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Abstract

Rainbow connection number of a connected graph G
is the minimum number of colours needed to colour the
edges of G, so that every pair of nodes is connected by
at least one path whose edges have distinct colours. In
this paper, we find the rainbow connection number for
a triangular pyramid.

1 Introduction

Edge colouring of a graph is a function from its edge
set to the set of natural numbers. A path P in an edge
coloured graph with no two edges sharing the same
colour is called a rainbow path. If P is coloured by
using r colours, then P is also a rainbow r path. An
edge-coloured graph G is rainbow connected if any two
nodes are connected by a rainbow path. This con-
cept of rainbow connection in graphs was introduced
by Chartrand et al. in [5]. The rainbow connection
number of a connected graph G, denoted by rc(G),
is the smallest number of colours that are needed in
order to make G rainbow connected.

The problem of rainbow connection has application
in secure transfer of classified information between var-
ious agencies [6]. Chakraborty et al. showed that com-
puting the rainbow connection number of a general
graph is NP-hard [4]. In fact, even deciding whether
rc(G) = 2 holds for a graph G is an NP-complete
problem [4].

Most recent research has been devoted to solving
the problem for certain special graphs, e.g., trees, com-
plete graphs and complete multi-partite graphs [5].
There are some approaches to study the bounds of
the rainbow connection numbers of 3-connected graphs
[8], connected bridgeless graphs [2], strongly regular
graphs [1], etc. A good survey of rainbow connections
can be found in [9].

We consider the problem for a particular intercon-
nection network, namely, triangular pyramids which
is based on triangular mesh instead of the traditional

two-dimensional mesh employed by traditional pyra-
mids. The triangular pyramid features include the
fault-tolerate properties such as fault diameter, w-wide
diameter [10]. Pyramid network preserves many desir-
able properties of traditional pyramid networks. Fur-
thermore, the network can be exploited simulate other
network topologies more efficiently compared to its
equivalent pyramid network [10]. In this paper, we
propose a linear time algorithm for finding a rainbow
path for any two nodes of the pyramid network TPn.
As far as we know, no rainbow path algorithm exists
for triangular pyramids.

The remaining part of this paper is organized as fol-
lows. In Section 2, we give the definition of triangular
pyramid networks and introduce some basic terminol-
ogy and notation. In Section 3, a result shows that the
n-layer triangular pyramid TPn has a rainbow n edge
colouring and presents an algorithm for determining
a rainbow path for any two nodes of a TPn. Finally,
some concluding remarks and future research are given
in the last section.

2 Preliminaries

All graphs considered in this paper are simple, finite
and undirected. For terms of graphs not defined here
please refer to the notation and terminology of Bondy
and Murty [3]. The radix−n triangular mesh network,
denoted by Tn, has the node set V (Tn) = {(x, y) | 0 ≤
x, y < n and 0 ≤ x + y < n} and there is a mesh edge
between nodes (x1, y1) and (x2, y2) if |x1 − x2|+ |y1 −
y2| < n− 1 and x1 + y1 ≤ x2 + y2. A set of nodes with
sum of coordinates equals r is called row r. A higher
radix triangular mesh is formed by adding rows to a
lower radix mesh. For example, Figure 1 depicts an
example of a radix-5 triangular mesh T5. Row 4 is the
set of nodes (0, 4), (1, 3), (2, 2), (3, 1), (4, 0). The dash
area, the subgraph induced by the rows 0, 1, 2 and 3,
establishes a T4.

The n-layered triangular pyramid, denoted by TPn,
has the node set V (TPn) = V0∪V2∪· · ·∪Vn−1, where
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Figure 1: The T5.
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Figure 2: The TP3.

Vk = {(k, (x, y)) | 0 ≤ x + y ≤ k} is the set of nodes
on layer k and 0 ≤ k ≤ n− 1. Each Vk is connected as
a Tk and a mesh edge of Tk is also called a triangular
mesh edge in TPn. We use (k;x1, y1, x2, y2) to denote
a triangular mesh edge incident on nodes (k, (x1, y1))
and (k, (x2, y2)) if |x1 − x2| + |y1 − y2| < n − 1 and
x1 + y1 ≤ x2 + y2. Each node (k, (x, y)) ∈ Vk is adja-
cent to exactly three nodes (k + 1, (x, y)), (k + 1, (x +
1, y)), (k + 1, (x, y + 1)) of Vk+1 where 0 ≤ k ≤ n − 2
and the edges connecting them of different layers are
said to be layer edges. Figure 2 illustrates an exam-
ple of a 3–layered triangular pyramid TP3. The dash
lines indicate layer edges, while the solid lines are mesh
edges. The nodes (1, (0, 0)) and (1, (1, 0)) are con-
nected by the triangular mesh edge (1; 0, 0, 1, 0). The
node (1, (0, 0)) has layer edges connecting to nodes
(2, (0, 0)), (2, (1, 0)) and (2, (0, 1)).

3 A Rainbow Colouring on Triangular
Pyramid Networks

We define an edge colouring function to assign
colours on the edges of a triangular mesh network.

Definition 1. Let χ be an edge colouring on Tn and
e = (x1, y1, x2, y2) a triangular mesh edge of Tn, where

1 ≤ x1, y1, x2, y2 < n, 0 ≤ x1 + y1 < n and 0 ≤ x2 +
y2 < n.

(i) χ(e) =
{

y1 if x1 + y1 = x2 + y2,
x2 + y2 if x1 + y1 < x2 + y2.

Theorem 2. Let Tn be a radix−n triangular mesh.
Tn is rainbow connected under the edge colouring χ.

Proof. We shall prove this theorem by induc-
tion on the number of radix n. A radix-2 triangu-
lar mesh T2 has mesh edges (0, 0, 0, 1), (0, 0, 1, 0) and
(0, 1, 1, 0). And the three mesh edges, by definition of
χ, are all coloured 1. Since T2 is indeed a 3-cycle, T2

is clearly rainbow connected as the basis of induction.
For the inductive hypothesis, assuming that the theo-
rem is true for Tn, i.e., any two nodes are connected
by a rainbow path using n− 1 colours under the edge
colouring χ. We now show that the theorem is also
true for a Tn+1. Let s, t ∈ V (Tn+1). Note that a Tn+1

has n + 1 rows. Three cases are considered depending
on positions of s and t.

Case 1. Assume that s and t are in rows 0, 1, . . . ,
or n − 1.
The case follows from the inductive hypothesis.

Case 2. Assume that s is in row 0, 1, . . . , or n − 1
and t is in row n.
Let w be a neighbor of t, where w is in row n− 1. By
induction hypothesis, there is an s − w rainbow path
and each edge of the path is assigned a distinct colour
range form 0 to n − 2. By the definition of χ, the
mesh edge incident on the nodes w and t is assigned
the colour n − 1 (the sum of coordinates of w) since
the sum of coordinates of w is less then the sum of
coordinates of t. Then, the s − t path, concatenated
by s−w path and the mesh edge between nodes w and
t, is a rainbow path.

Case 3. Assume that s and t are in row n.
The subgraph induced by the row n is the path π:
(0, n), (1, n− 1), . . . , (n, 0). By the definition of χ, the
mesh edge (0, n, 1, n − 1) is assigned the colour n (y-
coordinate of the first node) since the sum of coordi-
nates of both end nodes of the mesh edge are equal.
By the same reason, the edges of π are coloured by
consecutive colours from n to 1. Therefore, the s − t
path must be a rainbow path.

Q. E. D.
Since the diameter of a Tn is n, the next result

follows immediately from Theorem 2.

Corollary 3. If Tn is a radix−n triangular mesh, then
rc(Tn) = n.

We now show that a triangular pyramid TPn has
a rainbow n colouring. Note that the edge set of a
triangular pyramid is classified into triangular mesh
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edges and layer edges. We shall colour mesh edges by
using the colouring, mentioned above, which applied
to colour the mesh edges of triangular meshes. So, we
shall colour layer k of TPn, where 1 ≤ k ≤ n, by using
colours range from 1 to k. On the other hand, the
layer edges incident on the nodes of the same layer are
assigned the same colour. The formal definition of the
edge colouring χ in TPn is as follows:

Definition 4. Let χp be an edge colouring on TPn,
e = (k;x1, y1, x2, y2) a triangular mesh edge on layer
k and f a layer edge incidents on a node in Vk−1 and
a node in Vk, where 2 ≤ k ≤ n, 1 ≤ x1, y1, x2, y2 <
n, 0 ≤ x1 + y1 < n and 0 ≤ x2 + y2 < n.

(i) χp(e) =
{

y1 if x1 + y1 = x2 + y2,
x2 + y2 if x1 + y1 < x2 + y2.

(iii) χp(f) = k.

Theorem 5. If TPn is an n−layered triangular pyra-
mid, then rc(TPn) = n.

Proof. Let s and t be two nodes of TPn. If one
of the two nodes is the apex of TPn, then we get a
shortest s − t path P , consisting of only layer edges,
of length less than n. Since the layer edges in distinct
layers are assigned different colours, P is a rainbow
path under the edge colouring χp. Now, we suppose
neither s nor t is the apex. Let s = (k1, x1, y1) and
t = (k2, x2, y2). Without loss of generality, assuming
k1 ≤ k2. If k1 = k2, then s and t are on the same layer
k1 of TPn. Since the layer k1 connected as a Tk1 , s
and t has a rainbow r path under the edge colouring
χp where r ≤ k1. When k1 < k2. Let w be a node
on layer k1 such that w − t path is of length k2 − k1.
It can be seen that the edges along with the w − t
path, say e1, e2, . . . , ek2−k1 , are layer edges and thus
were assigned colour

The shortest s−t path consisting of only layer edges,
of length less than n. Since the layer edges in distinct
layers are assigned different colours, P is a rainbow
path under the edge colouring χp.

Q. E. D.

4 Concluding Remarks

For algorithmic purposes, an efficient algorithm is
demonstrated for determining a rainbow path for any
two nodes of a triangular pyramid. The algorithm con-
siders balancing characteristic of a pyramid and avoids
a possible bottleneck in the apex. When the network
contains multiple pairs of source and destination nodes
between which messages are transmitted along their
path, the algorithm is applicable.
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