and h2(v, V1, V2) = d−(v, V2) +
d+(v, V1). Then we have that h(V1, V2) =∑

v∈U min{h1(v, V1, V2), h2(v, V1, V2)}. Further-
more, for v, x ∈ U and v ̸= x, we have

h1(v, V1 + x, V2)

=

{
h1(v, V1, V2) + 1 if (v, x) ∈ E−

h1(v, V1, V2) if (v, x) ∈ E+ (5)

The 29th Workshop on Combinatorial Mathematics and Computation Theory

4

and

h1(v, V1, V2 + x)

=

{
h1(v, V1, V2) if (v, x) ∈ E−

h1(v, V1, V2) + 1 if (v, x) ∈ E+ (6)

A similar formula for h2 can be derived. By this
way, we can update the lower bound in O(n) time
when a vertex is moved from U to V1 or V2.

Algorithm 2 Branch-and-bound algorithm
Input: A complete graph G = (V,E), in which
V = {vi|1 ≤ i ≤ n}.
Output: A minimum number of sign changes from complete
graph G.

initially a stack T ; Best←∞;
push (∅, ∅, 1) into T ;
while T is not empty do

pop (V1, V2, i) from T ;
compute g(V1 + vi, V2) and g(V1, V2 + vi)
if i = n then

Best← min{Best, g(V1 + vi, V2), g(V1, V2 + vi)};
end if
compute h(V1 + vi, V2) and h(V1, V2 + vi)
if f(V1 + vi, V2) < Best then

push (V1 + vi, V2, i+ 1) into T ;
end if
if f(V1, V2 + vi) < Best then

push (V1, V2 + vi, i+ 1) into T ;
end if

end while
return Best;

Using the above branch-and-bound algorithm,
we can also design a fixed-parameter algorithm
(BaB2). For a fixed-parameter algorithm with the
number of sign-changes k as parameter, we ask if
there exists a solution with sign-changes at most
k. To this aim, we only need to set Best to k+1 in
the above algorithm. We show that the worst-case
time complexity is indeed polynomial for fixed k.

Lemma 6: The time complexity of Algorithm
BaB2 is O(n ·2min{n,k}), and therefore it is a fixed
parameter algorithm.

Proof: First, by Equations (3–6), it is easy to
see that each iteration takes only O(n) time. We
only need to show the upper bound of the number
of iterations. Since each vertex is inserted into V1

or V2, the number of iteration is trivially bounded
by O(2n). We now show another bound O(2k) by
induction.

Let T (i, k) denote the worst-case number of
partial solutions pushed into the stack T such
that |V1| + |V2| = i and we can change at most k
edge signs. By the algorithm, we have, T (i, k) ≤
T (i + 1, k − j) + T (i + 1, k − (i − j)) for i < n

and k > 0, in which j is the number of edges have
been changed when move a vertex from U to V1

or V2; and T (i, k) = 1 for i = n or k = 0. Suppose
by the induction hypothesis that T (i, k′) ≤ 2k

′
for

any k′ < k.
In the case that 0 < j < k, we have

T (i, k)

≤ T (i+ 1, k − j) + T (i+ 1, k − (i− j))

≤ 2k−j + 2k−(i−j) ≤ 2k.

Otherwise, j = 0 or k. We show the case j = 0
and the other case is similar. If j = 0,

T (i, k) = T (i+ 1, k) + T (i+ 1, k − i). (7)

Summing (7) for i from 1 to n− 1, we have

T (1, k)

≤ T (2, k − 1) + T (3, k − 2)...+ T (k + 1, 0)

≤ 2k−1 + 2k−2 + . . .+ 20 = 2k − 1 < 2k.

4 Experimental results

We did experiments on algorithms for the min-
imum sign-changes problem. In our experiments,
we used two kinds of random graphs. By these
data, we tested our algorithms and observed fac-
tors which affect the solution and the time com-
plexity.

We shall use the following terms to describe the
experiments. By g and g + h, we denote the two
versions of the branch-and-bound algorithm which
use g and g+h as the lower bounds as described in
the previous section. Let Push denote the number
of pushes, OPT denote the number of sign changes
in an optimal solution, and k denote the upper
bound of sign-changes in the fixed-parameter al-
gorithm which reports if there exists a solution
with at most k sign-changes. We set a bound ten
millions of the number of pushes (recursive calls)
in the experiments. The program was aborted if
no solution was found before exceeding the bound.

4.1 Test data

• First-type
A complete signed graph is constructed by
randomly choosing e negative edges and the
remaining edges are positive.

The 29th Workshop on Combinatorial Mathematics and Computation Theory

5

• Second-type
We first randomly generated a balanced com-
plete graph with specified two cluster sizes.
Then we randomly pick k edges and change
their signs to make the graph unbalanced. By
this way we can control the optimal solutions.

4.2 Experiments

4.2.1 Lower bound

The first experiment is used to test the effect of our
lower bound function. We fix n=40 and compare
the numbers of pushes used by g and g+h to find
an optimal. In Figure 3, we can clearly know that
g + h needs much less number of pushes.

Figure 3: Comparison between lower bounds.

We tested lower bound by finding out the hard
cases. For a specified n, the hard case is the value
of k such that the number of pushes exceeds 10
millions. For different numbers of n and k, in our
experiments, we tested g and g+ h with the same
inputs, and the results are shown in Figure 4 and
Table 1. The pushes of g are much more than those
of g + h, so we can know that our lower bound is
useful.

Figure 4: Efficiency comparison between lower
bounds: number of pushes in log-scale.

Table 1: Hard case (number k) for algorithm with
g or g + h as lower bound.

n 30 50 80 100
g 155 135 135 135

g + h 500 700 830

4.2.2 Vertex selection method for branch-
ing

In the branch-and-bound algorithm, we need to
choose a vertex v in each iteration and make two
branches according to putting v into V1 or V2.
In this experiment, we would like to know if the
method of selecting vertex can affect the time com-
plexity. We fixed n=100 and used Second-type
random graphs. We tested three selection meth-
ods: with-order, largest-gap and smallest-gap.

• with-order
When choosing the next vertex to branch, we
simply choose the next undetermined one.

• largest-gap
Choosing v = argmaxv |h(V1 + v, V2) −
h(V1, V2 + v)|.

• smallest-gap
Choosing v = argminv |h(V1 + v, V2) −
h(V1, V2 + v)|.

We computed the numbers of pushes to com-
pare the three methods and show the result in
Figure 5.

Figure 5: Different selection methods.

4.2.3 Cluster size and positive/negative
ratio

By positive/negative ratio we mean that the ratio
of the number of the positive edges to the num-
ber of negative edges in an input graph. In this
experiment, we want to know whether the cluster

The 29th Workshop on Combinatorial Mathematics and Computation Theory

6

size and the positive/negative ratio affect the time
complexity or not.

• Cluster size
We tested three kinds of cluster ratios: 1:1,
1:2, 1:3 with n=100 and show the result in
Figure 6. By Figure 6, we can clearly know
cluster size does not affect the number of
pushes.

Figure 6: Cluster size affect.

• Positive/negative ratio
In this experiment we tested different posi-
tive/negative ratios with n=40. We show the
results in Table 2, which include ratio of pos-
itive and negative edges, number of pushes,
number of sign changes and execution time
(in sec.).

Table 2: Positive/negative ratio
ratio push change time
1:1 28410510 301.7 46.02
1:2 34667422 304.2 56.20
1:3 49778203 309.3 78.72
1:4 74347274 313.9 116.85
2:1 943689 258.5 1.69
3:1 23398 195.0 0.048
4:1 3706 156.0 0.0063

4.3 Discussion

By the experiments, we make the following dis-
cussions.

• In Figure 3 and Figure 4, it’s clearly to see the
better lower bound g+h reduces the running
time significantly. And by Table 1, we can
know, for g, hard case occurs in nearly k=135
and the number of vertices does not affect it.
But for g+h, the hard case of value k increases
as n increases.

• By Figure 5, we can know that the largest-
gap is the best of the three methods because
the number of pushes is the smallest.

• In our experimental results, we can find out
cluster size does not affect the number of
pushes. By Table 2, we can observe the more
negative edges, the more number of pushes,
changes, and taking more time. The reason
is that the minimum sign-changes increases
when the number of initial negative edges is
more. So we can know positive/negative ra-
tio makes a great impact on the number of
pushes.

• We had also compared time complexities of
instances of which the fixed-parameter algo-
rithm returns “yes” or “no”. We found that
there is no significant difference.

• Finally, from the experiments we observe a
phenomenon that the number of pushes is
equal to n when k ≤ n.

5 Conclusion

In this paper, we study some properties of a
complete balanced graph. And we design a 2-
approximation algorithm and an exact algorithm
for the minimum sign change problem with time
complexity O(n · 2min{n,k}).

The experimental results show that our lower
bound can significantly reduce the running time,
select method of next vertex and positive/negative
ratio can also affect the number of pushes. But
cluster size does not affect the number of pushes.

We have observed that the algorithm runs very
fast when k ≤ n. We shall try to give a formal
proof in the future. Another interesting future
work is the weighted version of the minimum sign
change problem.

Acknowledgment

This work was supported in part by NSC 98-
2221-E-194-027-MY3 and NSC 100-2221-E-194-
036-MY3 from the National Science Council, Tai-
wan, R.O.C.

References

[1] N. Ailon, M. Charikar, A. Newman, Ag-
gregating Inconsistent Information: Ranking

The 29th Workshop on Combinatorial Mathematics and Computation Theory

7

and Clustering, Proceedings of the 37th An-
nual ACM Symposium on Theory of Comput-
ing (STOC), pp. 684–693, 2005.

[2] N. Alon, K. Makarychev, Y. Makarychev, A.
Naor., Quadratic forms on graphs, Proceed-
ings of the 37th ACM Symposium on Theory
of Computing (STOC), pp. 486–493, 2005.

[3] S. Arora, E. Berger, E. Hazan, G. Kindler, S.
Safra, On non-approximability for quadratic
programs, Proceedings of the 46th IEEE Sym-
posium on Foundations of Computer Science
(FOCS), 2005.

[4] A. Avidor, M. Langberg, The multi-multiway
cut problem, Proc. 9th SWAT, volume 3111
of LNCS, Springer, pp. 273–284, 2004.

[5] N. Bansal, A. Blum, S. Chawla, Correlation
clustering, Machine Learning, Special Issue
on Clustering, pp.89–113, 2004.

[6] M. Charikar, V. Guruswami, A. Wirth, Clus-
tering with qualitative information, Journal
of Computer and System Sciences, pp. 360–
383, October 2005.

[7] C. Chiang, A. B. Kahng, S. Sinha, X. Xu,
A. Z. Zelikovsky, Fast and efficient bright-
field AAPSM conflict detection and correc-
tion, IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems,
pp. 115–126, 2007.

[8] B. DasGupta, G. A. Enciso, E. D. Sontag,
Y. Zhang, Algorithmic and complexity results
for decompositions of biological networks into
monotone subsystems, Proc. 5th WEA, vol-
ume 4007 of LNCS, Springer, pp. 253–264,
2006.

[9] R. G. Downey, M. R. Fellows.g, Parameter-
ized Complexity, Springer, pp. 273–284, 1999.

[10] J. Flum, M. Grohe, Parameterized Complex-
ity Theory, Springer, 2006.

[11] I. Giotis and V. Guruswami, Correlation clus-
tering with a fixed number of clusters, Theory
Comput., 249–266, 2006.

[12] J. Guo, J. Gramm, F. Hüffner, R. Nieder-
meier, S. Wernicke, Compression based fixed-
parameter algorithms for feedback vertex set
and edge bipartizationy, Journal of Computer
and System Sciences, pp. 1386–1396, 2006.

[13] F. Harary, On the notion of balance of a
signed graph, Michigan Mathematical Jour-
nal , pp.143–146, 1953.

[14] A. Nemirovski, C. Roos, T. Terlaky, On max-
imization of quadratic form over intersection
of ellipsoids with common center, Mathemat-
ical Programming, pp. 463–473, 1999.

[15] R. Niedermeier, Invitation to Fixed-
Parameter Algorithms, Oxford University
Press, 2006.

[16] R. Shamir, R. Sharan, D. Tsur., Cluster
graph modification problems, Proceedings of
28th Workshop on Graph Theory (WG), pp.
379–390, 2002.

[17] S. Wasserman, K. Faust, Social Network
Analysis, Cambridge University Press, Cam-
bridge, 1994.

[18] T. Zaslavsky, Bibliography of signed and gain
graphs, Electronic Journal of Combinatorics,
1998.

The 29th Workshop on Combinatorial Mathematics and Computation Theory

8

