

The Efficiency of Discrete Convolution Method on Solving Exact String

Matching Problem

K. W. Hou* (侯冠維) and R. C. T. Lee**(李家同)

*Department of Electrical Engineering,

**Department of Computer Science

National Tsing Hua University

s9961702@m99.nthu.edu.tw

Abstract

 In this paper, we first derived an equation which

can approach the probability of appearing of a

pattern string in a text string. From this equation,

we see that the probability that a pattern string

appears in a text string reduces to 0 quickly as the

length of the pattern string increases. Because of

this observation, we introduce an algorithm based

on the discrete convolution method with an early

termination. The algorithm stops as soon as it

discovers that a prefix of the pattern string does

not appear in the text string. In this paper, we

show that the discrete convolution method with an

early termination is quite efficient to solve exact

string matching problem.

1 Introduction

 The exact string matching problem considered

here is to find the occurrences of a pattern string P

= p1p2…pm in a text string T = t1t2…tn, where

string P and T are both generated from a finite

alphabet Σ whose size is σ, and n ≥ m.

 In the following, we first introduce one of those

methods, called discrete convolution method [1].

In this paper, we introduce an algorithm based on

the discrete convolution method with an early

termination, and show that it is an efficient way to

solve exact string matching problem.

2 Discrete Convolution Method

 It is quite interesting that convolution was

originally widely used in the areas of

communication. It was first presented in [1] that

we can use it to solve exact string matching

problem. In this section, we first show the

definition of discrete convolution of strings, and

then we introduce that how can we apply it to

solve exact string matching problem.

Definition 1: Discrete Convolution of Strings

 Given two strings X = x1x2...xn and Y = y1y2...ym,

where xi and yj are characters from a finite alphabet

Σ whose size is σ. The result of discrete

convolution of X and Y is Z = z2z3…zn+m.

 Given a text string T = t1t2…tn and a pattern

string P = p1p2…pm, where n ≥ m. In order to use

discrete convolution to solve the exact string

matching problem, we need to reverse the pattern

string P to a string P' = p'1p'2…p'm = pm…p2p1.

And then by applying discrete convolution on

string T and P’, we have the following results.

z2 = c(t1, p'1)

z3 = c(t1, p'2) + c(t2, p'1)

…

zk = c(tk–m, p'm) + c(tm–k+1, p'm–1) + … + c(tk–1, p'1)

…

zm+n = c(tn, p'm)

 Figure 1 to 4 illustrates the meaning of the

above equations. Notes that because P' =

p'1p'2…p'm = pm…p2p1, the index number of P are

reversed, i.e. P = p'mp'm–1…p'1.

T =

P =

t1 tn

p'1p'm

Figure 1: Deriving of z2 = c(t1, p'1)

The 29th Workshop on Combinatorial Mathematics and Computation Theory

217

mailto:s9961702@m99.nthu.edu.tw

T =

P =

t1 t2 tn

p'1p'2p'm

Figure 2: Deriving of z3 = c(t1, p'2) + c(t2, p'1)

T =

P =

tk–m tk–1

p'm p'1

Figure 3: Deriving of zk = c(tk–m, p'm) + c(tm–k+1,

p'm–1) + … + c(tk–1, p'1)

T =

P =

tn

p'm p'1

t1

Figure 4: Deriving of zm+n = c(tn, p'm)

From the results, we can see the following

results.

Case 1: For m + 1 ≤ k ≤ n + 1, if zk is equal to m,

there exists an exact string matching of P at

position k – m of T.

Case 2: For 2 ≤ k < m + 1 or n + 1 < k ≤ m + n, if

zk is equal to k – 1, there exists a suffix of P which

is equal to a prefix of T.

Case 3: For n + 1 < k ≤ m + n, if zk is equal to m +

n – k + 1, there exists a prefix of P which is equal

to a suffix of T.

Therefore, discrete convolution can be used to

solve exact string matching problems.

Example 1:

Let T = acgacgta and P = cgac. First, we

reverse the pattern string P = cgac to P’ = cagc.

By applying discrete convolution of strings on

strings T and P’, we have the following results.

z2 = c(a, c) = 0

z3 = c(a, a) + c(c, c) = 2

z4 = c(a, g) + c(c, a) + c(g, c) = 0

z5 = c(a, c) + c(c, g) + c(g, a) + c(a, c) = 0

z6 = c(c, c) + c(g, g) + c(a, a) + c(c, c) = 4

z7 = c(g, c) + c(a, g) + c(c, a) + c(g, c) = 0

z8 = c(a, c) + c(c, g) + c(g, a) + c(t, c) = 0

z9 = c(c, c) + c(g, g) + c(t, a) + c(a, c) = 2

z10 = c(g, c) + c(t, g) + c(a, a) = 1

z11 = c(t, c) + c(a, g) = 0

z12 = c(a, c) = 0

 The discrete convolution between T and P’ can

be viewed in a graphical way. Before introducing

this graphical way, we define a vector which is

called incidence vector.

Definition 2: Incidence Vector

 Given a string S = s1s2…sn and a character x, the

incidence vector of x on S is IV(x, S) = (iv1, iv2, …,

ivn), where ivi = c(x, si).

 Thus, for T = acgacgta and P = cgac, IV(a, T) =

(10010001), IV(c, T) = (01001000), IV(g, T) =

(00100100), and IV(t, T) = (00000010).

Figure 5 to 8 show the discrete convolution

between T and P’ in a graphical way.

T a c g a c g t a

P' c a g c

IV(c, T) 0 1 0 0 1 0 0 0

Z 0 0 0 0 1 0 0 1 0 0 0

Figure 5: Step 1

T a c g a c g t a

P' c a g c

IV(c, T) 0 1 0 0 1 0 0 0

IV(g, T) 0 0 1 0 0 1 0 0

Z 0 0 0 0 2 0 0 2 0 0 0

Figure 6: Step 2

T a c g a c g t a

P' c a g c

IV(c, T) 0 1 0 0 1 0 0 0

IV(g, T) 0 0 1 0 0 1 0 0

IV(a, T) 1 0 0 1 0 0 0 1

Z 0 1 0 0 3 0 0 2 1 0 0

Figure 7: Step 3

The 29th Workshop on Combinatorial Mathematics and Computation Theory

218

T a c g a c g t a

P' c a g c

IV(c, T) 0 1 0 0 1 0 0 0

IV(g, T) 0 0 1 0 0 1 0 0

IV(a, T) 1 0 0 1 0 0 0 1

IV(c, T) 0 1 0 0 1 0 0 0

Z 0 2 0 0 4 0 0 2 1 0 0

Figure 8: Step 4

 From the above steps, we see that Z6 = m = 4,

and there is an exact string matching of P in

position 2 of T.

3 The Probability for a String to
Exactly Appear in Another String

 Given a string T of length n and a pattern P of

length m, and all characters used in T and P are

from an alphabet Σ whose size is σ, we wish to

find the probability that P exactly appears in T. In

the following, we use Inclusion-Exclusion

Principle, which is shown below, to calculate the

probability.

3.1 Inclusion-Exclusion Principle

 For events A1, A2, and A3, the

Inclusion-Exclusion Principle shows that

 .

 The above equation can be extended to any

positive integer number of events. Therefore,

we have the general form of the equation as below.

 In the following, we calculate the probability

that a string P exactly appears in another string T

by using this Inclusion-Exclusion principle.

3.2 Appearing of a String in Another String

 Let Ai represent the event that P exactly appears

at position i of T.

T =

P =

i

Figure 9: Event Ai represents that P exactly

appears at position i of T

 If P appears in T, it means that P appears at

position 1, or position 2, …, or position n – m + 1

of T. Therefore, the union of events A1, A2, …, and

An – m + 1 means that P appears in T. The probability

that P appears in T can be represented by Pr(A1 ∪

A2 ∪…∪ An – m + 1). By Inclusion-Exclusion

Principle, the probability of appearing of P in T is

shown as follows.

4 Derivation of an Equation for the
Probability

4.1 Dividing the Problem into Two Parts

 In the derived equation in Section 3.2, we see

that we have to consider the intersection of several

events, for example A1∩A2, to calculate the

probability. A1∩A2 means that P occurs in position

1 and position 2 at the same time, and the

occurrences of P in T overlap.

 Therefore, to calculate the probability of P

exactly appears in T, we divide the problem into

two different parts.

Part 1: The occurrences of P in T do not overlap

with each other.

Part 2: There exist overlapping occurrences of P

in T.

The 29th Workshop on Combinatorial Mathematics and Computation Theory

219

 In the following, we show that for randomly

generated text and pattern strings, the probability

of appearing of P in T is quite small under the

condition of Part 2. Note that if P appears in T

twice in an overlapping form, a suffix of the

pattern string must be equal to a prefix of it.

There are two cases.

Case 1: The suffix of P, which is equal to a prefix

of it, is “long”.

P

S S

Figure 10: The suffix of P, which is equal to a

prefix of it, is “long”

In Figure 10, because the “long” string S must

appear twice in P, we can easily see that the

probability for the happening of this case is quite

small.

Case 2: The suffix of P, which is equal to a prefix

of it, is "short”.

P

P

T

Figure 11: The suffix of P, which is equal to a

prefix of it, is "short”

 In Figure 11, we see that P appears twice in T in

an overlapping form. It means that there appears a

string in T whose length is about twice of the

length of the pattern string. Thus, the probability

of this case is quite small.

 The above discussions are inexact. In later

sections, we shall experimentally prove that for

random cases, the probability that a pattern string

appears exactly in a text string reduces to 0

quickly as the length of the pattern string increases.

Therefore, the probability that Case 2 occurs is

even smaller.

 From the above discussions, we know that the

probability for Part 2 (there exist overlapping

occurrences of P in T) can be ignored.

4.2 Derivation of the Probability for Part 1

 Assume that the length of string T is n, the

length of string P is m, and all characters used in T

and P are from an alphabet Σ whose size is σ.

 In order to get the value of the probability, we

have to know the values of Pr(Ai).

T =

P =

i
mi–1 n–m–(i–1)

Figure 12: P appears at position i of T

In Figure 12, we see that there is a substring of

T which is an exact string matching of P at

position i of T, whose length is m. The probability

that P appears at position i of T is as follow.

And then, we have to know the values of

 .

T

P

i1
m

i2
m

P

Figure 13: P appears at position i1 and i2 of T

 Under the assumption that the occurrences of P

in T do not overlap with each other, we can obtain

 as follows:

 For calculating the value of P(A1 ∪ A2 ∪ … ∪

An–m+1), we have to know the following value.

The 29th Workshop on Combinatorial Mathematics and Computation Theory

220

 In order to calculate this value, we have to

know how many different pairs of i1 and i2 are

there such that .

 In Figure 13, we see that T consists of 2

substrings, and other n – 2m characters, a total of

n – 2m + 2 objects. The number of different pairs

of i1 and i2 such that is equal

to the number of permutations of these n – 2m + 2

objects. It is a permutation problem with 2 objects

of the same kind and n – 2m objects of another

kind.

 And then, we have to know the values of

 , where k is a positive

integer such that n – km ≥ 0 and 1 ≤ ik ≤ n – m –1.

 By Inclusion-Exclusion Principle and the above

results, we can obtain the probability that P

appears in T under the assumption that the

occurrences of P in T do not overlap with each

other.

where k is the largest positive integer such that n –

km ≥ 0.

5 The Value of the Probability from
the Derived Equation and from
Experiments

 In Section 5.1, we use the derived equation in

Section 4.2 to calculate the probability at different

n and m. In Section 5.2, we randomly generate

10000 pairs of T and P, and calculate the

probability of appearing of P in T.

5.1 Calculating the Probability by the Derived

Equation

 We calculate the probability at different values

of n and m. In this paper, we use n which is equal

to 30, 100, 300, 1000, 3000, and 10000, and for

each n, we use m which is integers from 1 to 20.

The results are shown in Figure 14.

 Figure 14: the probability from derived

equation at different n and m

 From the above figure, we can see that the

probability that a pattern string appears in a text

string reduces to 0 quickly as the length of the

pattern string increases.

5.2 Calculating the probability by randomly

generated text and pattern strings

We wrote a program in C language. And for

each pair of n and m, we randomly generated

10000 pairs of T and P, and calculated the

probability of appearing of P in T. In this paper,

we used rand() function defined in the library

<stdlib.h> to generate random strings for our

experiments. In Figure 15, we show the results for

different n and m.

Figure 15: the probability from randomly

generated strings at different n and m

 In Figure 14 and 15, we see that the derived

The 29th Workshop on Combinatorial Mathematics and Computation Theory

221

probability is very close to the real cases under the

assumption that P and T are generated randomly.

And we see that it is quite difficult for a “long”

pattern string to appear in a text string T.

 From the above theoretical and experimental

results, we can conclude that we may ignore Part 2

(there exist overlapping occurrences of P in T).

6 Improving the Algorithm by
Discrete Convolution Method with
Early Termination

 From the results in Section 3, we know that it is

quite difficult for a “long” pattern string to appear

in a text string. Thus, we have an idea. Can we

terminate the process of discrete convolution

earlier? In this section, we introduce a way to

achieve our purpose.

 When we are performing a convolution process,

we continually check all digits of Z. When we find

that all digits of Z are smaller than k in step k, we

terminate the process and output that there is no

exact string matching for the corresponding text

and pattern strings.

 Let’s show this idea by a simple example.

Example 2:

 Let T = acgacgta and P = ctac. First, we reverse

the pattern string P = ctac to P' = catc. The

incidence vectors of every characters in Σ on T are

IV(a, T) = (10010001), IV(c, T) = (01001000),

IV(g, T) = (00100100), and IV(t, T) = (00000010).

Figure 16 and 17 show the discrete convolution

between T and P’ in a graphical way.

T a c g a c g t a

P' c a t c

IV(c, T) 0 1 0 0 1 0 0 0

Z 0 0 0 0 1 0 0 1 0 0 0

Figure 16: Step 1

T a c g a c g t a

P' c a t c

IV(c, T) 0 1 0 0 1 0 0 0

IV(g, T) 0 0 0 0 0 0 1 0

Z 0 0 0 0 1 0 0 1 1 0 0

Figure 17: Step 2

 In Figure 17, we see that all digits of Z are

smaller than 2 at step 2. Therefore, we know that

the prefix “ct” of P does not appear in T and can

terminate the process earlier.

7 Experiments for Our Algorithm
Based on Discrete Convolution Method
with Early Termination

In this program, we randomly generated 10,000

pairs of T and P, and calculated the average

number of used steps and used comparisons to

solve the exact string matching problem. In Figure

18, we show the results of the program for

different n and m.

 Figure 18: The number of steps used at

different n and m

 If we use the original algorithm without early

termination, the number of used steps is equal to

the length of the pattern string m. For example, for

a pattern string of length 15, the number of used

steps is 15.

 In Figure 19 and 20, we show the number of

comparisons used of the algorithm with and

without early termination respectively.

 Figure 19: The number of comparisons used

at different m when n = 100

The 29th Workshop on Combinatorial Mathematics and Computation Theory

222

 Figure 20: The number of comparisons used

at different m when n = 10000

 In Figure 19 and 20, we see that when m is

small, the number of comparisons used in the

algorithm with early termination is worse than the

original algorithm. It is because that when m is

small, the probability of appearing of a short

pattern string in a text string is large. For a pattern

string which appears in the text string, the

algorithm with early termination spends more

comparisons on checking all digits of Z in each

step.

 But when the length of the pattern string

increase, the number of comparisons used is better

than the original algorithm.

 From the above experiments, we know that the

discrete convolution method with early

termination is quite efficient to solve exact string

matching problem for a long pattern string.

8 Conclusion

 In Section 5, we show that the probability that a

pattern string appears in a text string reduces to 0

quickly as the length of the pattern string increases.

Therefore, it is quite difficult for a “long” pattern

string to appear in a text string. Because of this

observation, we introduce an algorithm based on

the discrete convolution method with early

termination. In Section 7, our experiments show

that the discrete convolution method with early

termination is quite efficient to solve exact string

matching problem.

References

[1] M. J. Fischer, and M. S. Paterson,

String-Matching and other products.

SIAM-AMS Proceedings, Vol. 7, 1974, pp.

113-125 (In Complexity of Computation, R.

M. Karp.)

[2] R. C. T. Lee. String matching. 2011.

(Unpublished)

[3] B. H. Wu. Convolution and Its Applications

to Sequence Analysis. M.D., National

Chi-Nan University, 2004.

[4] Z. H. Chen. The Application of Convolution

to Suffix to Prefix Rule for the Exact String

Matching Problem. M.D., National Chi-Nan

University, 2007.

The 29th Workshop on Combinatorial Mathematics and Computation Theory

223

