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Abstract
 
In a graph G, an incidence is a pair (u, e) which u is 
a vertex of G and e is an edge of G incident with 
vertex u. Two incidences (v, e) and (u, f) are adjacent 
if v = u, or e = f, or the edge vu = e or f. The 
incidence coloring number of G, denoted as �i(G), is 
the smallest k for which there exists a mapping from 
the set of incidences of G to a set of k colors that 
adjacent incidences are assigned distinct colors. In 
this paper, we study the incidence coloring on 
chordal rings, abbreviated as CR(n, d), and provide 
the following results: (i) �i(CR(N, d)) = 5, if N � 0 
(mod 5) and d = 2 or 3, (ii) �i(CR(N, 2)) = 6, if N 
mod 5 � 0, and (iii) �i(CR(N, 3)) = 6, if N � 2 (mod 
5). 
Keywords: Incidence Coloring; Chordal Rings. 

1. Introduction 

Let G = (V(G), E(G)) be a finite, simple and 
undirected graph, where V(G) and E(G) are vertex 
and edge sets of G, respectively. An incidence of G is 
a pair (v, e) where v � V(G) is a vertex and e � E(G) 
is an edge incident with v. Two incidences (v, e) and 
(u, f) are adjacent if one of the following holds: (a) v 
= u, (b) e = f or (c) vu = e or vu = f. See Figure 1 for 
the three configurations of adjacent incidences, 
where a ‘*’ attached on an edge e and was near to a 
vertex v represents an incidence (v, e). 

 

Figure 1: 3 configurations of adjacent incidences. 

We denote by I(G) the set consisting of all 
incidences of a graph G. A proper incidence coloring 

of G is a mapping from I(G) to a set of k colors such 
that adjacent incidences are assigned distinct colors. 
A k-incidence coloring of G is a proper incidence 
coloring such that the size of the color set is k. The 
smallest k required for such a coloring is called the 
incidence coloring number (or incidence chromatic 
number) of G, and is denoted by �i(G).  

The incidence coloring problem was introduced by 
Brualdi and Massey [3] and they further conjectured 
the upper bound �i(G) � �(G) + 2 for every graph G, 
abbreviated as IC conjecture, where �(G) is the 
maximum degree of G. Later on, Guiduli [7] gave a 
counterexample to disprove the IC conjecture. 
However, some authors showed that the IC 
conjecture holds for special classes of graphs. 
Incidence coloring on various classes of graphs has 
been studied in [4-9, 12-21]. Li and Tu [10] showed 
that the problem of determining whether a graph G 
has incidence coloring number at most k or not is 
NP-complete. 

In this paper, we study the incidence coloring on 
chordal rings, abbreviated as CR(n, d), and provide 
the following results: (i) �i(CR(N, d)) = 5, if d � {2, 
3} and N � 0 (mod 5), (ii) �i(CR(N, 2)) = 6, if N mod 
5 � 0, and (iii) �i(CR(N, 3)) = 6, if N � 2 (mod 5).

 
2. Premilirary 

Chordal rings (also called distributed loop 
networks) are a variation of ring networks. By adding 
two extra links at each vertex in a ring network, the 
reliability and fault-tolerance of the network are 
enhanced [2, 3]. A chordal ring CR(n, d) is a graph 
with vertex set V(G) = {v0, v1, ... , vN-1} and edge set 
E(G) = {vivj | [i � j]N = 1 or d}, where [x]y denotes x 
modulo y. To ensure that every vertex has four 
adjacent vertices, we assume d < N/2. An example of 
a CR(10, 4) is shown in Figure 2.  

Let w be a vertex with the maximum degree in a 
graph G. By the condition (a) of adjacency, any 
proper incidence coloring of G needs �(G) colors to 
assign to (w, e) for all e � E(G) which is incident 
with w. Also, by conditions (b) and (c) of adjacency, 
at least one additional color is required to assign to 
all (u, e) for every e � E(G) which is incident with w. 
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Thus, �i(G) � �(G) + 1. Since maximum degree of a 
chordal ring is four, we have the following lemma. 

Output: A incidence coloring 	 for CR(N, 2). 
If N mod 5 = 0 then  

Call Procedure A with t = N; 
Lemma 1. �i(CR(N, d)) � 5. Else 

Call Procedure A with t = N – 1; 

 

L(vN-1) 
 5; 
   For each incidence j � If (vN-1) do 

	 (j) 
 L(vN-1) ; 
End if 

 
In Algorithm IC2A, we partition V(CR(N, 2)) into 

five (respectively, six) color sets when N mod 5 = 0 
(respectively, N mod 5 = 1), and L(v) be the 
membership function to confirm that which color set 
does the vertex v belong to. All incidences of If (v) 
are assigned color L(v). For example, Figure 3(a) and 
3(b) shows a 5 and 6-incidence coloring of CR(5, 2) 
and CR(6, 2), respectively. 

Figure 2: CR(10, 4). 

 

For a vertex v � CR(N, d), we denote by In(v) the 
set of incidences of the form (v, vu) and by If (v) the 
set of incidence of the form (u, vu). Clearly, both In(v) 
and If (v) contain exactly 4 incidences in CR(N, d). 
Wu [10] gave the following property for regular 
graphs: 

Lemma 2. [20] Let G be a regular graph G. If �i(G) 
= �(G) + 1, then |V(G)| is a multiple of �(G) + 1. 

For CR(N, d), it is clear that |V(G)| = N, and N is a 
multiple of �(G) + 1 = 5 if and only if N � 0 (mod 5). 
By Lemma 1 and 2, the following is an immediate 
corollary. 

(a) A 5-incidence coloring on CR(5, 2). 

 

Corollary 3.    5, if N � 0 (mod 5)      
        6, otherwise. �i(CR(N, d)) � 
 
3. Incidence Coloring on CR(N, 2) 

In this section, we first present an algorithm that 
gives a 5-incidence coloring of CR(N, 2) when N � 0 
(mod 5) and 6-incidence coloring of CR(N, 2) when 
N � 1 (mod 5). 

Procedure A 
Input: A CR(N, 2) and a integer t. 
Output: A incidence coloring 	 of If (vi) which i = 0, 

1, 2, … , t – 1. 
(b) A 6-incidence coloring on CR(6, 2). For i 
 0 to t – 1 do 

   L(vi) 
 i mod 5; Figure 2: Incidence colorings on CR(5, 2) and CR(6, 
2).    For each incidence j � If (vi) do 

	 (j) 
 L(vi) ; 
Lemma 4. �i(CR(N, 2)) � 5 for N � 0 (mod 5), and 
�i(CR(N, 2)) � 6 for N � 1 (mod 5). 

End for 
 
Algorithm IC2A Proof. We first show that Algorithm IC2A produces a 

5-incidence coloring of CR(N, 2) for N � 0 (mod 5). Input: A CR(N, 2) which N � 0 or N � 1 (mod 5) 
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For any vertex vi in V(CR(N, 2)), we have 	(vi, vi vi+1) 
= (i + 1) mod 5, 	(vi, vi vi+2) = (i + 2) mod 5, 	(vi, vi 
vi-1) = (i – 1) mod 5 = (i + 4) mod 5, and 	(vi, vi vi-2) 
= (i – 2) mod 5 = (i + 3) mod 5. Also, all incidences 
of If (vi) are assigned the same color (i mod 5). We 
can verify that all incidences of In(vi) and If (vi) result 
in a proper incidence coloring without the three 
configurations of adjacent incidences. 

When N � 1 (mod 5), the proof is similar as the 
case N � 0 (mod 5). Since the last vertex vN-1 is a 
neighbor of vertex v0, we assign a new color 5 to all 
incidences of If (vN-1). Again, all incidences of In(vi) 
and If (vi) result in a proper incidence coloring. 
Algorithm IC2A produces a 6-incidence coloring of 
CR(N, 2) for N � 1 (mod 5)                   � 

Next, we gave Algorithm IC2B to provide a 
6-incidence coloring of CR(N, 2) for N mod 5 � {2, 
3, 4}. Algorithm IC2B partition all vertices of CR(N, 
2) into six color sets by function L(v) except the last 
vertex vN-1. All incidences of If (v) are assigned color 
L(v). Finally, we assign colors on all incidences in 
If(vN-1) and modified the color on some conflicted 
incidences, i.e., adjacent incidences with same color.

Algorithm IC2B 
Input: A CR(N, 2) which N mod 5 � {2, 3, 4} 
Output: A 6-incidence coloring 	 for CR(N, 2). 
Call Procedure A with t = N – 2; 
L(vN-2) 
 5; 
For each incidence j � If (vN-2) do 

	 (j) 
 L(vN-2); 
If N mod 5 = 2 then 
	 ( (v0, v0vN-1) ) 
 4;   	 ( (v1, v1vN-1) ) 
 4; 
	 ( (vN-3, vN-3vN-1) ) 
 1; 	 ( (vN-2, vN-2vN-1) ) 
 1; 
	 ( (vN-1, vN-3vN-1) ) 
 0; 	 ( (vN-1, vN-2vN-1) ) 
 2; 
	 ( (vN-1, v0vN-1) ) 
 3;  	 ( (vN-1, v1vN-1) ) 
 5; 

Else if N mod 5 = 3 then  
	 ( (v0, v0vN-1) ) 
 4;    	 ( (v1, v1vN-1) ) 
 4; 
	 ( (vN-3, vN-3vN-1) ) 
 1; 	 ( (vN-2, vN-2vN-1) ) 
 1; 
	 ( (vN-2, v0vN-2) ) 
 3;  	 ( (vN-1, vN-3vN-1) ) 
 2;  
	 ( (vN-1, v0vN-1) ) 
 3;  	 ( (vN-1, v1vN-1) ) 
 5; 

Else    // N mod 5 = 4 
	 ( (v0, v0vN-1) ) 
 4;    	 ( (v1, v1vN-1) ) 
 4; 
	 ( (vN-3, vN-3vN-1) ) 
 3; 	 ( (vN-2, vN-2vN-1) ) 
 4; 
	 ( (vN-2, v0vN-2) ) 
 3;  	 ( (vN-1, vN-2vN-1) ) 
 2;  
	 ( (vN-1, v1vN-1) ) 
 5; 

End if  
 

Lemma 5. �i(CR(N, 2)) � 6 for N mod 5 � {2, 3, 4}. 

Proof. Since Algorithm IC2B call the same 
Procedure A with Algorithm IC2A, there exist a 
proper coloring on all incidences in If (vi) for i = 2, 3, 
4, …, N – 4. We only need to check colors on 
incidences which incident with five vertices v0, v1, 
vN-3, vN-2 and vN-1, because the last vertex vN-1 is not 
partitioned by membership function L(v) and vN-1 

connects to v0, v1, vN-3 and vN-2 in CR(N, 2). 
In the remaining part of Algorithm IC2B, it assigns 

colors on four incidences in If (vN-1) and modifies the 
colors of conflicted incidences for three cases, i.e. N 
mod 5 � {2, 3, 4}, respectively. It is easy to check 
that the coloring is proper by seeing Figure 4 for 
illustration.                                � 

 
(a) A 6-incidence coloring on CR(N, 2) with N mod 5 = 2. 

 
(b) A 6-incidence coloring on CR(N, 2) with N mod 5 = 3. 

 
(c) A 6-incidence coloring on CR(N, 2) with N mod 5 = 4. 
Figure 4: Three illustrations of Lemma 5. The color 
numbers which are surrounded with red line are 
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Lemma 8. CR(N, d) is isomorphic to CR(N, d’) if 
and only if dd' mod N =1. [11] 

assigned in the remaining part of Algorithm IC2B. 

We summarize Corollary 3 and Lemmas 4, 5 as 
follows. 

 
Lemma 9. �i(CR(N, 3)) � 6 for N � 2 (mod 5). 

Theorem 6.     5, if N � 0 (mod 5) Proof. We first show that �i(CR(N, 3)) � 6 when N = 
7. By Lemma 8, CR(7, 3) � CR(7, 2). Then, �i(CR(7, 
3)) = �i(CR(7, 2)) � 6 by Lemma 5. When N � 11, 
Algorithm IC3B provide a 6-incidence coloring on 
CR(N, 3). The coloring is proper by seeing Figure 6 
for illustration.        � 

       6, otherwise. �i(CR(N, 2)) = 

4. Incidence Coloring on CR(N, 3) 

In fact, Procedure A can be applied in Algorithm 
IC3A to provide a 5-incidence coloring of CR(N, 3) 
when N � 0 (mod 5). 

L(v0)=0

v2

v0

v1

1
0

2
L(v1)=1

L(v2)
=2

5
3

4

0

1

2
3

vN-1

vN-2

vN-3

vN-4

vN-5
L(vN-5)=2

L(vN-4)=3

L(vN-3)=4

15

0 3

1
4

5
3

2
0

4

5
3

1
5

0

14

2

L(vN-2)
=5 0

4
5

L(vN-1)=5

 

Algorithm IC3A 
Input: A CR(N, 3) which N � 0 (mod 5) 
Output: A 5-incidence coloring 	 for CR(N, 3). 
Call Procedure A with t = N; 
 

Since Algorithm IC3A is similar to Algorithm 
IC2A, it is easy to check the following lemma.  

Lemma 7. �i(CR(N, 3)) � 5 for N � 0 (mod 5). 

For example, Figure 5 shows a 5-incidence 
coloring of CR(10, 3). Next, we gave Algorithm 
IC3B to provide a 6-incidence coloring of CR(N, 3) 
when N � 2 (mod 5) and N � 11. 

Figure 6: Illustrations of Lemma 9. The color 
numbers which are surrounded with red line are 
assigned in the remaining part of Algorithm IC3B. 

 

We summarize Corollary 3 and Lemmas 7, 9 as 
follows. 

Theorem 10.   5, if N � 0 (mod 5) 
        6, if N � 2 (mod 5). 

�i(CR(N, 3)) = 
 

5. Conclusion and Future Work 

In this paper, we study the incidence coloring 
problem on chordal rings, and show some exact 
values of �i(CR(N, d)). In our ongoing research, we 
find a interesting result that �i(CR(N, 4)) � �i(CR(N, 
3)) = �i(CR(N, 2)) = 5 with N � 0 (mod 5). For a 
direction of future research, it would be an 
interesting question to determine �i(CR(N, d)) for the 
remaining cases. 

Figure 5: 5-incidence coloring of CR(10, 3). 

Algorithm IC3B 
Input: A CR(N, 3) which N � 2 (mod 5) and N � 11. 
Output: A 6-incidence coloring 	 for CR(N, 3). References Call Procedure A with t = N – 2; 
L(vN-2) 
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L(vN-1) 
 5; 
For each incidence j � If (vN-2)  If (vN-1) do 
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 3; 
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