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Abstract

Testing the ambiguity of finite-state automata,
in the viewpoint of symbolic dynamics, is related to
the study of topological entropy. This elucidation
proposes an algorithm for the computation of the
topological entropy of a given finite-state automa-
ton. Our algorithm is efficient for transforming a
finite-state automaton into a deterministic finite-
state automaton, and thus can be used to deter-
mine the topological entropy of the original finite-
state automaton.

1 Introduction

A finite-state automaton F is a 5-tuple
(Σ, Q,E, I, F ) where Σ is a finite alphabet; Q is a
finite set of states; I ⊆ Q the set of initial states,
and E ⊆ Q×(Σ∪{ε})×Q a finite set of transitions,
herein ε denotes the empty string. Mathemati-
cally, a finite-state automaton is a labeled graph
with a distinguished “initial state” and a distin-
guished subset of “terminal states”. A language
is a set of words over a finite alphabet. The lan-
guage of a finite-state automaton is the set of all
labels of paths that begin at the initial state and
end at a terminal state, and a language is called a
regular language if it is a language of a finite-state
automaton.

A finite-state automaton whose labeling is
right-resolving is called a deterministic finite-state
automaton or DFA for short. To investigate a
finite-state automaton is to study the shift space
induced by a labeled graph in symbolic dynamical
systems. The connections between, regular lan-
guages, automata theory, and symbolic dynamics
are referred to [4, 7, 9, 10].
F is said to be unambiguous if no string x ∈ Σ∗

labels two distinct accepting paths. Determining
the ambiguity of F is related to the topological en-
tropy of F and has been widely elucidated for the

past few decades [1, 5, 6, 8, 12, 13, 14]. This pa-
per aims to provide an algorithm to demonstrate
the complexity of a finite-state automaton through
calculating topological entropy.

The rest of the paper is organized as follows.
Section 2 presents the definitions and some results
of symbolic dynamics that are related to the study
of finite-state automata. Our main results are re-
vealed in Section 3, and Section 4 concludes the
present paper with further work.

2 Preliminary

This section recall some definitions and known
results for labeled graphs and sofic shifts to make
the present elucidation self-contained. We refer
the reader to [3, 2, 11] and the references therein
for more details.

Let A = {0, 1, . . . , n − 1} be a finite alphabet
with cardinality |A| = n. The full A-shift AZ is
the collection of all bi-infinite sequences of symbols
from A. More precisely,

AZ = {α = (αi)i∈Z : αi ∈ A for all i ∈ Z}.

The shift map σ on the full shift AZ is defined by

σ(α)i = αi+1 for i ∈ Z.

A shift space X is a subset of AZ such that σ(X) ⊆
X.

Definition 2.1. For each m ∈ N, let

Am = {w0w1 · · ·wk−1 : wi ∈ A, 1 ≤ k ≤ m}

and let A0 denote the empty set. If X is a shift
space and there exists L ≥ 0 and F ⊆ AL such
that

X = {(αi)i∈Z : αiαi+1 · · ·αi+k−1 /∈ F
for k ≤ N, i ∈ Z},

then we say that X is a shift of finite type (SFT).
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A SFT can be constructed via a finite, directed
graph by considering the collection of all bi-infinite
walks on the graph. We recall some definitions
first.

Definition 2.2. A (directed) graph G = (V, E)
consists of a finite set V = V(G) of vertices (or
states) together with a finite set E = E(G) of edges.
Each edge e ∈ E starts at an initial state i(e) and
terminates at a terminal state t(e). Sometimes
we also denote an edge e by e = (i(e), t(e)) to
emphasize the initial and terminal states of e.

Let G and H be graphs. A homomorphism
(∂Φ,Φ) : G → H consists of a pair of maps
∂Φ : V(G) → V(H) and Φ : E(G) → E(H) such
that i(Φ(e)) = ∂Φ(i(e)) and t(Φ(e)) = ∂Φ(t(e))
for all e ∈ E(G). A homomorphism is an isomor-
phism if both ∂Φ and Φ are one-to-one and onto.

Without loss of generality, we assume that, for
any two vertices in a graph, there is at most one
corresponding (directed) edge. Let G = (V, E)
be a graph. The transition matrix TG of G, in-
dexed by V, is an incidence matrix defined by
TG(I, J) = 1 if and only if (I, J) ∈ E . On the
other hand, suppose T is an n × n incidence ma-
trix, then the graph of T is the graph G = GT with
vertex set V = {1, 2, . . . , n}, and with T (I, J) edge
from vertex I to vertex J . It follows immediately
from the definitions that

T = TGT
and G ∼= GTG

Each graph G with corresponding transition ma-
trix T gives rise to a SFT.

Definition 2.3. Let G = (V, E) be a graph with
transition matrix T . The edge shift XG or XT is
the shift space over the alphabet A = E specified
by

XG = XT = {ξ = (ξj)j∈Z ∈ EZ : ξj , ξj+1 ∈ E
such that i(ξj+1) = t(ξj) for j ∈ Z}.

(1)

Suppose G is a graph. It is seen that XG is
a shift of finite type. Sometimes certain edges of
G can never appear in XG, and such edges are
inessential for the edge shift. A vertex I ∈ V is
called stranded if either no edges start at I or no
edges terminate at I. We say that a graph is es-
sential if no vertex of the graph is stranded. The
following proposition demonstrates that we can fo-
cus the discussion on those essential graphs.

Proposition 2.4 ([11]). If G is a graph, then
there is a unique subgraph H of G such that H
is essential and XH = XG.

A graph G is irreducible if for every ordered
pair of vertices I and J there is a path in G
starting at I and terminating at J , herein a path
π = v1v2 . . . vm on a graph G we mean a finite se-
quence of vertices from G such that (vi, vi+1) ∈ E
for i = 1, 2, . . . ,m − 1. It can be verified that an
essential graph is irreducible if and only if its edge
shift is irreducible.

Suppose we label the edges in a graph with sym-
bols from an alphabet S. Every bi-infinite walk
on the graph yields a point in the full shift SZ by
reading the labels of its edges, and the set of all
such points is called a sofic shift.

Definition 2.5. Suppose G = (V, E) is a directed
graph, and S is a finite alphabet. A labeled graph
G is a pair (G,L) with graph G and the labeling
L : E → S assigns to each edge e of G a label
L(e) ∈ S. The underlying graph of G is G.

Let G = (G,LG) and H = (H,LH) be labeled
graphs. A labeled-graph homomorphism from G to
H is a a graph homomorphism (∂Φ,Φ) : G → H
such that LH(Φ(e)) = LG(e) for all e ∈ E(G). A
labeled-graph homomorphism is actually a labeled-
graph isomorphism if (∂Φ,Φ) is an isomorphism.

Definition 2.6. Suppose G = (G,L) is a la-
beled graph. The shift space XG is called a
sofic shift. Moreover, we say that G is right-
resolving if L((v, w)) 6= L((v, w′)) for v ∈ V and
(v, w), (v, w′) ∈ E .

It is seen that a SFT is also a sofic shift. Indeed,
sofic shifts is an extension of SFTs.

Theorem 2.7 ([11]). A shift space is sofic if and
only if it is a factor of a SFT. Furthermore, a sofic
shift is a SFT if and only if it has a presentation
(G,L) such that L∞ is a conjugacy.

A quantity that describes the complexity of a
system is topological entropy. Suppose X is a shift
space. Denote Γk(X) the cardinality of the collec-
tion of words of length k. The topological entropy
of X is then defined by

h(X) = lim
k→∞

Γk(X)

k

3 Complexity of Finite Automata

One of the most frequently used quantum for
the index of spatial complexity is the topological
entropy. Notably, the topological entropy mea-
sures the growth rate of a number of patterns of an
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invariant closed space. Since a finite-state automa-
ton is presented by a labeled graph G = (G,L)
with a distinguished “initial state” and a distin-
guished subset of “terminal states”, it is not an
invariant space. By complexity, therefore, instead
of the classical topological entropy, we focus on
the following definition.

Definition 3.1. Suppose F is a finite-state au-
tomaton. Let Nn(F) denote the number of dis-
tinct initial blocks of length n in F . The topolog-
ical entropy1 of F is defined by

hf (F) = lim sup
n→∞

1

n
logNn(F). (2)

Our main result then follows.

Theorem 3.2. For a finite-state automaton F ,

hf (F) = htop(XG) (3)

provided G is irreducible, where G is a labeled graph
representation of F .

Theorem 3.2 indicates that, once the labeled
graph representation G of a finite-state automa-
ton F is given and is irreducible, the computa-
tion of topological entropy hf (F) is equivalent to
find the classical topological entropy of a sofic
shift XG . Let X be a SFT with transition ma-
trix T . Perron-Frobenius Theorem indicates that
h(X) = log ρ(T ), where ρ(T ) is the spectral radius
of T . Nevertheless, if X is a sofic shift which is not
right-resolving, then log ρ(T ) might no longer be
the topological entropy of X. Instead, we need to
find X a right-resolving presentation via the so-
called subset construction method (SMC).

Subset Construction Method

Let X be a sofic shift over the alphabet A hav-
ing a presentation G = (G,L). If G is not right-
resolving, then a new labeled graph H = (H,LH)
is constructed as follows.

The vertices I of H are the nonempty subsets of
the vertex set V(G) of G. If I ∈ V(H) and a ∈ A,
let J denote the set of terminal vertices of edges
in G starting at some vertices in I and labeled a,
i.e., J is the set of vertices reachable from I using
the edges labeled a.

1) If J = ∅, do nothing.

1We abuse the terminology “topological entropy” for
the measurement of complexity of a finite-state automaton
without ambiguity.

2) If J 6= ∅, J ∈ V(H) and draw an edge in H
from I to J labeled a.

Carrying this out for each I ∈ V(H) and each
a ∈ A produces the labeled graph H. Then, each
vertex I in H has at most one edge with a given
label starting at I. This implies that H is right-
resolving.

Theorem 3.3 ([11]). Let G = (G,L) be a labeled
graph representation of a sofic shift X which is not
right-resolving, and let H = (H,LH) be a right-
resolving labeled graph constructed under the sub-
set construction method. Then XG = XH.

It follows immediately that htop(X) =
htop(XH) = log ρ(TH). In other words,

hf (F) = htop(XG) = log ρ(TH) (4)

provided G is a labeled graph representation
of finite-state automaton F and H is a right-
resolving labeled graph obtained by applying SMC
to G.

Suppose M is the symbolic transition matrix of
a labeled graph G, namely,

M(p, q) =

{
L(e), i(e) = p, t(e) = q, T (p, q) = 1;
∅, otherwise.

(5)
Herein e ∈ E . Now we are ready to propose the
algorithm for measuring the complexity of a finite-
state automaton F . Let k = |S| and ` = |V|
denote the cardinality of the set of labels S and
vertices V, respectively..
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Figure 1: The graph presentation of the finite-
state automaton in Example 3.4.

Algorithm EFA(M)
for i is between 1 and k do

Li ← projection of M with symbol indexed i
enlarge Li to restore all nonempty subset of S
for j is between 1 and 2` do

if (U ⊆ V and Li(U) = i) then
Li(j, U)← 0 and Li(j, {U})← i
V (i, {U})← i

end if
end for

end for
N ← ΣLi

Construct a zero matrix Vtest
for i is between 1 and ` do

while ΣjV (i, j) > ΣjV test(i, j) do
V test← V
for j is between `+ 1 and 2` do

if (V (i, j) > 0) then
V (i)← V (i) + V (j)

end if
end for

end while
end for
V (1)← Σ1≤j≤`V (i)
for i is between 1 and 2` do

if (V (1, i) = 0) then
N(i) = 0

end if
end for
ρ← maximal eigenvalue of N
entropy ← log ρ

Example 3.4. Suppose a finite-state automaton
F comes with labeled graph representation G with
initial state v1 and terminal states v3, v4. See Fig-
ure 1.

It is seen that G is not right-resolving. After
applying SCM to G, the irreducible right-resolving
labeled graph representation H of F is shown as
follows.

v3 v2, v4

2

3

4

It comes immediately that the transition matrix
of H is

TH =

(
0 1
1 1

)
with spectral radius g =

1 +
√

5

2
, which is the

golden mean. Theorem 3.2 infers that the topo-
logical entropy of F is hf (F) = log g.

4 Conclusion

A finite-state automaton is, in the viewpoint of
mathematics, a labeled graph with a distinguished
“initial state” and a distinguished subset of “ter-
minal states”. This paper demonstrates that the
topological entropy of a finite-state automaton is
identical to the classical topological entropy of the
sofic shift induced by its labeled graph represen-
tation. Furthermore, we propose an algorithm to
find its corresponding deterministic finite-state au-
tomaton if the original one is not deterministic.
The topological entropy of the finite-state automa-
ton is also explicitly formulated.

An efficient algorithm for minimizing the num-
ber of the states in a specific finite-state automa-
ton is under going.
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