Independent Spanning Trees on Crossed Cubes

Jhen-Ding Wang1 \hspace{0.5cm} Jou-Ming Chang1,† \hspace{0.5cm} Jinn-Shyong Yang2 \hspace{0.5cm} Kun-Fu Ding3

1 Institute of Information and Decision Sciences, National Taipei College of Business, Taipei, Taiwan, ROC
2 Department of Information Management, National Taipei College of Business, Taipei, Taiwan, ROC
3 Department of Industrial Engineering and Management, Ming Chi University of Technology, New Taipei City, Taiwan, ROC

Abstract

A set of spanning trees in a graph is said to be independent (ISTs for short) if all the trees are rooted at the same node \(r \) and for any other node \(v(\neq r) \), the paths from \(v \) to \(r \) in any two trees are node-disjoint except the two end nodes \(v \) and \(r \). For an \(n \)-connected graph, the independent spanning trees problem asks to construct \(n \) ISTs rooted at an arbitrary node of the graph. Recently, Zhang et al. [Y.-H. Zhang, W. Hao, and T. Xiang, Independent spanning trees in crossed cubes, Inform. Process. Lett., 113 (2013) 653–658] proposed an algorithm to construct \(n \) ISTs with a common root at node 0 in an \(n \)-dimensional crossed cube \(\text{CQ}_n \). However, it has been proved by Kulasinghe and Bettayeb [P.D. Kulasinghe and S. Bettayeb, Multiplicity-twisted hypercube with 5 or more dimensions is not vertex transitive, Inform. Process. Lett., 53 (1995) 33–36] that the \(\text{CQ}_n \) (a synonym called multiply-twisted hypercube in that paper) fails to be node-transitive for \(n \geq 5 \). Thus, the result of Zhang et al. does not really solve the ISTs problem in \(\text{CQ}_n \). In this paper, we revisit the problem of constructing \(n \) ISTs rooted at an arbitrary node in \(\text{CQ}_n \). As a consequence, we show that the proposed algorithm can be parallelized to run in \(\mathcal{O}(\log N) \) time using \(N = 2^n \) nodes of \(\text{CQ}_n \) as processors.

\textbf{Keyword}: independent spanning trees; interconnection networks; crossed cubes; multiply-twisted hypercube;

*This research was partially supported by National Science Council under the Grants NSC102-2221-E-141-002 and NSC102-2221-E-141-001-MY3.
†Corresponding author. Email: spade@mail.ntcb.edu.tw

1 Introduction

Constructing multiple spanning trees in networks have been studied from not only the theoretical point of view but also some practical applications such as fault-tolerant broadcasting [1, 15] and secure message distribution [1, 25, 31]. Let \(G \) be a graph with node set \(V(G) \) and edge set \(E(G) \), respectively. Two spanning trees in a graph \(G \) are said to be independent if they are rooted at the same node \(r \) such that, for each node \(v(\neq r) \) in \(G \), the two different paths from \(v \) to \(r \), one path in each tree, are internally node-disjoint. A set of spanning trees of \(G \) is called independent spanning trees (ISTs for short) if they are pairwise independent.

A graph \(G \) is \(k \)-connected if \(|V(G)| > k \) and \(G - F \) is connected for every subset \(F \subseteq V(G) \) with \(|F| < k \), where \(G - F \) denotes the graph obtained from \(G \) by removing \(F \). It was conjectured by Zehavi and Itai [38] that for any \(n \)-connected graph there exist \(n \) ISTs rooted at an arbitrary node. From then on, this conjecture has been shown to be true for \(k \)-connected graphs with \(k \leq 4 \) (see [15], [8, 38] and [9] for \(k = 2, 3, 4 \), respectively) and is still open for \(k \geq 5 \). In particular, this conjecture has been confirmed for several restricted classes of graphs, e.g., graphs related to planarity [13, 14, 22, 23], graphs defined by Cartesian product [3, 24, 26, 27, 30, 33, 37], variations of hypercubes [4–7, 21, 28, 29, 31], special Cayley graphs [17, 18, 25, 32, 35, 36], and chordal ring [16, 34].

The \(n \)-dimensional crossed cube \(\text{CQ}_n \), proposed first by Efe [11], is a variant of an \(n \)-dimensional hypercube. One advantage of \(\text{CQ}_n \) is that the diameter is only about one half of the diameter of an \(n \)-dimensional hypercube. For more properties
of CQ_n, the reader can refer to [2, 10, 12, 19, 20]. Note that Kulasinghe [19] showed that CQ_n is n-connected. Cheng et al. [6] and [5] respectively proposed algorithms to construct n ISTs rooted at an arbitrary node in CQ_n. Let $N = 2^n$. The construction scheme of [6] is in a recursive fashion to run in $O(N \log^2 N)$ time. Although the algorithm in [5] can simultaneously construct n ISTs in parallel with time complexity $O(N)$, it is not fully parallelized for the construction of each spanning tree. Recently, Zhang et al. [39] proposed another algorithm that takes $O(N \log N)$ for constructing n ISTs rooted at node 0 in CQ_n and showed that it can be parallelized to run in $O(\log N)$. Because Kulasinghe and Bettayeb [20] had already pointed out that CQ_n (a synonym called multiply-twisted hypercube in that paper) fails to be node-transitive for $n \geq 5$, the construction of [39] that takes node 0 as the common root of spanning trees does not really solve the ISTs problem in CQ_n. In this paper, we present a fully parallelized approach for constructing n ISTs rooted at an arbitrary node in CQ_n. Our algorithm totally takes $O(N \log N)$ time and can be parallelized to run in $O(\log N)$ time using $N = 2^n$ nodes of CQ_n as processors.

The rest of this paper is organized as follows. Section 2 formally gives the definition of crossed cubes and provides some useful terminologies and notations. Section 3 presents our algorithm for constructing ISTs in CQ_n. The final section proves the correctness of the algorithm.

2 Preliminary

In this paper, we use a binary string $x_{n-1}x_{n-2} \cdots x_1x_0$ of length n to label a node x in CQ_n. Two binary strings $x = x_0x_1$ and $y = y_0y_1$ are pair-related, denoted $x \sim y$, if and only if $(x, y) \in \{(00, 00), (10, 10), (01, 11), (11, 01)\}$. The n-dimensional crossed cube CQ_n is the labeled graph with the following recursively fashion:

CQ_1 is the complete graph on two nodes with labels 0 and 1. For $n \geq 2$, CQ_n consists of two subcubes CQ_{n-1}^0 and CQ_{n-1}^1 such that every vertex in CQ_{n-1}^0 and CQ_{n-1}^1 is labeled by 0 and 1 in its leftmost bit, respectively. Two nodes $x = 0x_{n-2} \cdots x_1x_0 \in V(CQ_{n-1}^0)$ and $y = 1y_{n-2} \cdots y_1y_0 \in V(CQ_{n-1}^1)$ are joined by an edge if and only if

1. $x_{n-2} = y_{n-2}$ if n is even, and
2. $x_{2i+1}x_{2i} \sim y_{2i+1}y_{2i}$ for $0 \leq i < \lfloor (n - 1)/2 \rfloor$.

Figure 1 shows crossed cubes CQ_3 and CQ_4.

Let $Z_n = \{0, 1, \ldots, n - 1\}$. Crossed cubes can be defined equivalently as follows:

Lemma 1. [11] For all integer $n \geq 1$, two nodes $x = x_{n-1}x_{n-2} \cdots x_0$ and $y = y_{n-1}y_{n-2} \cdots y_0$ are joined by an edge in CQ_n if and only if there exists an integer $i \in Z_n$ such that

1. $x_{n-1}x_{n-2} \cdots x_{i+1} = y_{n-1}y_{n-2} \cdots y_{i+1}$,
2. $x_0 \not= y_0$,
3. $x_{i-1} = y_{i-1}$ if i is odd, and
4. $x_{2j+1}x_{2j} \sim y_{2j+1}y_{2j}$ for $0 \leq j < \lfloor i/2 \rfloor$.

If conditions (1) and (2) of Lemma 1 hold, we say that x and y have the leftmost differing bit at position i. In this case, x and y are said to be the i-neighbors to each other, and for notational convenience we write $y = N_i(x)$ or $x = N_i(y)$. Moreover, the edge (x, y) is an i-dimensional edge of CQ_n, and we denote $i = \text{dim}(x, y)$. For example, we consider the node $x = 011011$ in CQ_6. Then, $N_i(x)$ for $i = 0, 1, \ldots, 5$ are 011010, 011011, 011101, 010001, 001001, and 111001, respectively.

In this paper, we also use the following notation. Two paths P and Q joining two distinct nodes x and y are internally node-disjoint, denoted by $P \| Q$, if $V(P) \cap V(Q) = \{x, y\}$. Let T be a spanning tree rooted at node r of CQ_n. The parent of a node $x (\not= r)$ in T is denoted by $\text{PARENT}(T, x)$. For $x, y \in V(T)$, the unique path from x to y is denoted by $T[x, y]$. Hence, two spanning trees T and T' with the same root r are ISTs if and only if $T[x, r] \| T'[x, r]$ for every node $x \in V(T) \setminus \{r\}$.
3 An algorithm of Constructing ISTs

Since CQ_n is n-connected and we would like to construct n ISTs, the root in each spanning tree must have a unique child. Let $r = r_{n-1}r_{n-2} \cdots r_0$ be the common root of ISTs. For $i \in \mathbb{Z}_n$, we denote T_i as a tree such that r takes its i-neighbor as the unique child. Let $N_i(r) = c_{n-1}c_{n-2} \cdots c_0$. A node is called the *surreal* of $N_i(r)$, denoted by $N_i(r) = c_{n-1}c_{n-2} \cdots c_0$, if the following conditions hold:

(1) $c_j = c'_j$ for $j \geq i$ if i is even,
(2) $c_j = c'_j$ for $j > i$ if i is odd, and
(3) $c_{2j+1}c_{2j} \sim c'_{2j+1}c'_{2j}$ for $0 \leq j < [i/2]$.

For each node $x = x_{n-1}x_{n-2} \cdots x_0 \in V(T_i) \setminus \{r\}$, a node $x' = x'_{n-1}x'_{n-2} \cdots x'_{0}$ with respect to x is defined as follows: $x_{2j+1}x_{2j} \sim x'_{2j+1}x'_{2j}$ for $0 \leq j < [n/2]$ and $x_{n-1} = x'_{n-1}$ when n is odd.

Let $I_i(x) = \{ j \in \mathbb{Z}_n; x_j \neq c_j \text{ and } j > i \}$ and $I_i(x') = \{ j \in \mathbb{Z}_n; x'_j \neq c'_j \text{ and } j > i \}$. For two sets of integers S and T, define the following function:

$$\beta(S, T) = \begin{cases} 0 & \text{if } S = \emptyset; \\ \beta(\{t \in T : t < \min S\}, S) + 1 & \text{otherwise.} \end{cases}$$

In particular, we let $\alpha_i(x) = \beta(I_i(x), I_i(x'))$. According to the parity of $\alpha_i(x)$, let

$$H_i(x) = \begin{cases} \{ j \in \mathbb{Z}_n : x_j \neq c_j \} & \text{if } \alpha_i(x) \text{ is even}; \\ \{ j \in \mathbb{Z}_n : x_j \neq c'_j \} & \text{otherwise.} \end{cases}$$

We further define the following function:

$$\text{next}(i, x) = \begin{cases} i & \text{if } H_i(x) = \emptyset; \\ \max H_i(x) & \text{if } H_i(x) \neq \emptyset \text{ and } i < \min H_i(x); \\ \max\{ j \in H_i(x) : j \leq i \} & \text{otherwise.} \end{cases}$$

That is, we regard $H_i(x)$ as a cyclic ordered set in decreasing order. If $H_i(x) = \emptyset$ or $i \in H_i(x)$, the function outputs i; otherwise, the function outputs the next element in the cyclic order of $H_i(x)$ with respect to i.

For example, consider CQ_12 and a node $x = 110001101110$ in T_4 rooted at $r = 101101000111$. By definitions, $N_4(r) = 101101011101$, $N_4(r) = 101101010111$ and $x' = 0100111001101$. Since $I_4(x) = \{10,9,8,5\}$ and $I_4(x') = \{11,10,9,8,7,5\}$, we can find $\alpha_4(x)$ as follows:

$$\alpha_4(x) = \beta(\{10,9,8,5\}, \{11,10,9,8,7,5\}) = \beta(\{9,8,7,5\}, \{10,9,8,5\}) + 1 = \beta(\{5\}, \{9,8,7,5\}) + 2 = \beta(\{7,5\}, \{8,5\}) + 3 = \beta(\{7\}, \{5\}) + 4 = \beta(\emptyset, \{5\}) + 5 = 5.$$

Thus, $H_4(x) = \{10,9,8,5,4,3,0\}$ and next(4, x) = 4.

Table 1 shows more examples of CQ_n.

It is clear that, for each node $x \in V(\text{CQ}_n) \setminus \{r\}$, finding $I_i(x)$, $I_i(x')$, $\alpha_i(x)$, $H_i(x)$ and next(i,x) can be done in $O(n)$ time provided i is given. In what follows, we present a fully parallelized algorithm for constructing n spanning trees with an arbitrary node $r = r_{n-1}r_{n-2} \cdots r_0$ as their common root in CQ_n. For each node $x \in V(\text{CQ}_n) \setminus \{r\}$ with binary string $x = x_{n-1}x_{n-2} \cdots x_0$, the construction can be carried out by describing the parent of x in each spanning tree T_i.

Algorithm: Constructing-ISTs

Input: All nodes of CQ_n and the common root $r = r_{n-1}r_{n-2} \cdots r_0$.

Output: n ISTs $T_0, T_1, \ldots, T_{n-1}$ root at r.

1. for $i = 0$ to $n-1$ do in parallel
 /* construct T_i simultaneously */
 2. for each node x in CQ_n do in parallel
 /* generate parent of each node x simultaneously */
 3. $j = \text{next}(i, x)$
 4. $\text{parent}(T_i, x) = N_j(x)$

Figure 2: Algorithm for constructing n spanning trees in CQ_n.
Figure 3 illustrates the construction of T_2 and T_3 for CQ_6. Henceforth, we adopt the notation $x \rightarrow y$ to mean that $y = \text{parent}(T_1, x) = N_i(x)$ in T_i. For instance, we have $T_2[34, 27] = 34 \rightarrow 38 \rightarrow 39 \rightarrow 13 \rightarrow 23 \rightarrow 29 \rightarrow 27$ in Figure 3.

4 Correctness and analysis

In this section, we will show the validity of the algorithm. Firstly, we give the following basic property.

Lemma 2. For $i \in \mathbb{Z}_n$ and a node $x \in V(CQ_n) \setminus \{r\}$, if $H_i(x) = \emptyset$ then $x = N_i(r)$.

Proof. Suppose $H_i(x) = \emptyset$. We claim $\alpha_i(x) = 0$, and thus by Eq. (1), it follows that $x = N_i(r)$. We suppose that, on the contrary, $\alpha_i(x) \neq 0$ (i.e., $I_i(x) \neq \emptyset$). This implies that there is a $k \in \mathbb{Z}_n \setminus \mathbb{Z}_i$ such that $x_k \neq c_k$. Obviously, if $\alpha_i(x)$ is even, then $I_i(x) \subseteq H_i(x)$. This contradicts that $H_i(x) = \emptyset$. On the other hand, from the surrenal of $N_i(r)$, we have $c_j = c'_j$ for all $j \neq i$. Thus, $x_k \neq c'_k$, and it follows that $H_i(x) \neq \emptyset$, a contradiction. \square

For two ordered sets A and B, we write $A \preceq_{\text{lex}} B$ to mean that A precedes B in lexicographic order. We now prove the reachability between every node $x(\neq r)$ and the root r in T_i, thereby proving the existence of a unique path from x to the root in the tree.

Theorem 3. Let $r \in V(CQ_n)$ be an arbitrary node. The construction of T_i for $i \in \mathbb{Z}_n$ are spanning trees rooted at r.

Proof. From CONSTRUCTING-ISTS, since every node $v \in V(CQ_n)$ must be contained in T_i, it follows that T_i is a spanning subgraph of CQ_n. Let $x = x_{n-1}x_{n-2}\cdots x_0$ be any node of CQ_n. We show that $T_i[x, r]$ is the unique path connecting x and r in T_i. By Lemma 2, if $H_i(x) = \emptyset$, then $x = N_i(r)$.

Thus, $\text{next}(i, x) = i$ and $T_i[x, r] = x \rightarrow r$ is the desired path that connects x and r in T_i.

Next, we suppose that $H_i(x) = \{j_{p-1}, j_{p-2}, \ldots, j_0\}$ is nonempty and it is treated as an ordered set such that $j_{p-1} > j_{p-2} > \cdots > j_0$. Clearly, $1 \leq p \leq n$. There are two scenarios as follows:

Case 1: $i \notin H_i(x)$ (i.e., $x_i = c_i$). Let $j_k = \text{next}(i, x)$, where $0 \leq k \leq p - 1$. By Eq. (2), we know that $j_{p-1} > j_{p-2} > \cdots > j_{k+1} > i > j_k > \cdots > j_0$. Since $H_i(x) \neq \emptyset$, we assume
that $y(\neq r) = y_{n-1}y_{n-2} \cdots y_0$ is the parent of x in T_i. That is, $y = \text{PARENT}(T_i, x) = N_j(x)$. By Lemma 1, the following condition hold: (i) $y_{n-1}y_{n-2} \cdots y_{j+1}y_j = x_{n-1}x_{n-2} \cdots x_{j+1}x_j$; (ii) $y_{j+1} = x_{j+1}$ when j is odd; and (iii) $y_{j+1} + x_{j+1} \sim x_{j+2} + x_j$ for $0 \leq j < [j_k/2]$. We consider the following two subcases:

Case 1.1: $\alpha_i(x)$ is even. By Eq. (1), $x_j \neq c_j$ for $j \in H_i(x)$ and $x_j = c_j$ for $j \notin Z_n \setminus H_i(x)$. Thus, we have $I_i(x) = H_i(x) \setminus \{j_k, j_{k-1}, \ldots, j_0\}$. Since $i > j_k$, we have $y_j = x_j$ for every bit at position j with $j > i$. Thus, $I_i(y) = I_i(x)$. In addition, for $j_k < j < i$, we have $y_j = x_j = c_j$. Moreover, $x_{j_k} \neq c_{j_k}$ and $y_{j_k} \neq x_{j_k}$ imply $y_{j_k} = c_{j_k}$. Let $F = \{j \in Z_{j_k} : y_j \neq c_j\}$. Then, we can determine $H_i(y)$ as follows: $H_i(y) = I_i(y) \cup F = (H_i(x) \setminus \{j_k, j_{k-1}, \ldots, j_0\}) \cup F$.

Case 1.2: $\alpha_i(x)$ is odd. By Eq. (1), $x_j \neq c_j$ for $j \in H_i(x)$ and $x_j = c_j$ for $j \notin Z_n \setminus H_i(x)$. Thus, we have $I'_i(x) = \{j \in Z_{j_k} : x_j \neq c_j \text{ and } j > i\}$. Clearly, $I'_i(x) = I_i(x)$. In addition, for $j_k < j < i$, we have $y_j = x_j = c_j$. Moreover, $x_{j_k} \neq c_{j_k}$ and $y_{j_k} \neq x_{j_k}$ imply $y_{j_k} = c_{j_k}$. Let $F = \{j \in Z_{j_k} : y_j \neq c_j\}$. Then, we can determine $H_i(y)$ as follows: $H_i(y) = I'_i(y) \cup F = (H_i(x) \setminus \{j_k, j_{k-1}, \ldots, j_0\}) \cup F$.

From above, we can determine $H_i(y)$. In particular, we can show that $H_i(y) \sim_{\text{LEX}} H_i(x)$ and $j_k \notin H_i(y)$. By a similar argument, if $H_i(y) \neq \emptyset$, let $z = \text{PARENT}(T_i, y) = N_j(y)$ be the parent of y in T_i, where $j = \text{NEXT}(i, y)$. Again, we can determine $H_i(z)$ and show that $j_k,j_0 \notin H_i(z)$. By this way, we can find a sequence of nodes $y = z, z_1, \ldots, c = N_i(r)$ such that $H_i(c) = \emptyset$. Recall that we have already constructed $T_i[r, c] = c \sim r$ for connecting c and r in T_i before Case 1. Therefore, we obtain the following unique path that connects x and r in T_i:

$$T_i[x, r] : x \sim y \sim z \sim \cdots \sim y_{j_k} \sim c \sim r.$$

Case 2: $i \in H_i(x)$ (i.e., $x_i \neq c_i$). Suppose $i = j_k$ for some $k \in \{0, 1, \ldots, p-1\}$. By Eq. (2), we have $\text{NEXT}(i, x) = i$. Let $y = \text{PARENT}(T_i, x) = N_j(x)$. Clearly, $y_i = x_i = c_i$. This shows that the current status of y is in the situation of Case 1. Let $P = T_i[y, r]$ be the path connecting y and r in T_i. Therefore, we obtain the unique path $T_i[x, r]$ by concatenating $x \sim y$ and P.

According to the proof of Theorem 3, we have the following properties.

Corollary 4. For $i \in Z_{n}$, let $T_i[x, r] : v_0(= x) \sim_{j_1} v_1 \sim_{j_2} \cdots \sim_{j_k} v_k \sim r$ be a path constructed from Theorem 3. Then, the following statements hold:

1. $\emptyset = H_i(v_k) \sim_{\text{LEX}} H_i(v_{k-1}) \sim_{\text{LEX}} \cdots \sim_{\text{LEX}} H_i(v_0)$.
2. For $1 \leq \ell < m \leq k$, $j_\ell \notin H_i(v_m)$ (i.e., $j_\ell \neq j_m$).
3. For $2 \leq \ell \leq k$, $j_\ell \neq i$. In particular, it is possible $j_1 = i$.

For instance, if we consider the path $T_3[34, 27] = 34 \sim_2 38 \sim_0 39 \sim_5 23 \sim_4 29 \sim_2 27$ in Figure 3, we can verify from Table 1 as follows: $(H_2(39) = \emptyset) \sim_{\text{LEX}} H_2(23) = \{3\} \sim_{\text{LEX}} H_2(13) = \{4\} \sim_{\text{LEX}} H_2(38) = \{5, 4, 3\} \sim_{\text{LEX}} H_2(34) = \{5, 4, 3, 2, 0\}$. Let $\text{HEIGHT}(T)$ denote the height of a tree T. Since $|H_i(x)| \leq n$ for every node $x \in V(CQ_n)$, the following result can be obtained from Corollary 4 directly.

Corollary 5. For $i \in Z_{n}$, $\text{HEIGHT}(T_i) \leq n + 1$.

Theorem 6. The spanning trees constructed from CONSTRUCTING-ISTS are independent.

Proof. We prove the lemma by contradiction. Suppose that the lemma is false. That is, there exist two integers $i, j \in Z_{n}$ and a node $x \in V(CQ_n)$ such that the following two paths constructed in Theorem 3 satisfy $\{x, r\} \not\subseteq P \cap Q$:

$$P = T_i[x, r] : u_0(= x) \sim_{j_0} u_1 \sim_{j_1} u_2 \sim_{j_2} \cdots \sim_{j_k} u_k \sim r$$

and

$$Q = T_j[x, r] : v_0(= x) \sim_{j_0} v_1 \sim_{j_1} v_2 \sim_{j_2} \cdots \sim_{j_n} v_m \sim r.$$

Suppose that $u_p = v_q$ for $1 \leq p < k$ and $1 \leq q < m$. Let $A = \{j_0, j_1, \ldots, j_{k-1}, 1\}$ and $B = \{q, q+1, \ldots, m-1, j\}$. Since $i \neq j$, by Corollary 4 we have $A \neq B$. Let $d = \max(|A \cup B| \setminus (A \cap B))$. This implies that the dth bit of u_p is different from that of v_q, which leads to a contradiction. □

According to Theorems 3 and 6, we have the following main result.

Corollary 7. Let $N = 2^n$ and $r \in V(CQ_n)$ be an arbitrary node. Algorithm CONSTRUCTING-ISTS can correctly construct n ISTs rooted at r in $O(N \log n)$ time. In particular, the algorithm can be parallelized to run in $O(\log N)$ time using N processors of CQ_n.

References

[1] F. Bao, Y. Fanyu, Y. Hamada and Y. Igarashi, Reliable broadcasting and secure distributing

