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Abstract 
 

In this paper, we consider the approximate string 
matching problem. We give a method to eliminate 
candidate locations in text T  as there can be no 
substring  ending at those locations such that the 
edit distance between  and pattern 

S
S P  is smaller 

than or equal to a specified error bound .  Our 
method is simple to implement.  Experimental 
results show that our method is effective.  For 
instance, for a DNA type data, when the text is 10M 
characters long, patterns are 10 characters long and 

, in average, 99% of locations are eliminated 
by our method. We have also performed comparisons 
with other algorithms, and the results showed that 
our algorithm can eliminate more parts than most of 
the others.  

k

1=k

 
 

1  Introduction 
 
For the approximate string matching problem, we 

first define the edit distance [17] which measures the 
similarity between two strings. The edit distance 
between two strings A  and , denoted , 
is the minimum number of insertion, deletion or 
substitution operations needed to transform  into 

B ) ,( BAED

B
A . Edit distance can be computed by using dynamic 

programming method [22]. In this paper, we are 
interested in the approximate string matching 
problem defined as follows: Given a text string 

n , a pattern string  and a 
error bound , let 

tttT ...21= mpppP ...21=
k =ide  ; 

the problem is to find all  such that 
)...,(min1 ijij ttPED≤≤

i kdei ≤ . The 
problem is also known as the  differences problem 
[13].   

k

In general, there are two approaches to solve our 
problem. The first approach, called non-Filtration 
Approach, is to check every position of  based 
upon the dynamic programming method. The first 
algorithm [18] based on non-Filtration Approach has 
a running time of O(mn). Some improved the 
time-complexity by using the properties of the 
dynamic programming matrix [9, 20] and reduced the 
running time to O(kn). Some use bit-parallelism in a 
computer word to reduce the number of operations 
which can solve our problem in 

T

⎡ ⎤)O( wmnk  

time-complexity [8, 10, 23].   
Another approach, named Filtration Approach, 

uses an efficient filtration algorithm to eliminate 
uninteresting parts of the text , and then checks 
for possible solutions at the locations which are not 
eliminated by using a non-filtration algorithm. The 
basic idea of the filtration approach can be 
generalized into two steps as follows. 

T

Step 1: Consider a window of  ending at i . 
Compute a filtration function 

T t
F .  For some , if 

the computation of 
i

F  indicates that , 
ignore the position ; else, mark . 

kdei >
i i

Step 2: For each i  which is marked in Step 1, 
compute i  and check if  by using a 
non-filtration algorithm. 

de kdei ≤

In general, computing i  is much slower than de
F . The key of filtration approach is the filtration 
function. We measure the effectiveness of the 
filtration function F  by counting the number of 
positions which can be eliminated.  Recent research 
[7, 13] shows that k differences problem can be 
efficiently solved by Filtration Approach algorithms 
if many locations can be eliminated. Therefore, it is 
meaningful to investigate the Filtration Approach 
because it will make the algorithms very efficient in 
average case time-complexity. We refer the readers to 
Section 8 in [13] for more details about the filtration 
algorithms. In this paper, we shall give an efficient 
method to filter out many locations. In the following, 
we categorize the existing Filtration algorithms into 
three different types. 

 
(1) The Partial Exact Matching 
 

The idea is to search some partial part of P  with 
no mismatch instead of to search P  approximately.  
Suppose we have a pattern P  and we want to find a 
substring  in  such that . For 

 reasonably small, there must exist a substring in 
S T kPSED ≤),(

k
P  which exactly appears in . This approach 
therefore does an exact string matching first. 
Different algorithms select different substrings in 

S

P  
to do the exact string matching, as shown below.  

There are many algorithms using this idea.  Some 
algorithms use the fact that by dividing P  into 

)1( +k  non-overlapping pieces, then at least one of 
the pieces must appear in the string , where  is S S
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a substring of  and . The filtration 
step is first to divide 

T kPSED ≤),(
P  into )1( +k  

non-overlapping and approximately equal length of 
pieces. Then, for each window ),1( imiTW +−= , 
check whether any of the pieces appears in W  
exactly. If none of the pieces appears in , ignore 
this window W ; otherwise, check it by using a 
non-filtration algorithm. This idea was used in many 
algorithms [1, 2, 11, 14, 15 and 23].   

W

Another algorithm [3] finds the maximal substring 
of P  on  starting from some locations. A 
maximal substring jii  is a substring of 

T
tttS ...1+=

P  while 11 jjiit  is not. It works as follows: 
traverse the text from the beginning and consider the 
text as the form  where i  is a 
maximal substring and  is a character. For each 

, if the size of 1111  is less 
than , it can be proved that there is no solution 
starting from the positions inside ii , and we then 
can skip . Otherwise, we check the region 

1111 . Note that  is the 
minimum length of a possible solution. This 
algorithm is a linear expected time algorithm, 
denoted LET.  In [3, 4], the authors also gave an 
algorithm, called SET, which runs in sublinear 
expected time. SET is similar to LET except that the 
text is split into blocks with equal length 

... ++ ttt

...2211 ySyST = S
iy

i ... ++++++ kikiiiii ySySyS
km −

yS
ii yS

... ++++++ kikiiiii ySySyS km −

2)( km − . 
It is obvious that any answer must contain at least 
one block. SET processes the text starting from the 
beginning of each block and finds  maximal 
substring, 11 , in each. If the ending 
position, denoted 

1+k
2211 ... ++ kk ySySyS
x , is inside this block, then there 

is no answer containing this block and we can skip 
this block; otherwise, check the substring of  
starting from 

T
2)3( km +  characters to the left of 

the block and ending at x . 
 

(2) Bad W-suffix 
 

Consider a window W  of length  in T .  
We call W-suffix to be a suffix of the string . If 
the distances between a W-suffix and every substring 
of 

km −
W

P  are larger than , we call this W-suffix to be 
a Bad W-suffix. For example, if 

k
acaacP = , 

, and , there is a Bad W-suffix, 
, whose edit distances with every substring of 

aggaW = 1=k
'' gga

P  are larger than . It is not possible that an 
answer contains a Bad W-suffix. Thus, if there exists 
a Bad W-suffix in , we than can safely shift the 
window to the right and not to contain the whole Bad 
W-suffix. More precisely, for a window 

, if there is a Bad W-suffix 
, we can prove that there is no answer 

starting from the positions in the region  to , 
and we can safely shift the window to the position 

. This is due to the fact that any solution that 
starts inside the region i  to  must contain the 
Bad W-suffix because the length of a solution is at 

least  and the size of W  is . For 
example, if 

1=k

W

),1( ikmiTW ++−=
),( ijT=

i j

1+j
j

km − km −
acaacP = , , and 

, we can find that  is a Bad W-suffix, and 
then we can shift the window to the position 3.  
Thus the next window is . 

aggaT ,1(W == )4
1=k '' gga

)6,3(TW =
The algorithms using this rule first try to find 

whether there exists a Bad W-suffix in the window 
),1( ikmiTW ++−= . If there exists, we prefer to 

use the shortest one and shift the window without 
any checking. Note that the smallest Bad W-suffix 
can make us have a largest shift. Otherwise, we 
check the substring ),1( ikmiT +−−  against P  
by applying a non-filtration algorithm. 

To find the Bad W-suffix in a window, there are 
several algorithms. The algorithm in [16] constructs a 
nondeterministic suffix automaton which recognizes 
every reverse prefix of P  allowing at most  
errors. Using this automaton, we read the characters 
of  from the right to the left, and it will stop 
reading if no pattern substring matches what was 
read with at most  errors. That is, it stops when 
we find a Bad W-suffix. Naturally, this Bad W-suffix 
is the shortest one. 

k

W

k

Another filtration algorithm is proposed by [19].  
This algorithm also considers the window with 
length . For each window, it examines each 
character of window from the right to the left to see 
if the character appears in its corresponding 
characters in 

km −

P . The corresponding characters are 
defined as follows. For a window , 
the corresponding characters of i  are ki , 

1+−ki , .., and ki . If a character of  does not 
appear in its corresponding characters, this character 
must be an error and we call it a bad character.  
Thus, this algorithm examines each character of  
from the right to the left and stops when it finds 

 bad characters. If it finds  bad 
characters, this means that we have found a Bad 
W-suffix. 

kmwwwW −= ...21
w p −

p p + W

W

1+k 1+k

Before introducing another algorithm in [6] used 
to find Bad W-suffix, we define the l-gram first. An 
l-gram is a string with length l. This algorithm first 
constructs a table :  recording, for every 
possible l-gram, the edit distance of l-gram with its 
most similar substring of 

D Ν→Σ l

P . For each , we read 
the non-overlapping l-grams of  from the right to 
the left and sum up their total value in . If the 
total value exceeds , it stops and this means that 
we find a Bad W-suffix. Note that this Bad W-suffix 
may not be the shortest one. 

W
W

D
k

 
(3) Counting q-gram 
 

This rule only concerns the contents of the two 
strings and ignores the order of the contents. For 
example, abaaabx =  and . We know 
the there are four ’s and two ’s in 

bbaaby =
''a ''b x  and two 

’s and three ’s in . The difference between ''a ''b y
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the number of  in ''a x  and that in  is 2 and 1 
for . Thus, we must pay at least two edit 
operations to make the numbers of  and  in 

y
''b

''a ''b
x  and  to be equal. For example, delete one  
in 

y ''a
x  and substitute one  in ''a x  by .  In the 

following, we define q-gram which illustrates, in 
some way, the contents of a string. Let  be a finite 
alphabet and  be the set of all strings of length 

 over . Let ||21  be a string over the 
. 

''b

Σ
qΣ

q Σ ... xxxxx =
Σ v  is a q-gram of x  if 1  and 1... −++= qiii xxxv

xqi ≤−+ )1(  for some . Let  denote 
the total number of the occurrences of 

i ])[( vxG
v  in x . 

Then, the q-gram distance [21] between two strings 
x  and  is defined as follows. y

∑
Σ∈

−=
qv

q vyGvxGyxD ])[(])[(),( . 

For example, let  and  be 
strings over the alphabet 

abaaabx = bbaaby =
{ }ba, . Then, 4])[( =axG , 

, , and 2])[( =ayG 2])[( =bxG 3])[( =byG . The 
1-gram distance between x  and  is 

. In this example, 
there are five and four 2-grams in 

y
312|32||24|),(1 =+=−+−=yxD

x  and  
respectively. We have , 

y
2])[( =aaxG 2])[( =abxG , 

, , 1])[( =baxG 1])[( =aayG 1])[( =abyG , 
, and . The 2-gram 

distance between 
1])[( =bayG 1])[( =bbyG

x  and  is y =),(2 yxD  
|10||11||12||12| −+−+−+− 31011 =+++= . 

Let , for some . The 
relationship between q-gram distance  and 
edit distance  is given in [21] as follows. 

)...,()( ijqi ttPDjd = 0>q
)( jdi

ide
 

Theorem 1 [21]  For ni ≤≤1 , 
. ii qdemid 2)1( ≤+−

 
This shows that q-gram distance is a lower bound 

of  and can be used as a filter. If 
 for some , then we have 

, and we can ignore the position . [21] also 
gives an efficient algorithm to compute 

iqde2
kqmidi >+− )2/()1( i

kdei > i
)1( +− midi  

for all  in linear time. It marks all  such that 
 and then evaluates ide  only 

for those marked ’s. The k differences problem can 
be solved in time O(min( )), where 

i i
kqmidi ≤+− )2/()1(

i
knrkn ,2+ r  is 

the number of indexes  such that 
. 

i
kqmidi ≤+− )2/()1(

For example, if abcdP = , aabaT =)6,3( , 
 and . We first find that 

. We have 
1=q 1=k

4)...,()3( 6316 == ttPDd =⋅ )12()3(6d  
. Then we know that  must be larger than 

2 and skip this position. 
k>2 6de

However, consider if abcdefP =  and a window 
 of T . Let  and ceafbdT =)13,8( 1=q 1=k . We 

have 113 , and 0)... 138

Another disadvantage of algorithm [21] is that if 
 is set too large, the value of  

would be small and cause that many positions are 
needed to check. For example, if , 

q )2/()1( qmidi +−

abcdP =
aabaT =)6,3( , 2=q  and . We have 1=k

3)...,()3( 6326 == ttPDd  and =⋅ )22()3(6d  
k<43 . 

This idea also is used in [12] 
In the next section, we give our filtration 

mechanism which combines the Partial Exact 
Matching Rule and the Counting q-gram Rule. Our 
filtration uses a special property, called the locality 
property which is used implicitly in [19]. 

 
 

2  Our Algorithm: A New Distance 
Function for Filtration Based upon the 
Locality Property 

 
Our algorithm is based upon the following ideas: 

1. We partition P  into  non-overlapping 
pieces 

)1( +k
0P , 1P , …, and kP .  That is, for a pattern 

mpppP ...21= , l  for jjljl
j pppP )1(21 +++= K

kj <≤0 , and mklkl , where k pppP ...21 ++=
⎣ ⎦)1( += kml . Let us assume that there is a 

substring  of T  whose edit distance from S P  is 
k≤ .  Then there must be at least one piece of P  

exactly appearing in . This is the Partial Exact 
Matching rule which was introduced in Section 1. In 
other words, for a window  with appropriate size, 
if no 

S

W
iP  appears exactly in , we may ignore this 

window. 
W

2.  To decide whether there exists one piece of P  
in , we shall use a special q-gram checking 
function which will be defined below. When we 
apply this function, we shall utilize a special property, 
called the Location Property. 

W

 

Q-gram Checking Function: The q-gram checking 
function  between two strings ),( BADLq A  and 

 is defined as follows. B

∑
Σ∈

−=
qv

q vBGvAGBADL )0],)[(])[(max(),( . 

The value of  is equal to the number 
of q-grams of 

),( BADLq
A  which are not in .  For the 

case when the string 
B

A  appears in the string , it 
is obvious that 

B
])[(])[( vBGvAG ≤  for all , 

and we have 

qv Σ∈
0),( =BADLq . It can be easily proved 

that if 0),( ≠BADLq , the string A  does not 
appear in . Thus we have the following lemma. B
 

Lemma 1  If String A exactly appears in string B, 
0),( =BADLq . 

,()8( == ttPDd =⋅ )12()8(13d  
. Using the algorithm [21], we need to check 

the position 8. But in this case, if we consider the 
order of characters, it is quite obvious that the  
would be very large. 

k<0

13de
 

The above lemma means that we can use this 
checking function to determine whether string A  
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xP

xW
kk

0P
k k

0W

 
Fig. 1. The pieces of P  and their corresponding 

substrings in a window . W
 

exactly appears in string B of not. We merely 
compute  and check whether it is equal 
to 0 or not. For example, if  and 

, there is a 2-gram of 

),( BADLq
aaccgA =

aagacgcgB = A , , which 
is not in .  We have , and we 
can conclude that 

''cc
B 01),(2 ≠=BADL

A  does not appear in . B
In our filtration step, we partition P  into  

pieces 
1+k

0P , 1P , …, and kP . We determine whether 
any iP  exactly appears in a window 

),1(...21 ikmiTwwwW km +−−== + , we do not 
apply the above checking function directly.  We 
shall utilize a special property which can be 
explained by considering Fig. 1. 

As shown in Fig. 1, if iP  appears exactly in , 
it does not appear in some arbitrary location.  
Instead, it must appear in the corresponding segment 

 of . For example, if  and 
, and we have . We 

partition 

W

iW W abaccbP =
aaaacbS = 2),( =SPED

P  into three substrings, namely , 
 and .  It should be obvious that  

must appear at the beginning,  in the middle 
and  in the end of . That is, we may produce 

 segments from W  into and we only have to 
check whether 

''ab
''ac ''cb ''ab

''ac
''cb S

1+k
iP  appears exactly in its 

corresponding segment  in  or not.  The 
 segments , , …, and  of W  

are defined as follows.  
12  for , and 

kmlklk , where 

iW W
)1( +k 0W 1W kW

)1(21 +++++= kljjljl
j wwwW K kj <≤0
k wwwW ++⋅+⋅= ...21 ⎣ ⎦1( )+= kml .  

For example, if the window , 
, and , we have 

aactgtccaaW =
8=m 2=k ⎣ ⎦ 2)12(8 =+=l , and 

, , and . aactgtW =0 ctgtccW =1 gtccaaW =2

 

Lemma 2  For a window ),1( ikmiTW +−−= , if 
no jP  appears in , then no substring in W  
has edit distance with respect to 

jW
P  less than or 

equal to .  k
 

Proof: We prove by contradiction.  Suppose that no 
piece of P  appears in its corresponding segment 

 and .  Let  be the substring of W  
such that . Based on [23], we know 
that at least one piece of 

jW kdei ≤ S
kSPED ≤),(

P  appears in .  If 
some piece 

S
jP  appears exactly in  and not in its 

corresponding segment, then a part of it appears 
outside of  and we must need 

S

jW )1( +k  
insertions or deletions to transform  into S P .  
Thus, . Therefore, there is no  
existing such that , and . 

kSPED >),( S
kSPED ≤),( kdei >

We shall call the above lemma the Bad Piece Rule 
for filtration of approximate string matching.  
 
Theorem 2  If kdei ≤  for some  and i

),1( ikmiTW +−−= , then there is at least one 
piece xP  of P  such that . 0),( =xx

q WPDL
 
Proof: We prove by contradiction. Suppose for every 
piece xP  of P , .  Then no piece 0),( ≠xx

q WPDL
xP  appears in its corresponding string .  By 

Lemma 2, we have  is larger than .  

xW
ide k

 
Theorem 2 also implies the following theorem: 

 
Theorem 3: If for some , i ),1( ikmiTW +−−= , 
and there is no one piece xP  of P  such that 

, then .  0),( =xx
q WPDL kdei >

 
To use the Theorem 3 as a filtration, we need to 

compute the distance functions  for ),( jj
q WPDL

kj <≤0 .  Let 1=q  and .  For example, 
if

1=k
abcdefP =  and a window 

fceafbdTW == )15,8(  of .  We divide T P  
into 3)1( =+k  parts, , , and 

. And the corresponding  parts of 
 are , , and . 

We have , 
, and , and 

by Theorem 3, we can conclude that  . This 
means that there is no substring of T  ending at 
position 15 whose edit distance with respect to 

abP =0 cdP =1

efP =2 )1( +k
W fceaW =0 eafbW =1 fbdW =2

01),( 00
1 >=WPDL

02),( 11
1 >=WPDL 01),( 22

1 >=WPDL
kde >15

P  is 
less than or equal to  and we can therefore skip 
this position.  

k

We shall show that each  can be 
updated efficiently when the window is shifted one 
step to the next window.  For each , construct 
an array  to store the number of 

-grams in  for  and an array 
 for kmk

),( jj
q WPDL

jW
]:0)[( qjGW α

q jW kj ≤≤0
]:0[ qGW α km wwwW +++= ...21 . For the first 

window ),1( kmTW += , we compute the 
, ’s,  and 

’s directly. After the computation 
concerning with the first window is done, we shift 
the window one step to the right and update the 
values of them.  In a new window, for each  or 

m , there are only two q-grams changed, one old 
q-gram  and one new q-gram  as shown in 
Fig. 2.  

]:0[ qGW α ]:0)[( qjGW α ),( mq WPD
),( jj

q WPDL

xW
W

1Q 2Q

To update the values of  and 
’s, we use the following formulas.  

Let  be the number of q-grams in 

),( mq WPD
),( jj

q WPDL
]:0)[( qjGP α jP  

for kj <≤0  and  for ]:0[ qGP α P  which can 
be computed in preprocessing. 

 
 
 
 

The 29th Workshop on Combinatorial Mathematics and Computation Theory

55



xW

 
Figure 2.  The two q-grams needed to update 

when shift the window one step. 
 

(1)  

⎪
⎪

⎩

⎪
⎪

⎨

⎧

−=

>
+=

>=

.1),(),(

],)[(])[(
.1),(),(

],)[(])[(

22

11

jj
q

jj
q

jj
q

jj
q

WPDLWPDL

QjGWQjGPif
WPDLWPDL

QjGWQjGPif

(2)  

⎪
⎪
⎩

⎪
⎪
⎨

⎧

+=

−=
<

.1),(),(
,

.1),(),(
],[][ 11

mqmq

mqmq

WPDWPD
otherwise

WPDWPD
QGWQGPif

(3)  

⎪
⎪
⎩

⎪
⎪
⎨

⎧

+=

−=
>

.1),(),(
,

.1),(),(
],[][ 22

mqmq

mqmq

WPDWPD
otherwise

WPDWPD
QGWQGPif

 
After updating the values of  and 

’s, we also need to update the profiles 

of ’s and  by decreasing one count 
of 1  and increasing one count of  in each 

’s and . 

),( mq WPD
),( jj

q WPDL

)( jGW )(mGW
Q 2Q

jW m
There is another point which we must pay 

attention to. Suppose that our filtration process 
decides that position  needs to be checked. We do 
not immediately perform a dynamic programming 
procedure to the substring of T  starting from 

W

i

1+−− kmi  and ending at .  Instead, we look at 
Position 

i
1+i .  If Position  also needs to be 

checked, we can easily see that it will be more 
efficient to apply the dynamic programming 
procedure to the substring starting from 

1+i

1+−− kmi  
and ending at 1+i .  We use an array  
to record the positions which can be filtered and 
those which has to be checked.  If position  is 
needed to check, set ; otherwise, 

]:1[ nMark

i
1][ =iMark

0][ =iMark . Initially, set , and 1]1[ =−+ kmMark
0][ =iMark  for . nikm ≤≤+

In the following, we present our algorithm to solve 
the k differences problem. 

 

 
Our Algorithm 
Input: A text , a pattern T P , an error bound , and . k q
Output: All the positions  such that i kdei ≤ . 

 
1. Preprocess ( P , , , ) k ]:0)[0( qkGP ΣK ]:0[ qGP Σ
2. , ),1( kmTW +← ⎣ ⎦)1( +← kml  
3. For 10 −∈ kj K  Do 
4.  ComputeProfiles( , ) 12)1(21 +++++ kljjljl www K ]:0)[( qjGW Σ
5. ComputeProfiles( , ) kmklkl www ++ ...1 ]:0)[( qkGW Σ
6. ComputeProfiles( , ) kmkk www +++ ...21 ]:0[ qGW Σ
7. , 1]1[ ←−+ kmMark 0][ ←+ kmMark  
8. ComputeDq( , ) ←qD ]:0[ qGP Σ ]:0[ qGW Σ
9. For  Do  kj K0∈
10.  ComputeDL←)( jDLq q( , ) ]:0)[( qjGP Σ ]:0)[( qjGW Σ
11.  If 0)( ≠jDLq , 1][ ←+ kmMark  
12. If ,  qDq 2/ k> 0][ ←+ kmMark
13. For  Do nkmi K1++∈
14.  ),1( ikmiTW +−−←  
15.  Update( , , , , 
 , , , ) 

]:0)[0( qkGP ΣK ]:0[ qGP Σ ]:0)[0( qkGW ΣK ]:0[ qGW Σ
)0( kDLq K qD W kmit −−

16.   0][ ←iMark
17.  For  Do kj K0∈
18.   If , 0)( ≠jDLq 1][ ←iMark  
19.  If ,  qDq 2/ k> 0][ ←iMark
20. CheckPhase( P , , ) T ]1[ nMark K
 

Preprocess ( P , , , ) k ]:0)[0( qkGP ΣK ]:0[ qGP Σ
1. ⎣ ⎦)1( +← kml  
2. For 10 −∈ kj K  Do 
3.  ComputeProfiles( , ) ljjljl ppp )1(21 +++ K ]:0)[( qjGP Σ
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4. ComputeProfiles( , ) mklkl ppp ...21 ++ ]:0)[( qkGP Σ
5. ComputeProfiles( P , ) ]:0[ qGP Σ
 

ComputeProfiles( , ) S ]:0[ qG Σ
1. For qi Σ∈ K0  Do 
2.   0][ ←iG
3. For 11 +−∈ qSi K  Do 
4.  1))]1,(([))]1,(([ +−+←−+ qiiSqgramValueGqiiSqgramValueG  
 

qgramValue( ) S
1. For every character , if it is th largest in lexicographic order, encode it by , 

. 
Σ∈a j j

jaEn =)(
2.   0←value
3. For Si K1∈  Do 
4.  )( isEnvaluevalue +Σ⋅←  
5. Return value  
 

ComputeDLq( , ) ]:0[1
qG Σ ]:0[2

qG Σ
1.  0←qDL
2. For qi Σ∈ K0  Do 
3.   If , 0][][ 21 >− iGiG ])[][( 21 iGiGDLDL qq −+←  
4.  Return  qDL
 

Update( , , , , , , , ]:0)[0( qkGP ΣK ]:0[ qGP Σ ]:0)[0( qkGW ΣK ]:0[ qGW Σ )0( kDLq K qD W x ) 
1.  and )...( 1211 −← qwwwxqgramvalueVQ o )...( 1222222 +++−← kkqk wwwqgramvalueVQ  
2. For 10 −∈ kj K  Do 
3.  If , ])[(])[( 11 VQjGWVQjGP ≥ 1)()( +← jDLjDL qq . 
4.  If , ])[(])[( 22 VQjGWVQjGP > 1)()( −← jDLjDL qq . 
5.  1])[(])[( 11 −← VQjGWVQjGW , 1])[(])[( 22 +← VQjGWVQjGW  
6.  , )...( 1211 −+++← qjljljl wwwqgramvalueVQ )...( 12)1(22)1(2 ++++−++← kljqklj wwqgramvalueVQ  
7. , )...( 111 −++← qklklkl wwwqgramvalueVQ )...( 12 kmqkm wwqgramvalueVQ ++−+←  
8. If , ])[(])[( 11 VQkGWVQkGP ≥ 1)()( +← kDLkDL qq . 
9. If , ])[(])[( 22 VQkGWVQkGP > 1)()( −← kDLkDL qq . 
10. , )...( 1211 −+++← qkkk wwwqgramvalueVQ )...( 12 kmqkm wwqgramvalueVQ ++−+←  
11. If , ][][ 11 VQGWVQGP < 1−← qq DD ; otherwise, 1+← qq DD . 
12. If , ][][ 22 VQGWVQGP > 1−← qq DD ; otherwise, 1+← qq DD . 
13. , 1][][ 11 −← VQGWVQGW 1][][ 22 +← VQGWVQGW  
 

CheckPhase( P , , ) T ]1[ nMark K
1. For  Do nkmi K1−+∈
2.  If , then 1][ =iMark
3.   For  Do  ikmij K1+−−∈
4.     1][ ←jMark
5. Apply [9] Algorithm on those substrings  in  where  ),( jiT T 1]...[ =jiMark

 
 

3  Experiments 
 
In our experiments, we tested our algorithm 

and compared with other filtration algorithms.  
The algorithms are: 

 
CL90_LET: The linear expected time 

algorithm in [3]. 
CL90_SET: The sublinear expected time 

algorithm in [3]. 
CM94: Chang and Marr algorithm [5]. 
FN04: Fredriksson and Navarro algorithm [6]. 
NR00: Navarro and Raffinot algorithm [16]. 
WM92: Wu and Manber algorithm [23]. 
U92: Ukkonen algorithm [21]. 
 
We implemented these algorithms using C and 

compared the efficiency on the percentage of 
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positions which can be filtered. 
We also tested our algorithm combining NR00. 

That is, we do not check the positions which 
pass our filtration algorithm immediately.  
Instead, we apply another filtration algorithm, 
NR00, so that we may filter more positions 
which are not possible answers. 

In this experiment, we generated P  with 
size  and  with size 

 randomly by using an alphabet 
. We tested the performance on 

different error bounds , . Many 
algorithms [5, 6, 21] have a parameter  and 
different q-grams will have different efficiencies.  
We only show the best performance of some  
for each algorithm, 

{ }50 20, 10,=m T
10M=n

},,,{ tgca=Σ
k 10    1 ≤≤ k

q

q
51 ≤≤ q . Each result is the 

average of 10 experiments with different  
and one . The results are shown in Table 1-3. 

s'P
T

 
 
Table 1. The percentage of positions needed to 

check for m=10 
k 1 2 3 

CL90_LET 48.71 98.97 100 

CL90_SET 99.11 100 100 

CM94 100 100 100 

FN04 0.87 33.02 97.76

NR00 0.98 43.5 99.89

WM92 2.32 47.95 98.47

U92 1.48 49.43 93.51

Our 0.47 30.29 91.94

Our+NR00 0.23 18.08 90.76

 
 

Table 2. The percentage of positions needed to 
check for m=20 

k 1 2 3 4 5 

CL90_LET 0.02 2.68 52.38 98.36 100

CL90_SET 9.6 88.87 100 100 100

CM94 8.86 70.27 100 100 100

FN04 0 0 0.89 26.42 91.62

NR00 0 0 0.1 4.7 59.03

WM92 0 1.74 9.66 42.23 94.09

U92 0 0.03 5.46 54.54 95.86

Our 0 0.01 2.02 32.25 90.74

Our+NR00 0 0 0.05 2.87 49.03

 
 
 

Table 3. The percentage of position needed to 
check for m=50 

k 1 2 3 4 5 

CL90_LET 0 0 0 0 0 

CL90_SET 0 0 0.16 8.94 84.79

CM94 0 0.02 0.38 4.42 82.93

FN04 0 0 0 0 0 

NR00 0 0 0 0 0 

WM92 0 0 0 0.03 0.55

U92_Qgram 0 0 0 0 0 

Our 0 0 0 0 0 

Our+NR00 0 0 0 0 0 

 

k 6 7 8 9 10 

CL90_LET 0.02 1.32 23.64 80.09 98.89

CL90_SET 99.7 100 100 100 100

CM94 98.76 99.99 100 100 100

FN04 0 0 0.01 0.45 11.59

NR00 0 0 0 0 0 

WM92 2.61 11.8 44.07 48.57 94.76

U92_Qgram 0 0.21 6.22 42.72 91.55

Our 0 0.09 3.29 24.65 83.98

Our+NR00 0 0 0 0 0 

 
 
4  Concluding Remarks and Future 
Research 
 

We have proposed a method to eliminate 
candidates in a text string for approximate string 
matching.  We plan to work on the average case 
time complexity analysis of our algorithm in the 
future. We also plan to extend our idea to tackle 
the exact string matching problem.   
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