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Abstract 
 

  In this paper, we first derived an equation which 

can approach the probability of appearing of a 

pattern string in a text string. From this equation, 

we see that the probability that a pattern string 

appears in a text string reduces to 0 quickly as the 

length of the pattern string increases. Because of 

this observation, we introduce an algorithm based 

on the discrete convolution method with an early 

termination. The algorithm stops as soon as it 

discovers that a prefix of the pattern string does 

not appear in the text string. In this paper, we 

show that the discrete convolution method with an 

early termination is quite efficient to solve exact 

string matching problem. 

 

 

1  Introduction 
 

  The exact string matching problem considered 

here is to find the occurrences of a pattern string P 

= p1p2…pm in a text string T = t1t2…tn, where 

string P and T are both generated from a finite 

alphabet Σ whose size is σ, and n ≥ m.  

  In the following, we first introduce one of those 

methods, called discrete convolution method [1]. 

In this paper, we introduce an algorithm based on 

the discrete convolution method with an early 

termination, and show that it is an efficient way to 

solve exact string matching problem. 

 

 

2  Discrete Convolution Method 
 

  It is quite interesting that convolution was 

originally widely used in the areas of 

communication. It was first presented in [1] that 

we can use it to solve exact string matching 

problem. In this section, we first show the 

definition of discrete convolution of strings, and 

then we introduce that how can we apply it to 

solve exact string matching problem.  

 

Definition 1: Discrete Convolution of Strings 

  Given two strings X = x1x2...xn and Y = y1y2...ym, 

where xi and yj are characters from a finite alphabet 

Σ whose size is σ. The result of discrete 

convolution of X and Y is Z = z2z3…zn+m. 

            

     

 

          
          
           

  

 

  Given a text string T = t1t2…tn and a pattern 

string P = p1p2…pm, where n ≥ m. In order to use 

discrete convolution to solve the exact string 

matching problem, we need to reverse the pattern 

string P to a string P' = p'1p'2…p'm = pm…p2p1. 

And then by applying discrete convolution on 

string T and P’, we have the following results. 

 

z2 = c(t1, p'1) 

z3 = c(t1, p'2) + c(t2, p'1) 

… 

zk = c(tk–m, p'm) + c(tm–k+1, p'm–1) + … + c(tk–1, p'1) 

… 

zm+n = c(tn, p'm) 

 

  Figure 1 to 4 illustrates the meaning of the 

above equations. Notes that because P' = 

p'1p'2…p'm = pm…p2p1, the index number of P are 

reversed, i.e. P = p'mp'm–1…p'1. 

T  = 

P = 

t1 tn

p'1p'm

 
Figure 1: Deriving of z2 = c(t1, p'1) 
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T  = 

P = 

t1 t2 tn

p'1p'2p'm

 
Figure 2: Deriving of z3 = c(t1, p'2) + c(t2, p'1) 

T  = 

P = 

tk–m tk–1

p'm p'1

 
Figure 3: Deriving of zk = c(tk–m, p'm) + c(tm–k+1, 

p'm–1) + … + c(tk–1, p'1) 

T  = 

P = 

tn

p'm p'1

t1

 
Figure 4: Deriving of zm+n = c(tn, p'm) 

 

From the results, we can see the following 

results.  

 

Case 1: For m + 1 ≤ k ≤ n + 1, if zk is equal to m, 

there exists an exact string matching of P at 

position k – m of T.  

 

Case 2: For 2 ≤ k < m + 1 or n + 1 < k ≤ m + n, if 

zk is equal to k – 1, there exists a suffix of P which 

is equal to a prefix of T. 

 

Case 3: For n + 1 < k ≤ m + n, if zk is equal to m + 

n – k + 1, there exists a prefix of P which is equal 

to a suffix of T. 

 

Therefore, discrete convolution can be used to 

solve exact string matching problems.  

 

Example 1: 

 

Let T = acgacgta and P = cgac. First, we 

reverse the pattern string P = cgac to P’ = cagc. 

By applying discrete convolution of strings on 

strings T and P’, we have the following results. 

 

z2 = c(a, c) = 0 

z3 = c(a, a) + c(c, c) = 2 

z4 = c(a, g) + c(c, a) + c(g, c) = 0 

z5 = c(a, c) + c(c, g) + c(g, a) + c(a, c) = 0 

z6 = c(c, c) + c(g, g) + c(a, a) + c(c, c) = 4 

z7 = c(g, c) + c(a, g) + c(c, a) + c(g, c) = 0 

z8 = c(a, c) + c(c, g) + c(g, a) + c(t, c) = 0 

z9 = c(c, c) + c(g, g) + c(t, a) + c(a, c) = 2 

z10 = c(g, c) + c(t, g) + c(a, a) = 1 

z11 = c(t, c) + c(a, g) = 0 

z12 = c(a, c) = 0 

 

  The discrete convolution between T and P’ can 

be viewed in a graphical way. Before introducing 

this graphical way, we define a vector which is 

called incidence vector. 

 

Definition 2: Incidence Vector 

  Given a string S = s1s2…sn and a character x, the 

incidence vector of x on S is IV(x, S) = (iv1, iv2, …, 

ivn), where ivi = c(x, si). 

 

  Thus, for T = acgacgta and P = cgac, IV(a, T) = 

(10010001), IV(c, T) = (01001000), IV(g, T) = 

(00100100), and IV(t, T) = (00000010).  

Figure 5 to 8 show the discrete convolution 

between T and P’ in a graphical way. 

 

T    a c g a c g t a 

P'        c a g c 

IV(c, T)    0 1 0 0 1 0 0 0 

            

Z 0 0 0 0 1 0 0 1 0 0 0 

Figure 5: Step 1 

 

T    a c g a c g t a 

P'        c a g c 

IV(c, T)    0 1 0 0 1 0 0 0 

IV(g, T)   0 0 1 0 0 1 0 0  

            

Z 0 0 0 0 2 0 0 2 0 0 0 

Figure 6: Step 2 

 

T    a c g a c g t a 

P'        c a g c 

IV(c, T)    0 1 0 0 1 0 0 0 

IV(g, T)   0 0 1 0 0 1 0 0  

IV(a, T)  1 0 0 1 0 0 0 1   

            

Z 0 1 0 0 3 0 0 2 1 0 0 

Figure 7: Step 3 
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T    a c g a c g t a 

P'        c a g c 

IV(c, T)    0 1 0 0 1 0 0 0 

IV(g, T)   0 0 1 0 0 1 0 0  

IV(a, T)  1 0 0 1 0 0 0 1   

IV(c, T) 0 1 0 0 1 0 0 0    

Z 0 2 0 0 4 0 0 2 1 0 0 

Figure 8: Step 4 

 

  From the above steps, we see that Z6 = m = 4, 

and there is an exact string matching of P in 

position 2 of T.  

 

 

3  The Probability for a String to 
Exactly Appear in Another String 
 

  Given a string T of length n and a pattern P of 

length m, and all characters used in T and P are 

from an alphabet Σ whose size is σ, we wish to 

find the probability that P exactly appears in T. In 

the following, we use Inclusion-Exclusion 

Principle, which is shown below, to calculate the 

probability. 

 

3.1  Inclusion-Exclusion Principle 

 

  For events A1, A2, and A3, the 

Inclusion-Exclusion Principle shows that  
 

                           
                           
                      . 
 

  The above equation can be extended to any 

positive integer number of events.   Therefore, 

we have the general form of the equation as below. 

 

               

        

     

             

         

 

                 

            

   

                     

 

  In the following, we calculate the probability 

that a string P exactly appears in another string T 

by using this Inclusion-Exclusion principle. 

 

3.2  Appearing of a String in Another String 

 

  Let Ai represent the event that P exactly appears 

at position i of T. 

T  = 

P = 

i

 

Figure 9: Event Ai represents that P exactly 

appears at position i of T 

 

  If P appears in T, it means that P appears at 

position 1, or position 2, …, or position n – m + 1 

of T. Therefore, the union of events A1, A2, …, and 

An – m + 1 means that P appears in T. The probability 

that P appears in T can be represented by Pr(A1 ∪ 

A2 ∪…∪ An – m + 1). By Inclusion-Exclusion 

Principle, the probability of appearing of P in T is 

shown as follows. 

 

                   

        

         

 

             

             

 

                 

                

   

                             

 

 

4  Derivation of an Equation for the 
Probability 
 

4.1  Dividing the Problem into Two Parts 

 

  In the derived equation in Section 3.2, we see 

that we have to consider the intersection of several 

events, for example A1∩A2, to calculate the 

probability. A1∩A2 means that P occurs in position 

1 and position 2 at the same time, and the 

occurrences of P in T overlap. 

  Therefore, to calculate the probability of P 

exactly appears in T, we divide the problem into 

two different parts.  

 

Part 1: The occurrences of P in T do not overlap 

with each other.  

 

Part 2: There exist overlapping occurrences of P 

in T. 
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  In the following, we show that for randomly 

generated text and pattern strings, the probability 

of appearing of P in T is quite small under the 

condition of Part 2. Note that if P appears in T 

twice in an overlapping form, a suffix of the 

pattern string must be equal to a prefix of it.  

There are two cases. 

 

Case 1: The suffix of P, which is equal to a prefix 

of it, is “long”.  

P

S S

 
Figure 10: The suffix of P, which is equal to a 

prefix of it, is “long” 

 

In Figure 10, because the “long” string S must 

appear twice in P, we can easily see that the 

probability for the happening of this case is quite 

small. 

 

Case 2: The suffix of P, which is equal to a prefix 

of it, is "short”.  

P

P

T

 

Figure 11: The suffix of P, which is equal to a 

prefix of it, is "short” 

 

  In Figure 11, we see that P appears twice in T in 

an overlapping form. It means that there appears a 

string in T whose length is about twice of the 

length of the pattern string. Thus, the probability 

of this case is quite small. 

  The above discussions are inexact. In later 

sections, we shall experimentally prove that for 

random cases, the probability that a pattern string 

appears exactly in a text string reduces to 0 

quickly as the length of the pattern string increases. 

Therefore, the probability that Case 2 occurs is 

even smaller. 

  From the above discussions, we know that the 

probability for Part 2 (there exist overlapping 

occurrences of P in T) can be ignored. 

 

4.2  Derivation of the Probability for Part 1 

 

  Assume that the length of string T is n, the 

length of string P is m, and all characters used in T 

and P are from an alphabet Σ whose size is σ.  

  In order to get the value of the probability, we 

have to know the values of Pr(Ai). 

T  = 

P = 

i
mi–1 n–m–(i–1)

 
Figure 12: P appears at position i of T 

 

In Figure 12, we see that there is a substring of 

T which is an exact string matching of P at 

position i of T, whose length is m. The probability 

that P appears at position i of T is as follow. 

 

       
                 

  
 

    

  
 

 

  
 

                         

         
 

  
 

     

  
 

   

And then, we have to know the values of 

           . 

T

P

i1
m

i2
m

P

 
Figure 13: P appears at position i1 and i2 of T 

 

  Under the assumption that the occurrences of P 

in T do not overlap with each other, we can obtain 

            as follows: 

 

             
     

   
 

               

                                  

  

 

  For calculating the value of P( A1 ∪ A2 ∪ … ∪ 

An–m+1 ), we have to know the following value. 
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  In order to calculate this value, we have to 

know how many different pairs of i1 and i2 are 

there such that             . 

  In Figure 13, we see that T consists of 2 

substrings, and other n – 2m characters, a total of 

n – 2m + 2 objects. The number of different pairs 

of i1 and i2 such that              is equal 

to the number of permutations of these n – 2m + 2 

objects. It is a permutation problem with 2 objects 

of the same kind and n – 2m objects of another 

kind.  

                           
         

         
 

            

             

 

 
         

         
 

 

   
 

   

  And then, we have to know the values of 

                , where k is a positive 

integer such that n – km ≥ 0 and 1 ≤ ik ≤ n – m –1. 

 

                 

    
 

   
                            

                                          

  

 

  By Inclusion-Exclusion Principle and the above 

results, we can obtain the probability that P 

appears in T under the assumption that the 

occurrences of P in T do not overlap with each 

other. 

 

                          
 

  
 

 
         

         
 

 

   
 
         

         
 

 

   
 

           
         

         
 

 

   
 

 

where k is the largest positive integer such that n – 

km ≥ 0. 

 

 

5  The Value of the Probability from 
the Derived Equation and from 
Experiments  
 

  In Section 5.1, we use the derived equation in 

Section 4.2 to calculate the probability at different 

n and m. In Section 5.2, we randomly generate 

10000 pairs of T and P, and calculate the 

probability of appearing of P in T.  

 

5.1 Calculating the Probability by the Derived 

Equation 

 

  We calculate the probability at different values 

of n and m. In this paper, we use n which is equal 

to 30, 100, 300, 1000, 3000, and 10000, and for 

each n, we use m which is integers from 1 to 20. 

The results are shown in Figure 14. 

 

  Figure 14: the probability from derived 

equation at different n and m 

 

 From the above figure, we can see that the 

probability that a pattern string appears in a text 

string reduces to 0 quickly as the length of the 

pattern string increases. 

 

5.2 Calculating the probability by randomly 

generated text and pattern strings 

 

We wrote a program in C language. And for 

each pair of n and m, we randomly generated 

10000 pairs of T and P, and calculated the 

probability of appearing of P in T. In this paper, 

we used rand() function defined in the library 

<stdlib.h> to generate random strings for our 

experiments. In Figure 15, we show the results for 

different n and m. 

 

Figure 15: the probability from randomly 

generated strings at different n and m 

 

  In Figure 14 and 15, we see that the derived 
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probability is very close to the real cases under the 

assumption that P and T are generated randomly. 

And we see that it is quite difficult for a “long” 

pattern string to appear in a text string T.  

 From the above theoretical and experimental 

results, we can conclude that we may ignore Part 2 

(there exist overlapping occurrences of P in T). 

 

 

6  Improving the Algorithm by 
Discrete Convolution Method with 
Early Termination 
 

  From the results in Section 3, we know that it is 

quite difficult for a “long” pattern string to appear 

in a text string. Thus, we have an idea. Can we 

terminate the process of discrete convolution 

earlier? In this section, we introduce a way to 

achieve our purpose.  

  When we are performing a convolution process, 

we continually check all digits of Z. When we find 

that all digits of Z are smaller than k in step k, we 

terminate the process and output that there is no 

exact string matching for the corresponding text 

and pattern strings. 

  Let’s show this idea by a simple example. 

 

Example 2: 

 

  Let T = acgacgta and P = ctac. First, we reverse 

the pattern string P = ctac to P' = catc. The 

incidence vectors of every characters in Σ on T are 

IV(a, T) = (10010001), IV(c, T) = (01001000), 

IV(g, T) = (00100100), and IV(t, T) = (00000010). 

Figure 16 and 17 show the discrete convolution 

between T and P’ in a graphical way. 

 

T    a c g a c g t a 

P'        c a t c 

IV(c, T)    0 1 0 0 1 0 0 0 

            

Z 0 0 0 0 1 0 0 1 0 0 0 

Figure 16: Step 1 

 

T    a c g a c g t a 

P'        c a t c 

IV(c, T)    0 1 0 0 1 0 0 0 

IV(g, T)   0 0 0 0 0 0 1 0  

            

Z 0 0 0 0 1 0 0 1 1 0 0 

Figure 17: Step 2 

 

  In Figure 17, we see that all digits of Z are 

smaller than 2 at step 2. Therefore, we know that 

the prefix “ct” of P does not appear in T and can 

terminate the process earlier. 

 

 

7  Experiments for Our Algorithm 
Based on Discrete Convolution Method 
with Early Termination 
 

In this program, we randomly generated 10,000 

pairs of T and P, and calculated the average 

number of used steps and used comparisons to 

solve the exact string matching problem. In Figure 

18, we show the results of the program for 

different n and m.  

 

  Figure 18: The number of steps used at 

different n and m 

 

  If we use the original algorithm without early 

termination, the number of used steps is equal to 

the length of the pattern string m. For example, for 

a pattern string of length 15, the number of used 

steps is 15. 

  In Figure 19 and 20, we show the number of 

comparisons used of the algorithm with and 

without early termination respectively. 

 

  Figure 19: The number of comparisons used 

at different m when n = 100 
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  Figure 20: The number of comparisons used 

at different m when n = 10000 

 

  In Figure 19 and 20, we see that when m is 

small, the number of comparisons used in the 

algorithm with early termination is worse than the 

original algorithm. It is because that when m is 

small, the probability of appearing of a short 

pattern string in a text string is large. For a pattern 

string which appears in the text string, the 

algorithm with early termination spends more 

comparisons on checking all digits of Z in each 

step.  

  But when the length of the pattern string 

increase, the number of comparisons used is better 

than the original algorithm. 

  From the above experiments, we know that the 

discrete convolution method with early 

termination is quite efficient to solve exact string 

matching problem for a long pattern string. 

 

 

8 Conclusion 
 

  In Section 5, we show that the probability that a 

pattern string appears in a text string reduces to 0 

quickly as the length of the pattern string increases. 

Therefore, it is quite difficult for a “long” pattern 

string to appear in a text string. Because of this 

observation, we introduce an algorithm based on 

the discrete convolution method with early 

termination. In Section 7, our experiments show 

that the discrete convolution method with early 

termination is quite efficient to solve exact string 

matching problem. 
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