
Finding the Maximum Balanced Vertex Set on Complete
Graphs

Chun-Hsiang Bai and Bang Ye Wu∗

National Chung Cheng University, ChiaYi, Taiwan 621, R.O.C.

Abstract

A signed graph is a simple graph in which each
edge is labeled by a sign either + or -. A signed
graph is balanced if every cycle has even numbers
of negative edges. In this paper, we study the prob-
lem how to find a maximum vertex subset of a
complete signed graph such that the induced sub-
graph is balanced. We show that the problem can
be reduced to a series of vertex cover problems and
therefore admits a 2-approximation and a fixed-
parameter algorithms. We also tested the practi-
cal performances of these algorithms on random
graphs. Our algorithm can find optimal solution
within ten seconds with 100 vertices which is much
better than a trivial algorithm.

1 Introduction

A signed graph is a simple graph G = (V,E, σ)
in which σ : E 7→ {1,−1}. That is, each edge
is labeled by a sign either “+” or “-”. A signed
graph is balanced if every cycle has even numbers
of negative edges. In this paper, we study the
following optimization problem.

Problem: Maximum Balanced Vertex
Set (MBVS) problem
Instance: A complete signed graph G.
Goal: Find a maximum cardinality ver-
tex subset U ⊆ V such that subgraph of
G induced by U is balanced.

The dual problem, named coMBVS, is defined
similarly but the objective is to minimize the num-
ber of vertices to delete. In this paper, we shall
only study the case that the input is a complete
graph.

The concept of balanced signed graphs was in-
troduced by Harary [15] for the analysis of social
networks, in which a positive edge represents a

∗Corresponding author, E-mail:bangye@ccu.edu.tw

positive relation (such as “like”) and a negative
edge is for a negative relation (such as “dislike”).
Signed graphs also find other applications, for ex-
ample, in mathematical analysis of large-scale bio-
logical networks [10] and in statistical physics and
integrated circuit fabrication techniques [9, 25]. A
bibliography of signed graphs can be found in [25].

Instead of vertex deletion, most of the previ-
ous results about finding a balanced subgraph of
a signed graph focus on edge deletion, or equiv-
alently minimum changes of edge signs. Such a
problem is usually known by the name Balanced
Subgraph, which is to find a balanced subgraph
with maximum number of edges. Balanced Sub-
graph is a generalization of the NP-hard Maxi-
mum Cut problem in graphs. In the literatures,
there are several results of Balanced Subgraph
in the aspect of approximation algorithms and
fixed-parameter algorithms [4, 10, 17]. For more
details, we refer to [17].

Both the MBVS and the Balanced Sub-
graph problems are closely related to a general
problem named “Cluster Editing” [18]. The ba-
sic problem is, given an undirected graph G, to
find a minimum number of editing operations that
transform G into a collection of disjoint complete
subgraphs, a cluster graph. Each of these disjoint
complete subgraphs is called a cluster. The edit-
ing operations may include adding edges, delet-
ing edges, and deleting vertices. The difference
between the clustering problem and the problem
studied here is that the number of clusters is spec-
ified or not. The Balanced Subgraph problem
is also known by the name “correlation clustering”
in the field of graph clustering. The bridge between
a subgraph problem to a clustering problem is due
to Harary’s theorem: a signed graph is balanced if
and only if it can be partitioned into two clusters
(vertex subsets) such that every positive edge is
within one of the clusters and every negative edge
crosses the two clusters. In the general correlation
clustering problem, each item is represented by a
vertex, a positive or negative edge means that the

The 29th Workshop on Combinatorial Mathematics and Computation Theory

42

two vertices are similar or dissimilar, respectively.
Given a signed graph (1 for similar and -1 for dis-
similar), the objective is to produce a partitioning
into clusters that places similar objects in the same
cluster and dissimilar objects in different clusters,
to the extent possible. In general, the number of
clusters is not specified.

Shamir et al. [22] studied the computational
complexity of the Cluster Editing problem and
showed the NP-hardness, even for the case that the
number of clusters is any fixed k ≥ 2. There are
several other results about approximation of the
above and related problems in [1, 2, 3, 6, 13, 20].
For more details, see [13]. There are some re-
sults from the field of fixed-parameter algorithms
[11, 12, 21]. A problem is called fixed-parameter
tractable with respect to a parameter k if an in-
stance of size n can be solved in f(k) ∗nO(1) time,
where f is an arbitrary function depending only
on k.

Whereas the Cluster Editing problem attracts
intensive research, the vertex deletion version
CVD (short for Cluster Vertex Deletion) had been
widely neglected until the work by Hüffner et al
[18]. For this version, the aim is to find a ver-
tex set of minimum weight such that its dele-
tion transforms a given graph into a disjoint of
cliques. In [18], some fixed-parameter results are
given for both cases that the number of clus-
ters is pre-specified or not. We use d-CVD for
the case that the number of clusters is restricted
to d. Let G be a complete signed graph which
is an instance of the coMBVS problem. Let
G′ be the unsigned graph obtained from G by
removing all negative edges. We can see that
any vertex-induced balanced subgraph of G corre-
sponds to a vertex-induced subgraph of G′ which
consists of two disjoint cliques. Thus the coM-
BVS problem is equivalent to the 2-CVD prob-
lem. In [18], three fixed-parameter algorithms for
weighted 2-CVD were developed whose running
times are O(2k · k9 + nm), O(1.40k · k3d + nm),
and O(1.84k+d + nm), in which k is the number
of vertices to delete. They also show that the un-
weighted case can be solved in O(1.28k ·k2d +nm)
time which uses an O(1.28k + kn)-time algorithm
for unweighted vertex cover.

In this paper, we study the coMVBS problem,
i.e., the 2-CVD problem, in the special case that
the input is a complete graph. We show that the
problem can be reduced to a series of vertex-cover
problem and thus admits a 2-approximation algo-
rithm. Also, by employing the fixed-parameter al-
gorithm for vertex cover, we have an O(1.28k ·n+

n3)-time algorithm which is asymptotically better
than the previous result if n < k4. Furthermore,
we design a branch-and-bound algorithm and test
the practical performances of these algorithms, in-
cluding their running times and solution qualities.
Our algorithm can find optimal solution within ten
seconds with 100 vertices which is much better
than a trivial algorithm.

The paper is organized as follows. In Section
2, we give some notation and definitions. In Sec-
tion 3, we derive some properties which are helpful
for our algorithms in Section 4. The experiment
results are given in Section 5. Finally, some con-
cluding remarks are given in Section 6.

2 Preliminaries

We shall use the following notation and terms
in graph theory. For a graph G, V (G) and E(G)
denote the vertex and edge sets, respectively. Two
vertices u and v are neighbors of each other if
(u, v) ∈ E. For a vertex subset U , the subgraph of
G induced by U is denoted by G[U]. The degree
of a vertex v in a graph G, denoted by d(G, v) is
the number of its neighbors in G. When there is
no confusion, we shall simply use d(v). A clique
is complete subgraph. A k-clique is a clique of
k vertices. A k-cycle is a cycle of k vertices. A
3-clique is also called as a triangle which is also
a 3-cycle. Let 4uvw denote a triangle consisting
of three vertices u, v and w. A cycle is positive,
or balanced, if it contains even numbers of nega-
tive edges. In the remaining paragraphs, the input
graph is always G = (V,E) and we use n = |V |
and m = |E|. And we denote V ∪ {v} by V + v.
For a graph G = (V,E), a vertex subset S ⊆ V is a
vertex cover if every edge has at least one endpoint
in S.

A 2-clustering of a singed graph G = (V,E, σ)
is bipartition (V0, V1) of V . A perfect 2-clustering
is a 2-clustering such that σ(u, v) = −1 if and only
if u and v are in the different subsets.

A characteristic vector of a simple cycle C is
a vector in GF[2]m, m = |E|, which has 1’s in
components corresponding to edges of C and 0’s
in the remaining components. For two cycles C1

and C2, define C1 ⊕ C2 be the subgraph whose
characteristic vector is the sum of the ones of C1

and C2 (the addition is in GF[2]). Note that C1⊕
C2 may be not a cycle.

The next theorem is due to Harary.

Theorem 1: A singed graph is balanced if and
only if there is a perfect 2-clustering [15].

The 29th Workshop on Combinatorial Mathematics and Computation Theory

43

In a complete signed graph, each k-cycle for
k > 3 can be represented by the sum of the char-
acteristic vectors of several triangles. So, if all
triangles are positive, then all k-cycles are posi-
tive. The next theorem follows from the following
observation: If C = C1 ⊕C2 ⊕ . . .⊕Ck and all Ci

are positive, then C is positive too.

Theorem 2: A complete signed graph is balanced
if and only if all triangles are positive [23].

3 Some properties

In this section, we develop some properties
which are helpful for our algorithms. A vertex
subset of a signed graph is balanced if the induced
subgraph is balanced.

Lemma 3 : Let G = (V,E, σ) be a complete
signed graph and V1 ⊂ V be a balanced subset.
If V1 ∪ {u1, u2} is balanced for any two vertices
u1, u2 ∈ V − V1, then V is balanced.

Proof: Since V1 is balanced and V1∪{u1, u2} is
balanced for any two vertices u1, u2 ∈ V − V1, by
Theorem 2, it is sufficient to show that all triangles
in U = V − V1 are balanced. We consider a 4-
clique formed by {u1, u2, u3} ⊂ V −V1 and v ∈ V1.
By 4u1u2u3 = 4vu1u2 ⊕ 4vu1u3 ⊕ 4vu2u3, if
4vu1u2, 4vu1u3 and 4vu2u3 are all balanced,
then 4u1u2u3 is balanced.

Let V1 be balanced, and U = V − V1. We want
to find a maximum cardinality subset U ′ of U such
that U ′ ∪ V1 is balanced. First, for any u ∈ U , if
V1 + u is unbalanced, u should be deleted. Let H
be an auxiliary graph defined by: (1) V (H) = U ;
and (2)for u1, u2 ∈ U , there is an edge (u1, u2) if
and only if V1 ∪ {u1, u2} is unbalanced, i.e., there
exists a vertex v ∈ V1 such that 4vu1u2 is not
balanced. By Lemma 3, we can have the following
result.

Corollary 4: If E(H) = ∅, U ∪ V1 is balanced.

We define MBVS(G) as an optimal solution for
input graph G and MBVS(G,V1) denote an opti-
mal containing V1.

Lemma 5 : If M is a matching in H, then
MBVS(G,V1) ≤ |V1|+ |U | − |M |.

Proof: According to pigeonhole principle, for
any S ⊆ V , if |S| ≥ |V1| + |U | − |M |, it must

contain an edge from M . By the definition of H,
it would not be balanced.

Lemma 6: If S is an independent set in H, then
V1 ∪ S is balanced.

Proof: For any two vertices u, v ∈ S, there
is no edge (u, v) ∈ H, i,e., E(S) = ∅. By
Corollary 4, V1 ∪ S is balanced.

Let V = {vi|1 ≤ i ≤ n} and Hi be the graph
defined above with V1 = {vi} and Ui = {vj |i <
j ≤ n}. Let V Ci denote a minimum vertex cover
in Hi.

Lemma 7: The Ui − V Ci is a maximum bal-
anced vertex subset of G[Ui] containing vi, i.e.,
MBVS(G[Ui], {vi}).

Proof: It is well-known that finding minimum
vertex cover is equivalent to finding maximum
independent set. Since V Ci is a minimum vertex
cover, Ui−{vi}−V Ci is an maximum independent
set. Then the result follows from Lemma 6.

Theorem 8: The MBVS problem can be solved
by solving a series of n− 1 vertex cover problems.

Since the vertex cover problem can be solved
by a fixed-parameter algorithm [8], by Theorem 8,
we can have the next corollary.

Corollary 9 : The coMBVS problem can be
solved in O(1.28k · n + n3) times, in which k is
the number of vertices to delete.

Proof: By Theorem 8, the coMBVS problem
can be solved by computing a minimum vertex
cover for each Hi. Since each Hi can be con-
structed in O(n2) time and each of the vertex
cover problems can be computed in O(1.28k +kn)
time [8], the total time complexity for solving the
coMBVS problem is O(1.28k · n+ n3).

Similarly, by the 2-approximation algorithm of
vertex cover [24], we have the next result.

Corollary 10: The coMBVS problem can be
2-approximated in O(n3) time.

The 29th Workshop on Combinatorial Mathematics and Computation Theory

44

4 Algorithms

In the previous section, we have shown some
theoretical results in the aspect of fixed-parameter
and approximation. We have further studied the
practical performances of these algorithms by ex-
periments. In order to compare the performances,
we also designed a branch-and-bound algorithm.

4.1 Exact algorithm

We now show a branch-and-bound algorithm,
and the experiment results are in the next section.

As described in the previous section, let V =
{vi|1 ≤ i ≤ n} and, for 1 ≤ i < n, Hi be the
graph defined by

• V (Hi) = {vj |i < j ≤ n}; and

• E(Hi) = {(vp, vq)|4vivpvq is not balanced
and i < p < q}.

Our goal is to find a minimum vertex cover for
each Hi. The algorithm is given in Algorithm 1
which employing a branch-and-bound procedure
for solving the vertex cover problem. Let Nv de-
note the set of all neighbors of v and the reduction
rules will be explained later.

Algorithm 1 B&B

Input: A graph G with V (G) = {vi|1 ≤ i ≤ n};
Output: MBVS(G);

B ← ∅; . Currently best solution
for i← 1 to n− 1 do

construct Hi;
V Ci ← BBVC(V (Hi));
Bi ← V (Hi) + vi − V Ci;
if |Bi| > |B|, B ← Bi;

end for
output B;

Procedure BBVC(U)
Input: U is the set of all undetermined vertices;
Output: A minimum vertex cover of Hi[U];

S ← ∅; . Solution set
perform reduction rules and update S and U ;
if U = ∅, return S;
choose a vertex v with maximum degree;
S1 ← S ∪ {v} ∪ BBVC(U − v);
S2 ← S ∪ {Nv} ∪ BBVC(U −Nv − v);
if |S1| < |S2| then

return S1;
else

return S2;
end if

The Reduction Rules we use in Algorithm 1
are as follows.

1. Remove any vertex with degree zero.

2. For any vertex with degree one, select its
neighbor into solution and remove the both
vertices.

3. If the maximum degree for any vertex is at
most two, pick one vertex into the solution
and repeat rules 1 and 2.

Lemma 5 gives us a lower bound (LB) of the
number of vertices to delete. We can find a
maximum matching (MM) to increase the lower
bound. But finding MM is very time-consuming,
and therefore we only find a maximal matching
and we need not construct H. Algorithm 2 is our
LB algorithm.

Algorithm 2 Maximal matching of H (LB)

Let U = u1, u2 . . . uh
mark all vertices in U as not-matched
for i = 1 to h− 1 do

if u is not-matched then
if there exists j > i such that (ui, uj) ∈

E(H) then
put (ui, uj) into M

end if
end if

end for
return M

To use the lower bound function in the branch-
and-bound algorithm, we always maintain the cur-
rently best solution. Whenever the lower bound of
a vertex subset plus the number of vertices which
is already chosen is no less than the currently best
solution, we don’t need to search further and re-
turn infinity.

4.2 Fixed-parameter algorithm

According to Lemma 7, we have a fixed-
parameter algorithm.

Algorithm 3 Fixed-parameter algorithm

for i = 1 to k do
find V Ci

if |V Ci| < k − i+ 1 then
return yes

end if
end for
return false

The 29th Workshop on Combinatorial Mathematics and Computation Theory

45

The currently best fixed-parameter algorithm
is O(1.28k · n + kn2) [8]. However, in our imple-
mentation, we used a simpler one which uses only
three reduction rules described above.

Lemma 11 : The B&B algorithm runs in
O(1.33k · n3) time for solving the coMBVS prob-
lem, in which k is the number of vertices to delete.

Proof: The reduction rules 1 and 2 can be
executed in O(n) time. The LB can be computed
in O(n2). Finding the maximum degree and
rule 3 can also be done in O(n2) time. When
we choose a vertex to branch, the degree of the
chosen vertices must be greater than or equal
to 3. Other cases are handled by the reduction
rules. If we select this vertex into solution,
then one vertex is decided; otherwise, all of its
neighbors have to be selected in order to cover
these edges. Let T (k) denote the number of
search nodes in the search tree that searching for
a vertex cover of size bounded by k. We have
that T (k) ≤ T (k − 1) + T (k − 3). Solving the
recurrence relation, we have T (k) ∈ O(1.33k).
Since we have to solve O(n) vertex covers, the
total complexity of our algorithm for the coMBVS
problem is O(1.33k · n3) time.

4.3 Approximation algorithm

By Theorem 8 and Corollary 10, we have a 2-
approximation algorithm for the coMBVS prob-
lem, which is based on the 2-approximation algo-
rithm for the vertex cover problem [24]. Let H ′

i be
the graph defined by V1 = {vi}, U = V − V1. We
now describe the algorithm as follows.

Algorithm 4 Vertex-cover

for all i do
find a V C of H ′

i

end for
return the maximum V − V Ci

Although we have a 2-approximation algorithm.
We provide different algorithms, and we compare
them by experiments. We approximate the MBVS
problem by reducing to set cover problem.

Problem: Set Cover
Instance: A universe U of n elements,
and a collection of subset of U , S =
{S1, ...Sm}.
Question: Find a minimum cardinality

subcollection of S that cover all elements
of U .

When the input is a complete graph, it is just
like to find the maximum acyclic subgraph in a
tournament [24].

We consider each vertex as a set and each nega-
tive 3-cycle as an element. LetG = (V, V×V, σ) be
a complete signed graph. For each vertex v ∈ V ,
create a set Sv which include all negative 3-cycles
containing v. A subset X of S that covers all el-
ements of U correspond to find a vertex subset of
V such that G\X has no negative cycle.

The set-cover problem can be f -approximated
in polynomial time, in which f is the frequency,
i.e., each element occurs in at most f sets [24].
In our problem, each element at most appears in
3 sets, and therefore we have a 3-approximation
solution. And we denote the algorithm SC in the
following section.

Algorithm 5 SC

S̄ ← ∅ ; // Let S̄ be discarded vertices
for each vi, vj , vk ∈ V do

if 4vijk is unbalanced then
move vi, vj , vk from V to S̄

end if
end for
return S̄

We also design a greedy algorithm which is di-
rectly applied to the coMBVS problem, instead of
to set-cover or vertex-cover.

Algorithm 6 Greedy algorithm

S̄ ← ∅ ; // Let S̄ be discarded vertices
while coMBVS is unbalanced do

Find the vertex that be contained in the
most number of unbalanced triangles and re-
move it to S̄
end while
return S̄

5 Experiments

In this section, we explain the experimental en-
vironment in Section 5.1, show experimental re-
sults in Sections 5.2, 5.3 and 5.4, and we give some
discussions in Section 5.5.

The 29th Workshop on Combinatorial Mathematics and Computation Theory

46

5.1 Environment and data

We did experiments for the exact, fixed-
parameter and approximation algorithms. We
used three different kinds of data as inputs.

(a) Starting from a balanced graph, we choose
some random vertices and change the signs
of some edges incident to the chosen vertices.
The number of chosen vertices is denoted by
r.

(b) Starting from a balanced graph, we choose
some random edges and change the signs. We
denote the number of chosen edges by e.

(c) Starting from a graph, we decide each edge
sign with a probability p.

We define some notation in the following exper-
iments.

• n : The number of vertices.

• δ : The graph density.

• t : We use t as a time threshold and stop the
program when the running time exceed t.

• ε : We use ε as a upper bound of pushes and
stop the program when the push times exceed
ε.

We tested 30 different graphs for each experi-
ment, and recorded the average and the worst case
results. The experiments were conducted on a PC
with Intel Core i7 processor and 8 GB of RAM.

5.2 Experiment for the exact algo-
rithm

In the exact-algorithm experiment, we tested
five versions of the branch-and-bound algorithm
to observe the effects of lower bound, reduction
rules and chosen vertex. Since we use the Depth-
First-Search strategy, the recursive calls in the
B&B algorithm is equivalent to using a stack. And
we compared their push times and running times.
The five algorithms are named by Fx1x2x3, in
which each xi is either 1 or 0. The meaning of
the name is as follows.

• If x1 = 1, we use reduction rules in the B&B
Algorithm; if x1 = 0, we do not use reduction
rules.

• If x2 = 1, we choose a vertex with the largest
degree for branching; if x2 = 0, we choose a
vertex for any order for branching.

• If x3 = 1, we use LB as lower bound; if x2 = 0,
we use current best solution as lower bound.

For example, F110 means that we use reduction
rules and choose a vertex of the largest degree to
branch but without using LB as the lower bound.
We had tested the five versions: F000, F100, F110,
F101 and F111.

Figure 1: Comparison of push times of data (a).

We set n = 100 and ε to fifteen million for data
(a). We randomly pick r vertices and change the
signs of 5 edges incident to the chosen vertices.
We do not show F000 in Figure 1 because its push
times increase extremely fast. For example, when
r = 20, its push times is over ε. Except F111,
the other three versions exceed threshold t = 15
seconds when m = 60, 70 and 60, respectively.

Figure 2: Comparison of push times of data (b).

For data (b), we set n = 100, e from 100 to
2000 and ε to fifteen million. We do not show
F000 when e below 1400 because its push times
also extremely fast. For example, when e = 100,
its push times is only 3351, but when e = 300,
its push times exceed ε. And we observed that its
push times decrease significantly when e is greater
than 1400.

The 29th Workshop on Combinatorial Mathematics and Computation Theory

47

Figure 3: Comparison of push times of data (c).

We set n from 5 to 200, p = 0.5, and a push
upper bound ε to ten million for data (c). It is
expectable that the push times of each algorithm
get more when the number of vertices increases.
F000, F100, F110, F101 and F111 exceed ε when
the number of vertices are 130, 130, 160, 165 and
185 respectively.

5.3 Experiment for the fixed-
parameter algorithm

For a parameter k, the goal is to find if there is
a feasible solution of deleting at most k vertices.
We set n = 120 and r = 100 for data (a). We
iteratively decrease the value of k to find which is
the optimal solution. We run 30 different graphs
for each k. The two curves of Figures 4 and 5 are
explained as follows. And let the hard case be the
push times reach at the peak of the curve.

• yes case: There exists a solution of deleting
at most k vertices. We use hy to denote the
hard case of yes-instances.

• no case: There does not exist a solution of
deleting k vertices. We use hn to denote the
hard case of no-instances.

Figure 4: The hard case of yes-instances of data
(a).

Figure 5: The hard case of no-instances of data
(a).

5.4 Experiment for the approximation
algorithms

In these experiments, we tested three approxi-
mation algorithms that we describe in section 4.1.
We further slightly improve the SC algorithm: we
check all vertices that had be deleted after SC al-
gorithm with any order. If it could be added back
to the solution without causing any unbalance, we
added it. We denote the algorithm by SC-s. Note
that Vertex-cover also uses this method.

Figure 6: Comparison of worst ratio of data (a).

Table 1: The running time of r ≥ 60.
m 60 70 80 90

greedy 0.088 0.091 0.102 0.099

Vertex-cover 0.075 0.062 0.065 0.061

SC 0.009 0.009 0.010 0.009

SC-s 0.010 0.010 0.011 0.010

We set n = 100 for data (a), and the re-
sult shows in Figure 6. Note that the curves of
Greedy and Vertex-cover overlap. We ran-
domly pick r vertices and change the signs of 5
edges incident to the chosen vertices.

The 29th Workshop on Combinatorial Mathematics and Computation Theory

48

Figure 7: Comparison of worst ratio of data (b).

The result of data (b) is showed in Figure 7, we
set n = 100, and we randomly choose e edges and
change the signs.

Figure 8: Comparison of worst ratio of data (c).

For data (c), we set p = 0.5 and n from 5 to
150 (show in Figure 8).

5.5 Discussion

In the experiment of exact-algorithm, Algo-
rithm F111 performs the best in push times for
all data. We further compared the running time
of the three data, and we observed that the push
times and running time depend on the density of
H. The performance of F111 is good when the
density is below 0.13 in data (a), see Figure 1
and Figure 9. And Algorithm F111 is still bet-
ter than F000 for any value of r in data (a). We
also observed that F111 is better than F000 when
the density is below 0.45 in data (b), particularly
good when the density is below 0.12. When the
density is small, F000 performs very bad and ex-
ceeds our threshold even for small n. According
to the experiment results of data (a) and (b), we
know that F111 can run quickly at low density,
and F000 performs very bad at low density. And
F111 can deal with larger number of vertices than
the others, see Figure 3.

However, when the density exceed 0.45 in data
(b), F000 can run faster than F111, although its
push times is greater than F111. This reason is
due to that LB is not very helpful with higher
density.

Figure 9: The density of H of data (a).

In the experiment of fixed-parameter algo-
rithms, hy and hn almost happen at the same time
and hn exactly happens at the first time that no
case appears. For example, in Figure 5, hn hap-
pens at k = 82 which is the first time no case
appears. The reason is due to that when k is close
to the optimal solution, the program may takes
more time to identify that it is yes or no. The
curve in Figure 4 declines when k is greater than
81. The reason is due to the effect of LB. And the
push times of no case is more than yes case, see
Figures 4 and 5.

In the experiment of approximation-algorithms,
we observe that Greedy and Vertex-cover are
almost as good as the optimal solution in all the
tested cases, see Figures 6, 7 and 8. The reason
may be that the worse cases rarely happen in such
random graphs we generated. All approximation
algorithms have good ratios when the number of
deleted vertices is large, i.e., the size of optimal so-
lution is small. SC-s can easily reduce the ratio of
SC by using slight improvement that we describe
in Section 5.4. In Table 1, we compare the running
times of all approximation algorithms. We can see
that all approximation algorithms run efficiently.
We observed that the running time of Greedy is
more than Vertex-cover when r ≥ 60 in data
(a), but less than Vertex-cover when r < 60.
The reason is due to the value of density. If we
want a better running time with density ≤ 0.13,
we should choose Greedy; otherwise, we should
choose Vertex-cover. And the ratio of Greedy
may slightly better than Vertex-cover in the

The 29th Workshop on Combinatorial Mathematics and Computation Theory

49

average case.
We also compare the size of solution of the three

kinds of data. The solution size of data (a) is the
largest. And the solution size of data (c) is the
smallest.

6 Conclusion

In this paper, we study the coMVBS problem
on complete graphs. We show that the problem
can be reduced to a series of vertex-cover problem.
Thus, it admits a 2-approximation algorithm and
an exact solution can be found in O(1.28k ·n+n3)
time algorithm, in which k is the number of ver-
tices to delete. Furthermore, we design a branch-
and-bound algorithm and test the practical per-
formances of these algorithms, including their run-
ning times and solution qualities.

An interesting future work is how to generalize
this work to general graphs. Any better result in
the aspect of approximation and fixed-parameter
of this problem and for the general cluster editing
problem is also interesting.

Acknowledgment

This work was supported in part by NSC 98-
2221-E-194-027-MY3 and NSC 100-2221-E-194-
036-MY3 from the National Science Council, Tai-
wan, R.O.C.

References

[1] N. Ailon, M. Charikar, A. Newman, Ag-
gregating Inconsistent Information: Ranking
and Clustering, Proceedings of the 37th An-
nual ACM Symposium on Theory of Comput-
ing(STOC), pp. 684–693, 2005.

[2] N. Alon, K. Makarychev, Y. Makarychev, A.
Naor., Quadratic forms on graphs, Proceed-
ings of the 37th ACM Symposium on Theory
of Computing (STOC), pp. 486–493, 2005.

[3] S. Arora, E. Berger, E. Hazan, G. Kindler, S.
Safra, On non-approximability for quadratic
programs, Proceedings of the 46th IEEE Sym-
posium on Foundations of Computer Science
(FOCS), 2005.

[4] A. Avidor, M. Langberg, The multi-multiway
cut problem, Proc. 9th SWAT, volume 3111
of LNCS, Springer, pp. 273–284, 2004.

[5] N. Bansal, A. Blum, S. Chawla, Correlation
clustering, Machine Learning, Special Issue
on Clustering, pp.89–113, 2004.

[6] M. Charikar, V. Guruswami, A. Wirth, Clus-
tering with qualitative information, Journal
of Computer and System Sciences, pp. 360–
383, October 2005.

[7] M. Charikar, A. Wirth, Maximiz-
ing quadratic programs: extending
Grothendieck’s inequality, Proceedings of
the 45th IEEE Symposium on Foundations of
Computer Science (FOCS), pp. 54–60, 2004.

[8] J. Chen, I.A. Kanj, G. Xia, Improved param-
eterized upper bounds for vertex cover, Proc.
31st MFCS. Lecture Notes in Computer Sci-
ence, vol. 4162, pp. 238-249. Springer, Berlin
(2006)

[9] C. Chiang, A. B. Kahng, S. Sinha, X. Xu,
A. Z. Zelikovsky, Fast and efficient bright-
field AAPSM conflict detection and correc-
tion, IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems,
pp. 115–126, 2007.

[10] B. DasGupta, G. A. Enciso, E. D. Sontag,
Y. Zhang, Algorithmic and complexity results
for decompositions of biological networks into
monotone subsystems, Proc. 5th WEA, vol-
ume 4007 of LNCS, Springer, pp. 253–264,
2006.

[11] R. G. Downey, M. R. Fellows.g, Parameter-
ized Complexity, Springer, pp. 273–284, 1999.

[12] J. Flum, M. Grohe, Parameterized Complex-
ity Theory, Springer, 2006.

[13] I. Giotis and V. Guruswami, Correlation clus-
tering with a fixed number of clusters, Theory
Comput., 249–266, 2006.

[14] J. Guo, J. Gramm, F. Hüffner, R. Nieder-
meier, S. Wernicke, Compression based fixed-
parameter algorithms for feedback vertex set
and edge bipartizationy, Journal of Computer
and System Sciences, pp. 1386–1396, 2006.

[15] F. Harary, On the notion of balance of a
signed graph, Michigan Mathematical Jour-
nal , pp.143–146, 1953.

[16] F. Heider, Attitudes and cognitive organiza-
tion, Journal of Psychology , pp. 107–112,
1946.

The 29th Workshop on Combinatorial Mathematics and Computation Theory

50

[17] F. Hüffner, N. Betzler and R. Niedermeier,
Optimal edge deletions for signed graph bal-
ancing, Proceedings of the 6th Workshop on
Experimental Algorithms (WEA07), June 6–
8, 2007.

[18] F. Hüffner, C. Komusiewicz, H. Moser, R.
Niedermeier, Fixed-parameter algorithms for
cluster vertex deletion, Theory of Computing
Systems 47(1): 196–217, 2010

[19] S. Khot, On the power of unique 2-prover 1-
round games, Proc. 34th STOC, pp. 767–775,
2002.

[20] A. Nemirovski, C. Roos, T. Terlaky, On max-
imization of quadratic form over intersection
of ellipsoids with common center, Mathemat-
ical Programming, pp. 463–473, 1999.

[21] R. Niedermeier, Invitation to Fixed-
Parameter Algorithms, Oxford University
Press, 2006.

[22] R. Shamir, R. Sharan, D. Tsur., Cluster
graph modification problems, Proceedings of
28th Workshop on Graph Theory (WG), pp.
379–390, 2002.

[23] S. Wasserman, K. Faust, Social Network
Analysis, Cambridge University Press, Cam-
bridge, 1994.

[24] V. Vazirani, Approximation Algorithms,
Springer, 2001.

[25] T. Zaslavsky, Bibliography of signed and gain
graphs, lectronic Journal of Combinatorics,
1998.

The 29th Workshop on Combinatorial Mathematics and Computation Theory

51

