
A New Filtration Method Based on the Locality Property for
Approximate String Matching

Chia Wei Lu and R. C. T. Lee

Department of Computer Science
National Tsing Hua University, Hsinchu City, Taiwan, ROC

d9762807@oz.nthu.edu.tw, rctlee@ncnu.edu.tw

Abstract

In this paper, we consider the approximate string
matching problem. We give a method to eliminate
candidate locations in text T as there can be no
substring ending at those locations such that the
edit distance between and pattern

S
S P is smaller

than or equal to a specified error bound . Our
method is simple to implement. Experimental
results show that our method is effective. For
instance, for a DNA type data, when the text is 10M
characters long, patterns are 10 characters long and

, in average, 99% of locations are eliminated
by our method. We have also performed comparisons
with other algorithms, and the results showed that
our algorithm can eliminate more parts than most of
the others.

k

1=k

1 Introduction

For the approximate string matching problem, we

first define the edit distance [17] which measures the
similarity between two strings. The edit distance
between two strings A and , denoted ,
is the minimum number of insertion, deletion or
substitution operations needed to transform into

B) ,(BAED

B
A . Edit distance can be computed by using dynamic

programming method [22]. In this paper, we are
interested in the approximate string matching
problem defined as follows: Given a text string

n , a pattern string and a
error bound , let

tttT ...21= mpppP ...21=
k =ide ;

the problem is to find all such that
)...,(min1 ijij ttPED≤≤

i kdei ≤ . The
problem is also known as the differences problem
[13].

k

In general, there are two approaches to solve our
problem. The first approach, called non-Filtration
Approach, is to check every position of based
upon the dynamic programming method. The first
algorithm [18] based on non-Filtration Approach has
a running time of O(mn). Some improved the
time-complexity by using the properties of the
dynamic programming matrix [9, 20] and reduced the
running time to O(kn). Some use bit-parallelism in a
computer word to reduce the number of operations
which can solve our problem in

T

⎡ ⎤)O(wmnk

time-complexity [8, 10, 23].
Another approach, named Filtration Approach,

uses an efficient filtration algorithm to eliminate
uninteresting parts of the text , and then checks
for possible solutions at the locations which are not
eliminated by using a non-filtration algorithm. The
basic idea of the filtration approach can be
generalized into two steps as follows.

T

Step 1: Consider a window of ending at i .
Compute a filtration function

T t
F . For some , if

the computation of
i

F indicates that ,
ignore the position ; else, mark .

kdei >
i i

Step 2: For each i which is marked in Step 1,
compute i and check if by using a
non-filtration algorithm.

de kdei ≤

In general, computing i is much slower than de
F . The key of filtration approach is the filtration
function. We measure the effectiveness of the
filtration function F by counting the number of
positions which can be eliminated. Recent research
[7, 13] shows that k differences problem can be
efficiently solved by Filtration Approach algorithms
if many locations can be eliminated. Therefore, it is
meaningful to investigate the Filtration Approach
because it will make the algorithms very efficient in
average case time-complexity. We refer the readers to
Section 8 in [13] for more details about the filtration
algorithms. In this paper, we shall give an efficient
method to filter out many locations. In the following,
we categorize the existing Filtration algorithms into
three different types.

(1) The Partial Exact Matching

The idea is to search some partial part of P with
no mismatch instead of to search P approximately.
Suppose we have a pattern P and we want to find a
substring in such that . For

 reasonably small, there must exist a substring in
S T kPSED ≤),(

k
P which exactly appears in . This approach
therefore does an exact string matching first.
Different algorithms select different substrings in

S

P
to do the exact string matching, as shown below.

There are many algorithms using this idea. Some
algorithms use the fact that by dividing P into

)1(+k non-overlapping pieces, then at least one of
the pieces must appear in the string , where is S S

The 29th Workshop on Combinatorial Mathematics and Computation Theory

52

a substring of and . The filtration
step is first to divide

T kPSED ≤),(
P into)1(+k

non-overlapping and approximately equal length of
pieces. Then, for each window),1(imiTW +−= ,
check whether any of the pieces appears in W
exactly. If none of the pieces appears in , ignore
this window W ; otherwise, check it by using a
non-filtration algorithm. This idea was used in many
algorithms [1, 2, 11, 14, 15 and 23].

W

Another algorithm [3] finds the maximal substring
of P on starting from some locations. A
maximal substring jii is a substring of

T
tttS ...1+=

P while 11 jjiit is not. It works as follows:
traverse the text from the beginning and consider the
text as the form where i is a
maximal substring and is a character. For each

, if the size of 1111 is less
than , it can be proved that there is no solution
starting from the positions inside ii , and we then
can skip . Otherwise, we check the region

1111 . Note that is the
minimum length of a possible solution. This
algorithm is a linear expected time algorithm,
denoted LET. In [3, 4], the authors also gave an
algorithm, called SET, which runs in sublinear
expected time. SET is similar to LET except that the
text is split into blocks with equal length

... ++ ttt

...2211 ySyST = S
iy

i ... ++++++ kikiiiii ySySyS
km −

yS
ii yS

... ++++++ kikiiiii ySySyS km −

2)(km − .
It is obvious that any answer must contain at least
one block. SET processes the text starting from the
beginning of each block and finds maximal
substring, 11 , in each. If the ending
position, denoted

1+k
2211 ... ++ kk ySySyS
x , is inside this block, then there

is no answer containing this block and we can skip
this block; otherwise, check the substring of
starting from

T
2)3(km + characters to the left of

the block and ending at x .

(2) Bad W-suffix

Consider a window W of length in T .
We call W-suffix to be a suffix of the string . If
the distances between a W-suffix and every substring
of

km −
W

P are larger than , we call this W-suffix to be
a Bad W-suffix. For example, if

k
acaacP = ,

, and , there is a Bad W-suffix,
, whose edit distances with every substring of

aggaW = 1=k
'' gga

P are larger than . It is not possible that an
answer contains a Bad W-suffix. Thus, if there exists
a Bad W-suffix in , we than can safely shift the
window to the right and not to contain the whole Bad
W-suffix. More precisely, for a window

, if there is a Bad W-suffix
, we can prove that there is no answer

starting from the positions in the region to ,
and we can safely shift the window to the position

. This is due to the fact that any solution that
starts inside the region i to must contain the
Bad W-suffix because the length of a solution is at

least and the size of W is . For
example, if

1=k

W

),1(ikmiTW ++−=
),(ijT=

i j

1+j
j

km − km −
acaacP = , , and

, we can find that is a Bad W-suffix, and
then we can shift the window to the position 3.
Thus the next window is .

aggaT ,1(W ==)4
1=k '' gga

)6,3(TW =
The algorithms using this rule first try to find

whether there exists a Bad W-suffix in the window
),1(ikmiTW ++−= . If there exists, we prefer to

use the shortest one and shift the window without
any checking. Note that the smallest Bad W-suffix
can make us have a largest shift. Otherwise, we
check the substring),1(ikmiT +−− against P
by applying a non-filtration algorithm.

To find the Bad W-suffix in a window, there are
several algorithms. The algorithm in [16] constructs a
nondeterministic suffix automaton which recognizes
every reverse prefix of P allowing at most
errors. Using this automaton, we read the characters
of from the right to the left, and it will stop
reading if no pattern substring matches what was
read with at most errors. That is, it stops when
we find a Bad W-suffix. Naturally, this Bad W-suffix
is the shortest one.

k

W

k

Another filtration algorithm is proposed by [19].
This algorithm also considers the window with
length . For each window, it examines each
character of window from the right to the left to see
if the character appears in its corresponding
characters in

km −

P . The corresponding characters are
defined as follows. For a window ,
the corresponding characters of i are ki ,

1+−ki , .., and ki . If a character of does not
appear in its corresponding characters, this character
must be an error and we call it a bad character.
Thus, this algorithm examines each character of
from the right to the left and stops when it finds

 bad characters. If it finds bad
characters, this means that we have found a Bad
W-suffix.

kmwwwW −= ...21
w p −

p p + W

W

1+k 1+k

Before introducing another algorithm in [6] used
to find Bad W-suffix, we define the l-gram first. An
l-gram is a string with length l. This algorithm first
constructs a table : recording, for every
possible l-gram, the edit distance of l-gram with its
most similar substring of

D Ν→Σ l

P . For each , we read
the non-overlapping l-grams of from the right to
the left and sum up their total value in . If the
total value exceeds , it stops and this means that
we find a Bad W-suffix. Note that this Bad W-suffix
may not be the shortest one.

W
W

D
k

(3) Counting q-gram

This rule only concerns the contents of the two
strings and ignores the order of the contents. For
example, abaaabx = and . We know
the there are four ’s and two ’s in

bbaaby =
''a ''b x and two

’s and three ’s in . The difference between ''a ''b y

The 29th Workshop on Combinatorial Mathematics and Computation Theory

53

the number of in ''a x and that in is 2 and 1
for . Thus, we must pay at least two edit
operations to make the numbers of and in

y
''b

''a ''b
x and to be equal. For example, delete one
in

y ''a
x and substitute one in ''a x by . In the

following, we define q-gram which illustrates, in
some way, the contents of a string. Let be a finite
alphabet and be the set of all strings of length

 over . Let ||21 be a string over the
.

''b

Σ
qΣ

q Σ ... xxxxx =
Σ v is a q-gram of x if 1 and 1... −++= qiii xxxv

xqi ≤−+)1(for some . Let denote
the total number of the occurrences of

i])[(vxG
v in x .

Then, the q-gram distance [21] between two strings
x and is defined as follows. y

∑
Σ∈

−=
qv

q vyGvxGyxD])[(])[(),(.

For example, let and be
strings over the alphabet

abaaabx = bbaaby =
{ }ba, . Then, 4])[(=axG ,

, , and 2])[(=ayG 2])[(=bxG 3])[(=byG . The
1-gram distance between x and is

. In this example,
there are five and four 2-grams in

y
312|32||24|),(1 =+=−+−=yxD

x and
respectively. We have ,

y
2])[(=aaxG 2])[(=abxG ,

, , 1])[(=baxG 1])[(=aayG 1])[(=abyG ,
, and . The 2-gram

distance between
1])[(=bayG 1])[(=bbyG

x and is y =),(2 yxD
|10||11||12||12| −+−+−+− 31011 =+++= .

Let , for some . The
relationship between q-gram distance and
edit distance is given in [21] as follows.

)...,()(ijqi ttPDjd = 0>q
)(jdi

ide

Theorem 1 [21] For ni ≤≤1 ,
. ii qdemid 2)1(≤+−

This shows that q-gram distance is a lower bound

of and can be used as a filter. If
 for some , then we have

, and we can ignore the position . [21] also
gives an efficient algorithm to compute

iqde2
kqmidi >+−)2/()1(i

kdei > i
)1(+− midi

for all in linear time. It marks all such that
 and then evaluates ide only

for those marked ’s. The k differences problem can
be solved in time O(min()), where

i i
kqmidi ≤+−)2/()1(

i
knrkn ,2+ r is

the number of indexes such that
.

i
kqmidi ≤+−)2/()1(

For example, if abcdP = , aabaT =)6,3(,
 and . We first find that

. We have
1=q 1=k

4)...,()3(6316 == ttPDd =⋅)12()3(6d
. Then we know that must be larger than

2 and skip this position.
k>2 6de

However, consider if abcdefP = and a window
 of T . Let and ceafbdT =)13,8(1=q 1=k . We

have 113 , and 0)... 138

Another disadvantage of algorithm [21] is that if
 is set too large, the value of

would be small and cause that many positions are
needed to check. For example, if ,

q)2/()1(qmidi +−

abcdP =
aabaT =)6,3(, 2=q and . We have 1=k

3)...,()3(6326 == ttPDd and =⋅)22()3(6d
k<43 .

This idea also is used in [12]
In the next section, we give our filtration

mechanism which combines the Partial Exact
Matching Rule and the Counting q-gram Rule. Our
filtration uses a special property, called the locality
property which is used implicitly in [19].

2 Our Algorithm: A New Distance
Function for Filtration Based upon the
Locality Property

Our algorithm is based upon the following ideas:

1. We partition P into non-overlapping
pieces

)1(+k
0P , 1P , …, and kP . That is, for a pattern

mpppP ...21= , l for jjljl
j pppP)1(21 +++= K

kj <≤0 , and mklkl , where k pppP ...21 ++=
⎣ ⎦)1(+= kml . Let us assume that there is a

substring of T whose edit distance from S P is
k≤ . Then there must be at least one piece of P

exactly appearing in . This is the Partial Exact
Matching rule which was introduced in Section 1. In
other words, for a window with appropriate size,
if no

S

W
iP appears exactly in , we may ignore this

window.
W

2. To decide whether there exists one piece of P
in , we shall use a special q-gram checking
function which will be defined below. When we
apply this function, we shall utilize a special property,
called the Location Property.

W

Q-gram Checking Function: The q-gram checking
function between two strings),(BADLq A and

 is defined as follows. B

∑
Σ∈

−=
qv

q vBGvAGBADL)0],)[(])[(max(),(.

The value of is equal to the number
of q-grams of

),(BADLq
A which are not in . For the

case when the string
B

A appears in the string , it
is obvious that

B
])[(])[(vBGvAG ≤ for all ,

and we have

qv Σ∈
0),(=BADLq . It can be easily proved

that if 0),(≠BADLq , the string A does not
appear in . Thus we have the following lemma. B

Lemma 1 If String A exactly appears in string B,
0),(=BADLq .

,()8(== ttPDd =⋅)12()8(13d
. Using the algorithm [21], we need to check

the position 8. But in this case, if we consider the
order of characters, it is quite obvious that the
would be very large.

k<0

13de

The above lemma means that we can use this
checking function to determine whether string A

The 29th Workshop on Combinatorial Mathematics and Computation Theory

54

xP

xW
kk

0P
k k

0W

Fig. 1. The pieces of P and their corresponding

substrings in a window . W

exactly appears in string B of not. We merely
compute and check whether it is equal
to 0 or not. For example, if and

, there is a 2-gram of

),(BADLq
aaccgA =

aagacgcgB = A , , which
is not in . We have , and we
can conclude that

''cc
B 01),(2 ≠=BADL

A does not appear in . B
In our filtration step, we partition P into

pieces
1+k

0P , 1P , …, and kP . We determine whether
any iP exactly appears in a window

),1(...21 ikmiTwwwW km +−−== + , we do not
apply the above checking function directly. We
shall utilize a special property which can be
explained by considering Fig. 1.

As shown in Fig. 1, if iP appears exactly in ,
it does not appear in some arbitrary location.
Instead, it must appear in the corresponding segment

 of . For example, if and
, and we have . We

partition

W

iW W abaccbP =
aaaacbS = 2),(=SPED

P into three substrings, namely ,
 and . It should be obvious that

must appear at the beginning, in the middle
and in the end of . That is, we may produce

 segments from W into and we only have to
check whether

''ab
''ac ''cb ''ab

''ac
''cb S

1+k
iP appears exactly in its

corresponding segment in or not. The
 segments , , …, and of W

are defined as follows.
12 for , and

kmlklk , where

iW W
)1(+k 0W 1W kW

)1(21 +++++= kljjljl
j wwwW K kj <≤0
k wwwW ++⋅+⋅= ...21 ⎣ ⎦1()+= kml .

For example, if the window ,
, and , we have

aactgtccaaW =
8=m 2=k ⎣ ⎦ 2)12(8 =+=l , and

, , and . aactgtW =0 ctgtccW =1 gtccaaW =2

Lemma 2 For a window),1(ikmiTW +−−= , if
no jP appears in , then no substring in W
has edit distance with respect to

jW
P less than or

equal to . k

Proof: We prove by contradiction. Suppose that no
piece of P appears in its corresponding segment

 and . Let be the substring of W
such that . Based on [23], we know
that at least one piece of

jW kdei ≤ S
kSPED ≤),(

P appears in . If
some piece

S
jP appears exactly in and not in its

corresponding segment, then a part of it appears
outside of and we must need

S

jW)1(+k
insertions or deletions to transform into S P .
Thus, . Therefore, there is no
existing such that , and .

kSPED >),(S
kSPED ≤),(kdei >

We shall call the above lemma the Bad Piece Rule
for filtration of approximate string matching.

Theorem 2 If kdei ≤ for some and i

),1(ikmiTW +−−= , then there is at least one
piece xP of P such that . 0),(=xx

q WPDL

Proof: We prove by contradiction. Suppose for every
piece xP of P , . Then no piece 0),(≠xx

q WPDL
xP appears in its corresponding string . By

Lemma 2, we have is larger than .

xW
ide k

Theorem 2 also implies the following theorem:

Theorem 3: If for some , i),1(ikmiTW +−−= ,
and there is no one piece xP of P such that

, then . 0),(=xx
q WPDL kdei >

To use the Theorem 3 as a filtration, we need to

compute the distance functions for),(jj
q WPDL

kj <≤0 . Let 1=q and . For example,
if

1=k
abcdefP = and a window

fceafbdTW ==)15,8(of . We divide T P
into 3)1(=+k parts, , , and

. And the corresponding parts of
 are , , and .

We have ,
, and , and

by Theorem 3, we can conclude that . This
means that there is no substring of T ending at
position 15 whose edit distance with respect to

abP =0 cdP =1

efP =2)1(+k
W fceaW =0 eafbW =1 fbdW =2

01),(00
1 >=WPDL

02),(11
1 >=WPDL 01),(22

1 >=WPDL
kde >15

P is
less than or equal to and we can therefore skip
this position.

k

We shall show that each can be
updated efficiently when the window is shifted one
step to the next window. For each , construct
an array to store the number of

-grams in for and an array
 for kmk

),(jj
q WPDL

jW
]:0)[(qjGW α

q jW kj ≤≤0
]:0[qGW α km wwwW +++= ...21 . For the first

window),1(kmTW += , we compute the
, ’s, and

’s directly. After the computation
concerning with the first window is done, we shift
the window one step to the right and update the
values of them. In a new window, for each or

m , there are only two q-grams changed, one old
q-gram and one new q-gram as shown in
Fig. 2.

]:0[qGW α]:0)[(qjGW α),(mq WPD
),(jj

q WPDL

xW
W

1Q 2Q

To update the values of and
’s, we use the following formulas.

Let be the number of q-grams in

),(mq WPD
),(jj

q WPDL
]:0)[(qjGP α jP

for kj <≤0 and for]:0[qGP α P which can
be computed in preprocessing.

The 29th Workshop on Combinatorial Mathematics and Computation Theory

55

xW

Figure 2. The two q-grams needed to update

when shift the window one step.

(1)

⎪
⎪

⎩

⎪
⎪

⎨

⎧

−=

>
+=

>=

.1),(),(

],)[(])[(
.1),(),(

],)[(])[(

22

11

jj
q

jj
q

jj
q

jj
q

WPDLWPDL

QjGWQjGPif
WPDLWPDL

QjGWQjGPif

(2)

⎪
⎪
⎩

⎪
⎪
⎨

⎧

+=

−=
<

.1),(),(
,

.1),(),(
],[][11

mqmq

mqmq

WPDWPD
otherwise

WPDWPD
QGWQGPif

(3)

⎪
⎪
⎩

⎪
⎪
⎨

⎧

+=

−=
>

.1),(),(
,

.1),(),(
],[][22

mqmq

mqmq

WPDWPD
otherwise

WPDWPD
QGWQGPif

After updating the values of and

’s, we also need to update the profiles

of ’s and by decreasing one count
of 1 and increasing one count of in each

’s and .

),(mq WPD
),(jj

q WPDL

)(jGW)(mGW
Q 2Q

jW m
There is another point which we must pay

attention to. Suppose that our filtration process
decides that position needs to be checked. We do
not immediately perform a dynamic programming
procedure to the substring of T starting from

W

i

1+−− kmi and ending at . Instead, we look at
Position

i
1+i . If Position also needs to be

checked, we can easily see that it will be more
efficient to apply the dynamic programming
procedure to the substring starting from

1+i

1+−− kmi
and ending at 1+i . We use an array
to record the positions which can be filtered and
those which has to be checked. If position is
needed to check, set ; otherwise,

]:1[nMark

i
1][=iMark

0][=iMark . Initially, set , and 1]1[=−+ kmMark
0][=iMark for . nikm ≤≤+

In the following, we present our algorithm to solve
the k differences problem.

Our Algorithm
Input: A text , a pattern T P , an error bound , and . k q
Output: All the positions such that i kdei ≤ .

1. Preprocess (P , , ,) k]:0)[0(qkGP ΣK]:0[qGP Σ
2. ,),1(kmTW +← ⎣ ⎦)1(+← kml
3. For 10 −∈ kj K Do
4. ComputeProfiles(,) 12)1(21 +++++ kljjljl www K]:0)[(qjGW Σ
5. ComputeProfiles(,) kmklkl www ++ ...1]:0)[(qkGW Σ
6. ComputeProfiles(,) kmkk www +++ ...21]:0[qGW Σ
7. , 1]1[←−+ kmMark 0][←+ kmMark
8. ComputeDq(,) ←qD]:0[qGP Σ]:0[qGW Σ
9. For Do kj K0∈
10. ComputeDL←)(jDLq q(,)]:0)[(qjGP Σ]:0)[(qjGW Σ
11. If 0)(≠jDLq , 1][←+ kmMark
12. If , qDq 2/ k> 0][←+ kmMark
13. For Do nkmi K1++∈
14.),1(ikmiTW +−−←
15. Update(, , , ,
 , , ,)

]:0)[0(qkGP ΣK]:0[qGP Σ]:0)[0(qkGW ΣK]:0[qGW Σ
)0(kDLq K qD W kmit −−

16. 0][←iMark
17. For Do kj K0∈
18. If , 0)(≠jDLq 1][←iMark
19. If , qDq 2/ k> 0][←iMark
20. CheckPhase(P , ,) T]1[nMark K

Preprocess (P , , ,) k]:0)[0(qkGP ΣK]:0[qGP Σ
1. ⎣ ⎦)1(+← kml
2. For 10 −∈ kj K Do
3. ComputeProfiles(,) ljjljl ppp)1(21 +++ K]:0)[(qjGP Σ

The 29th Workshop on Combinatorial Mathematics and Computation Theory

56

4. ComputeProfiles(,) mklkl ppp ...21 ++]:0)[(qkGP Σ
5. ComputeProfiles(P ,)]:0[qGP Σ

ComputeProfiles(,) S]:0[qG Σ
1. For qi Σ∈ K0 Do
2. 0][←iG
3. For 11 +−∈ qSi K Do
4. 1))]1,(([))]1,(([+−+←−+ qiiSqgramValueGqiiSqgramValueG

qgramValue() S
1. For every character , if it is th largest in lexicographic order, encode it by ,

.
Σ∈a j j

jaEn =)(
2. 0←value
3. For Si K1∈ Do
4.)(isEnvaluevalue +Σ⋅←
5. Return value

ComputeDLq(,)]:0[1
qG Σ]:0[2

qG Σ
1. 0←qDL
2. For qi Σ∈ K0 Do
3. If , 0][][21 >− iGiG])[][(21 iGiGDLDL qq −+←
4. Return qDL

Update(, , , , , , ,]:0)[0(qkGP ΣK]:0[qGP Σ]:0)[0(qkGW ΣK]:0[qGW Σ)0(kDLq K qD W x)
1. and)...(1211 −← qwwwxqgramvalueVQ o)...(1222222 +++−← kkqk wwwqgramvalueVQ
2. For 10 −∈ kj K Do
3. If ,])[(])[(11 VQjGWVQjGP ≥ 1)()(+← jDLjDL qq .
4. If ,])[(])[(22 VQjGWVQjGP > 1)()(−← jDLjDL qq .
5. 1])[(])[(11 −← VQjGWVQjGW , 1])[(])[(22 +← VQjGWVQjGW
6. ,)...(1211 −+++← qjljljl wwwqgramvalueVQ)...(12)1(22)1(2 ++++−++← kljqklj wwqgramvalueVQ
7. ,)...(111 −++← qklklkl wwwqgramvalueVQ)...(12 kmqkm wwqgramvalueVQ ++−+←
8. If ,])[(])[(11 VQkGWVQkGP ≥ 1)()(+← kDLkDL qq .
9. If ,])[(])[(22 VQkGWVQkGP > 1)()(−← kDLkDL qq .
10. ,)...(1211 −+++← qkkk wwwqgramvalueVQ)...(12 kmqkm wwqgramvalueVQ ++−+←
11. If ,][][11 VQGWVQGP < 1−← qq DD ; otherwise, 1+← qq DD .
12. If ,][][22 VQGWVQGP > 1−← qq DD ; otherwise, 1+← qq DD .
13. , 1][][11 −← VQGWVQGW 1][][22 +← VQGWVQGW

CheckPhase(P , ,) T]1[nMark K
1. For Do nkmi K1−+∈
2. If , then 1][=iMark
3. For Do ikmij K1+−−∈
4. 1][←jMark
5. Apply [9] Algorithm on those substrings in where),(jiT T 1]...[=jiMark

3 Experiments

In our experiments, we tested our algorithm

and compared with other filtration algorithms.
The algorithms are:

CL90_LET: The linear expected time

algorithm in [3].
CL90_SET: The sublinear expected time

algorithm in [3].
CM94: Chang and Marr algorithm [5].
FN04: Fredriksson and Navarro algorithm [6].
NR00: Navarro and Raffinot algorithm [16].
WM92: Wu and Manber algorithm [23].
U92: Ukkonen algorithm [21].

We implemented these algorithms using C and

compared the efficiency on the percentage of

The 29th Workshop on Combinatorial Mathematics and Computation Theory

57

positions which can be filtered.
We also tested our algorithm combining NR00.

That is, we do not check the positions which
pass our filtration algorithm immediately.
Instead, we apply another filtration algorithm,
NR00, so that we may filter more positions
which are not possible answers.

In this experiment, we generated P with
size and with size

 randomly by using an alphabet
. We tested the performance on

different error bounds , . Many
algorithms [5, 6, 21] have a parameter and
different q-grams will have different efficiencies.
We only show the best performance of some
for each algorithm,

{ }50 20, 10,=m T
10M=n

},,,{ tgca=Σ
k 10 1 ≤≤ k

q

q
51 ≤≤ q . Each result is the

average of 10 experiments with different
and one . The results are shown in Table 1-3.

s'P
T

Table 1. The percentage of positions needed to

check for m=10
k 1 2 3

CL90_LET 48.71 98.97 100

CL90_SET 99.11 100 100

CM94 100 100 100

FN04 0.87 33.02 97.76

NR00 0.98 43.5 99.89

WM92 2.32 47.95 98.47

U92 1.48 49.43 93.51

Our 0.47 30.29 91.94

Our+NR00 0.23 18.08 90.76

Table 2. The percentage of positions needed to
check for m=20

k 1 2 3 4 5

CL90_LET 0.02 2.68 52.38 98.36 100

CL90_SET 9.6 88.87 100 100 100

CM94 8.86 70.27 100 100 100

FN04 0 0 0.89 26.42 91.62

NR00 0 0 0.1 4.7 59.03

WM92 0 1.74 9.66 42.23 94.09

U92 0 0.03 5.46 54.54 95.86

Our 0 0.01 2.02 32.25 90.74

Our+NR00 0 0 0.05 2.87 49.03

Table 3. The percentage of position needed to
check for m=50

k 1 2 3 4 5

CL90_LET 0 0 0 0 0

CL90_SET 0 0 0.16 8.94 84.79

CM94 0 0.02 0.38 4.42 82.93

FN04 0 0 0 0 0

NR00 0 0 0 0 0

WM92 0 0 0 0.03 0.55

U92_Qgram 0 0 0 0 0

Our 0 0 0 0 0

Our+NR00 0 0 0 0 0

k 6 7 8 9 10

CL90_LET 0.02 1.32 23.64 80.09 98.89

CL90_SET 99.7 100 100 100 100

CM94 98.76 99.99 100 100 100

FN04 0 0 0.01 0.45 11.59

NR00 0 0 0 0 0

WM92 2.61 11.8 44.07 48.57 94.76

U92_Qgram 0 0.21 6.22 42.72 91.55

Our 0 0.09 3.29 24.65 83.98

Our+NR00 0 0 0 0 0

4 Concluding Remarks and Future
Research

We have proposed a method to eliminate
candidates in a text string for approximate string
matching. We plan to work on the average case
time complexity analysis of our algorithm in the
future. We also plan to extend our idea to tackle
the exact string matching problem.

References

[1] Baeza-Yates, R. and Navarro, G. 1999.

Faster approximate string matching.
Algorithmica 23, 2, 127–158. Preliminary
versions in Proceedings of CPM ’96 (LNCS,
vol. 1075, 1996) and in Proceedings of
WSP’96, Carleton Univ. Press, 1996.

[2] Baeza-Yates, R. and Perleberg, C. 1996.
Fast and practical approximate pattern
matching. Information Processing Letters 59,
21–27.

[3] Chang, W. I. and Lawler, E. L.,
Approximate String Matching in Sublinear
Expected Time, in: Proceedings of the

The 29th Workshop on Combinatorial Mathematics and Computation Theory

58

ACM-SIAM 31st Annual Symposium on
Foundations of Computer Science, 1990, pp.
116-124.

[4] Chang, W. and Lawler, E. 1994. Sublinear
approximate string matching and biological
applications. Algorithmica 12, 4/5, 327–344.
Preliminary version in FOCS ’90.

[5] W. Chang, T. Marr, Approximate string
matching and local similarity, in:
Proceedings of the 5th Annual Symposium
on Combinatorial Pattern Matching, in:
LNCS, vol. 807, Springer-Verlag, 1994, pp.
259–273.

[6] Fredriksson, K., Navarro, G.,
Average-Optimal Multiple Approximate
String Matching, ACM Journal of
Experimental Algorithmics, Vol. 9, No. 1.4,
2004, pp.1-47.

[7] Giegerich, R., Kurtz, S., Hischke, F., and
Ohlebusch, E. 1997. A general technique to
improve filter algorithms for approximate
string matching. In Proceedings of the 4th
South American Workshop on String
Processing (WSP ’97). Carleton Univ. Press.
38–52. Preliminary version as Tech. Rep.
96-01, Universit¨at Bielefeld, Germany,
1996.

[8] Hyyrö, H. and Navarro, G., Bit-parallel
Witnesses and their Applications to
Approximate String Matching, Algorithmica,
Vol. 41, No. 3, 2005, pp.203-231.

[9] Landau, G. and Vishkin, U., Fast Parallel
and Serial Approximate String Matching,
Journal of Algorithms, Vol. 10, 1989,
pp.157-169.

[10] Myers, G., A fast bit-vector algorithm for
approximate pattern matching based on
dynamic programming, In Proc. CPM’98,
LNCS, Vol. 1448, 1998, pp.1-13.

[11] Navarro, G. and Baeza-Yates, R. 1998a.
Improving an algorithm for approximate
pattern matching. Tech. Rep. TR/DCC-98-5,
Dept. of Computer Science, Univ. of Chile.
Algorithmica, to appear.
ftp://ftp.dcc.uchile.cl/pub/users/gnavarro/de
xp.ps.gz.

[12] Navarro, G. 1997a. Multiple approximate

string matching by counting. In Proceedings
of the 4th South American Workshop on
String Processing (WSP ’97). Carleton Univ.
Press, 125–139.

[13] Navarro, G., A Guided Tour to Approximate
String Matching, ACM Computing Surveys,
Vol. 33, 2001, pp.31-88.

[14] Navarro, G. and Baeza-Yates, R., Very fast
and simple approximate string matching,
Information Processing Letters, Vol. 72,
1999, pp.65-70.

[15] Navarro, G. and Baeza-Yates, R., A Hybrid
Indexing Method for Approximate String
Matching, Journal of Discrete Algorithms,
Vol.1, No.1, 2000, pp.205-239.

[16] Navarro, G. and Raffinot, M. 2000. Fast and
flexible string matching by combining
bit-parallelism and suffix automata. ACM J.
Exp. Algor. 5, 4. Previous version in
Proceedings of CPM ’98. Lecture Notes in
Computer Science, Springer-Verlag, New
York.

[17] Needleman, S. B. and Wunsch, C. D., A
general method applicable to the search for
similarities in the aminoacid sequence of
two proteins, Journal of Molecular Biology,
Vol. 48, 1970, pp.443-453.

[18] Sellers, P. H., String Matching with Errors,
Journal of Algorithms, Vol. 20, No. 1, 1980,
pp.359-373.

[19] Tarhio, J. and Ukkonen, E., Approximate
Boyer-Moore String Matching, SIAM
Journal on Computing, Vol. 22, No. 2, 1993,
pp.243-260.

[20] Ukkonen, E., Finding approximate patterns
in strings, J. of Algorithms, Vol. 6, 1985,
pp.132-137.

[21] Ukkonen, E., Approximate string matching
with q-grams and maximal matches,
Theoretical Computer Science, Vol. 92,
1992, pp.191-211.

[22] Wagner, R.A. and Fisher, M.J., The
string-to-string correction problem, J. ACM,
Vol. 21, 1974, pp. 168-173.

[23] Wu, S. and Manber, U., Fast Text Searching:
Allowing Errors, Communications of the
ACM, Vol. 35, 1992, pp.83-91.

The 29th Workshop on Combinatorial Mathematics and Computation Theory

59

