Linear-Time Algorithm for the Paired-Domination Problem on Weighted Block Graphs

Ching-Chi Lin and Cheng-Yu Hsieh

Department of Computer Science and Engineering, National Taiwan Ocean University, Keelung 20224, Taiwan
lincc@mail.ntou.edu.tw
Department of Computer Science and Information Engineering, National Taiwan University, Taipei 10617, Taiwan
r01922114@ntu.edu.tw

Abstract

Given a graph $G = (V, E)$, the domination problem is to find a minimum size vertex subset $S \subseteq V(G)$ such that every vertex not in S is adjacent to a vertex in S. A dominating set S of G is called a paired-dominating set if the induced subgraph $G[S]$ contains a perfect matching. The paired-domination problem involves finding a paired-dominating set S of G such that the cardinality of S is minimized.

Suppose that, for each $v \in V(G)$, we have a weight $w(v)$ specifying the cost for adding v to S. The weighted paired-domination problem is to find a paired-dominating set S whose weight $w(S) = \sum \{w(v) : v \in S\}$ is minimized. In this paper, we propose an $O(n + m)$-time algorithm for the weighted paired-domination problem on block graphs using dynamic-programming method. Moreover, the algorithm can be completed in $O(n)$ time if the block-cut-vertex structure of G is given.

1 Introduction

The domination problem has been extensively studied in the area of algorithmic graph theory for several decades; see [2, 8, 10–14] for books and survey papers. Given a graph $G = (V, E)$, the domination problem is to find a minimum size vertex subset $S \subseteq V(G)$ such that every vertex not in S is adjacent to a vertex in S. The problem has many applications in the real world such as location problems, communication networks, and kernels of games [11]. Depending on the requirements of different types of applications, there are several variants of the domination problem, such as the independent domination, connected domination, total domination, and perfect domination problems [2, 8, 14, 20]. These problems have been proved to be NP-complete and have polynomial-time algorithms on some special classes of graphs.

In particular, Haynes and Slater [9] introduced the concept of paired-domination motivated by security concerns. In a museum protection program, beside the requirement that each region has a guard in it or is in the protection range of some guard, the guards must be able back each other up.

In [9], Haynes and Slater showed that the paired-domination problem is NP-complete on general graphs and gave a lower bound of $n/\Delta(G)$ for the cardinality of a paired-dominating set of G. Recently, many studies have been made for this problem in proving NP-completeness, providing approximation algorithms, and finding polynomial-time algorithms on some special classes of graphs. Here, we only mention some related results. For more detailed information regarding this problem, please refer to [15]. Chen et al. [5] demonstrated that the paired-domination problem is also NP-complete on bipartite graphs, chordal graphs, and split graphs. In [3], Chen et al. proposed an approximation algorithm with ratio $\ln(2\Delta(G)) + 1$ for general graphs and showed that the problem is APX-complete, i.e., has no PTAS. Panda and Pradhan [18] strengthened the results in [5] by showing that the problem is also NP-complete for perfect elimination bipartite graphs.

Meanwhile, polynomial-time algorithms have been studied intensively on some special classes
of graphs such as tree graphs [19], weighted tree graphs [3], inflated tree graphs [16], permutation graphs [6,17], strongly chordal graphs [4], interval graphs [5,7] and circular-arc graphs [7]. Especially, Chen et al. [5] introduced an $O(m + n)$-time algorithm for block graphs, a proper superfamily of tree graphs. In this paper, we propose an $O(n + m)$-time algorithm for the weighted paired-domination problem on block graphs using dynamic-programming method, where $n = |V(G)|$ and $m = |E(G)|$. This strengthens the results in [3,5]. Moreover, the algorithm can be completed in $O(n)$ time if the block-cut-vertex structure of G is given. Notice that the block-cut-vertex structure of a block graph G can be constructed in $O(n + m)$ time by the depth first search algorithm [1].

The remainder of this paper is organized as follows. Section 2 gives the block-cut-vertex structure of a block graph G, we employ the dynamic-programming method to present an $O(n)$-time algorithm for finding a minimum-weight paired-dominating set of G. Section 3, gives an efficient implementation of the algorithm proposed in Section 2. Section 4 contains some concluding remarks and future work.

2 The Proposed Algorithm for Block Graphs

In a graph $G = (V,E)$, a vertex subset $S \subseteq V(G)$ is said to be a dominating set of G if every vertex not in S is adjacent to a vertex in S. Let $G[S]$ denote the subgraph of G induced by a subset S of $V(G)$. A dominating set S of G is called a paired-dominating set if the induced subgraph $G[S]$ contains a perfect matching. The paired-domination problem involves finding a paired-dominating set S of G such that the cardinality of S is minimized. Suppose that, for each $v \in V(G)$, we have a weight $w(v)$ specifying the cost for adding v to S. The weighted paired-domination problem is to find a paired-dominating set S whose weight $w(S) = \sum \{w(v) : v \in S\}$ is minimized. Given the block-cut-vertex structure of a block graph G, we designed an $O(n)$-time algorithm that determines a minimum-weight paired-dominating set of G using dynamic-programming method. Below, we introduce some preliminaries for block graphs.

For any connected graph G, a vertex $x \in V(G)$ is called a cut-vertex of G, if $G - x$ contains more than one connected component. A block is a maximal connected subgraph without a cut-vertex. A graph G is called a block graph, if every block in G is a complete graph. Notice that block graphs are a proper superfamily of tree graphs and a proper subfamily of chordal graphs. Suppose G has blocks B_1, B_2, \ldots, B_x and cut vertices c_1, c_2, \ldots, c_y. We define the block-cut-vertex graph $G^* = (V,E)$ of G, where

\[V(G^*) = \{B_1, B_2, \ldots, B_x, c_1, c_2, \ldots, c_y\}; \]
\[E(G^*) = \{(B_i, c_j) \mid c_j \in B_j, 1 \leq i \leq x, 1 \leq j \leq y\}. \]

Consequently, graph G^* is a forest and the leaves in G^* are precisely the blocks with exactly one cut-vertex in G. A block containing exactly one cut-vertex in G is called an end block. It should be noted that, by using the depth first

![Figure 1: (a) A block graph G. (b) The corresponding block-cut-vertex graph B for the block graph G in (a).](image-url)
search algorithm, one can recognize the block graphs and construct the block-cut-vertex graphs G^*, both in $O(n + m)$ time [1]. Figure 1 shows an illustrative example, in which Figure 1(b) depicts the corresponding block-cut-vertex graph G^* for the block graph G in Figure 1(a). Clearly, G has 7 blocks B_1, B_2, \ldots, B_7 and 6 cut vertices c_1, c_2, \ldots, c_6. Moreover, the end blocks of G are B_3, B_4, B_5, and B_7.

2.1 The algorithm

In this subsection, given the block-cut-vertex structure of a weighted block graph G, we propose an $O(n)$-time algorithm for finding a minimum-weight paired-dominating set of G. Before describing the approach in detail, four notations $D(H, u)$, $P(H, u)$, $P'(H, u)$, and $\bar{P}(H, u)$ are defined below, where H is a subgraph of G and $u \in V(H)$ is a cut vertex of G. The notations are introduced for the purpose of describing the recursive formulations used in developing dynamic-programming algorithms.

$$D(H, u) : A \text{ minimum-weight dominating set of } H, \ u \in D(H, u) \text{ and } H[D(H, u) - u] \text{ has a perfect matching.}$$

$$P(H, u) : A \text{ minimum-weight paired-dominating set of } H \text{ and } u \in P(H, u).$$

$$P'(H, u) : A \text{ minimum-weight paired-dominating set of } H \text{ and } u \notin P'(H, u).$$

$$\bar{P}(H, u) : A \text{ minimum-weight paired-dominating set of } H - u, \text{ and } u \text{ is not dominated by } \bar{P}(H, u).$$

Clearly, either $P(G, u)$ or $P'(G, u)$ is a minimum-weight paired-dominating set of G. For ease of subsequent discussion, $D(H, u)$, $P(H, u)$, $P'(H, u)$, and $\bar{P}(H, u)$ are called a κ_1-paired-dominating set, κ_2-paired-dominating set, κ_3-paired-dominating set, and κ_4-paired-dominating set of H with respect to u, respectively.

Consider a weighted block graph $H = B \cup G_1 \cup G_2 \cup \ldots \cup G_k$, where B is a block of H, G_i and G_j have disjoint vertex sets for $i \neq j$, and u_1, u_2, \ldots, u_k are the vertices of B such that $V(B) \cap V(G_i) = u_i$ for $1 \leq i \leq k$. See Figure 2 for an illustrative example. In order to obtain a minimum-weight paired-dominating set of G, we use a dynamic-programming approach to iteratively determine $D(H, u_1)$, $P(H, u_1)$, $P'(H, u_1)$, and $\bar{P}(H, u_1)$ in a bottom-up manner. Suppose that the dominating sets $D(G_i, u_i)$, $P(G_i, u_i)$, $P'(G_i, u_i)$, and $\bar{P}(G_i, u_i)$ have been determined in the previous iterations and are assigned to vertex u_i for $1 \leq i \leq k$. If we know how to compute $D(H, u_1)$, $P(H, u_1)$, $P'(H, u_1)$, and $\bar{P}(H, u_1)$ in $O(k)$ time, we can then design an algorithm to solve the weighted paired-domination problem in $O(n)$ time using dynamic-programming method.

Based on the above observation, the concept of our algorithm is as below. The algorithm first sets the current graph $G' = G$ and the set of processed blocks $W = \emptyset$. Further, it initially assigns $D(G[\{v\}], v) = \{v\}$, $P(G[\{v\}], v) = \emptyset$, $P'(G[\{v\}], v) = \emptyset$, and $\bar{P}(G[\{v\}], v) = \emptyset$ to each vertex $v \in V(G)$. Specially, we use \emptyset to denote the empty set with a weight of infinity, i.e., $\emptyset = \emptyset$ and $w(\emptyset) = \infty$. The algorithm then iteratively processes blocks in the repeat loop. During each iteration of the loop, we remove an end block B with exactly one cut vertex in the current graph G' and determines the dominating sets $D(H, u)$, $P(H, u)$, $P'(H, u)$, and $\bar{P}(H, u)$, where u is the cut vertex and H is the connected component containing u in $G[B \cup W]$. After the execution of the repeat loop, we have only one block left, i.e., the
current graph G' is a block. With the information determined in the repeat loop, we now can find the two paired-dominating sets $P(G, u)$ and $P'(G, u)$, where u is an arbitrary vertex in G'. The output S is selected from $P(G, u)$ and $P'(G, u)$ based on the weights of the sets. The steps of the algorithm are detailed below.

Algorithm 1 Finding a paired-dominating set on weighted block graphs

Input: A weighted block graph G with the block-cut-vertex structure G^* of G.

Output: A minimum weighted paired-dominating set S of G.

1. Let $G' \leftarrow G$, $W \leftarrow \emptyset$.
2. For each $v \in V(G)$ do:
 3. Let $D(G'[v]) \leftarrow \emptyset$, $P(G[v], v) \leftarrow \Delta$.
 4. Let $P'(G[v], v) \leftarrow \Delta$, $P(G[v], v) \leftarrow \emptyset$.
3. End for.
4. Repeat:
 5. Arbitrarily choose a block B with exactly one cut vertex in G'.
 6. Suppose that $V(B) = \{u_1, u_2, \ldots, u_k\}$, where u_i is the cut vertex and G_i is the connected component of $G[W]$ such that $V(B) \cap V(G_i) = u_i$ for $1 \leq i \leq k$.
 7. Find $D(H, u_1), P(H, u_1), P'(H, u_1), \bar{P}(H, u_1)$, where $H = B \cup G_1 \cup G_2 \cup \ldots \cup G_k$.
 8. Let $G' \leftarrow G - \{u_2, \ldots, u_k\}$, $W \leftarrow W \cup B$.
 9. Until G' itself is a block.
10. Find $P(G, u)$ and $P'(G, u)$, where u is an arbitrary vertex in G'.
11. Let $S \leftarrow P(G, u)$ if $w(P(G, u)) < w(P'(G, u))$, and $S \leftarrow P'(G, u)$ otherwise.
12. Return S.

In the next section, we will prove the correctness of the algorithm and give an $O(n)$-time implementation.

3 Efficient implementation of the algorithm

Let $H = B \cup G_1 \cup G_2 \cup \ldots \cup G_k$ be a weighted block graph such that B is a block of H and $V(G_i) \cap V(G_j) = \emptyset$ for $i \neq j$. Further, we suppose that u_1, u_2, \ldots, u_k are the vertices of B such that $V(B) \cap V(G_i) = \emptyset$ for $1 \leq i \leq k$. We refer to Figure 2 for an illustrative example. In this section, we provide an efficient implementation of algorithm 1. More concretely, given the dominating sets $D(G_i, u_i), P(G_i, u_i), P'(G_i, u_i)$, and $\bar{P}(G_i, u_i)$ for $1 \leq i \leq k$, dynamic-programming procedures are proposed in Subsections 3.1–3.4, which can determine $D(H, u_1), P(H, u_1), P'(H, u_1), \bar{P}(H, u_1)$ in $O(k)$ time, respectively. Clearly, the proposed procedures ensure the correctness of the algorithm and imply that the algorithm can be implemented in $O(n)$ time. Consequently, we can obtain the main result of this paper.

Theorem 1 Given a weighted block graph G with the block-cut-vertex structure of G, a paired-dominating set of G can be found in $O(n)$ time.

3.1 Determination of $D(H, u_1)$

First, some notations are introduced below, for the purpose of describing the procedures. For a set S of sets of vertices, $F(S)$ denotes the set with minimum weight in S. Further, let S^*_i be the set of vertices such that $S^*_i = F(\{D(G_i, u_i), P(G_i, u_i), P'(G_i, u_i), \bar{P}(G_i, u_i)\})$ for $2 \leq i \leq k$. We use r to denote the number of S^*_i such that $S^*_i = D(G_i, u_i)$, i.e., $r = |\{S^*_i \mid S^*_i = D(G_i, u_i) \text{ and } 2 \leq i \leq k\}|$. Suppose α is the index in $\{2, 3, \ldots, k\}$ such that $S^*_\alpha \neq D(G_{\alpha, u_{\alpha}})$ and $w(D(G_{\alpha, u_{\alpha}})) - w(S^*_\alpha)$ is minimized. Further, let β be the index in $\{2, 3, \ldots, k\}$ such that we have $S^*_\beta = D(G_{\beta, u_{\beta}})$ and $w(F(\{P(G_{\beta, u_{\beta}}, P'(G_{\beta, u_{\beta}}, \bar{P}(G_{\beta, u_{\beta}})\})) - w(S^*_\beta)$ is minimized.

Recall that $D(H, u_1)$ is a minimum-weight dominating set of H such that $u_1 \in D(H, u_1)$ and $H[D(H, u_1) - u_1]$ has a perfect matching. By the definition of $D(H, u_1)$, the only potential candidate for being a dominating set of G_1 is $D(G_1, u_1)$. Hence, in order to obtain $D(H, u_1)$, we first construct a dominating set $X = D(G_1, u_1) \cup S^*_2 \cup S^*_3 \cup \ldots \cup S^*_k$. We will show that if r is even, then $S = X$ is a κ_1-dominating set of H with respect to u_1. Otherwise, for the purpose of satisfying the requirement that $H[X - u_1]$ has a perfect matching with minimum cost, we can either replace S^*_α with $D(G_{\alpha, u_{\alpha}})$, or replace S^*_β with $F(\{P(G_{\beta, u_{\beta}}, P'(G_{\beta, u_{\beta}}, \bar{P}(G_{\beta, u_{\beta}})\})$. For the former case, a dominating set $X^+ = (X - S^*_\alpha) \cup D(G_{\alpha, u_{\alpha}})$ is created. On the other hand, a dominating set $X^- = (X - S^*_\beta) \cup F(\{P(G_{\beta, u_{\beta}}, P'(G_{\beta, u_{\beta}}, \bar{P}(G_{\beta, u_{\beta}})\})$ is built for the latter case. The output $S = F(\{X^+, X^-\})$ is selected from X^+ and X^- based on the weights of the sets. Similarly, we will show that S is a
\(\kappa_1\)-dominating set of \(H\) with respect to \(u_1\). The following is a formal description of the procedure.

Procedure 2 Finding \(D(H,u_1)\)

Input: Dominating sets \(D(G_i,u_i), P(G_i,u_i), P'(G_i,u_i), \) and \(P(G_i,u_i)\) for \(1 \leq i \leq k\).

Output: A \(\kappa_1\)-paired-dominating set \(S\) of \(H\) with respect to \(u_1\).

1. let \(X \leftarrow D(G_1,u_1) \cup S^+_1 \cup S^+_2 \cup \ldots \cup S^+_k\);
2. let \(X^+ \leftarrow (X - S^+_2) \cup D(G_2,u_2)\);
3. let \(X^- \leftarrow (X - S^-_2)\) and
 \(F\{(P(G_3,u_3),P'(G_3,u_3),\hat{P}(G_3,u_3))\};\)
4. if \(r\) is even, then let \(S \leftarrow X;\) otherwise, let
 \(S \leftarrow F\{(X^+,X^-)\};\)
5. return \(S\).

Lemma 2 Given the dominating sets \(D(G_i,u_i), P(G_i,u_i), P'(G_i,u_i), \) and \(P(G_i,u_i)\) for \(1 \leq i \leq k\). Procedure 2 outputs a \(\kappa_1\)-paired-dominating set \(S\) of \(H\) with respect to \(u_1\) in \(O(k)\) time.

Proof. The procedure certainly runs in \(O(k)\) time. To prove that \(S\) is a \(\kappa_1\)-paired-dominating set of \(H\) with respect to \(u_1\), it suffices to show that the output \(S\) is a minimum-weight dominating set of \(H\) such that \(u_1 \in S\) and \(H[S - u_1]\) has a perfect matching. By the definition of \(D(H,u_1)\), the only potential candidate for being a dominating set of \(G_1\) is \(D(G_1,u_1)\). Hence, we have \(D(G_1,u_1) \subseteq S\).

Since \(u_1 \in D(G_1,u_1)\) and \(B\) is a clique, all the three sets \(X^+, X^-\) and \(X^+ - X^-\) are dominating sets of \(H\). Therefore, it remains to show that the weight \(w(S)\) of \(S\) is minimized subject to the condition that \(H[S - u_1]\) contains a perfect matching.

Notice that, for \(2 \leq i \leq k\), both \(G_i[D(G_i,u_i) - u_i]\) and \(G_i[P(G_i,u_i)]\) contain perfect matchings and \(u_i \notin P'(G_i,u_i)\) or \(P(G_i,u_i)\). Hence, if \(r\) is even, then \(H[X - u_1]\) contains a perfect matching and the weight \(w(X)\) of \(X\) is minimized, as an immediate consequence of the selections of \(S_i\). Next, suppose that \(r\) is odd. In order to satisfy the condition that \(H[X - u_1]\) contains a perfect matching with minimum cost, it is natural to replace \(S^+_i\) with \(D(G_i,u_i)\), or replace \(S^+_i\) with \(F\{(P(G_3,u_3),P'(G_3,u_3),\hat{P}(G_3,u_3))\};\)

For the former case, a dominating set \(X^+ = (X - S^+_2) \cup D(G_2,u_2)\) is created. On the other hand, a dominating set \(X^- = (X - S^-_2)\) is built for the latter case. And, we select \(S\) from \(X^+\) and \(X^-\) based on the weights of the sets. As a consequence of selections of \(S^+_i, S^+_2, \) and \(S^+_i\) for \(2 \leq i \leq k\), one can verify that \(S = F\{(X^+,X^-)\}\) is a minimum-weight dominating set of \(H\) such that \(H[S - u_1]\) contains a perfect matching.

3.2 Determination of \(P(H,u_1)\)

Notice that \(P(H,u_1)\) is a minimum-weight dominating set of \(H\) such that \(u_1 \in P(H,u_1)\) and \(H[P(H,u_1)]\) has a perfect matching. Therefore, either \(D(G_1,u_1) \subseteq P(H,u_1)\) or \(P(G_1,u_1) \subseteq\).

In order to obtain \(P(H,u_1)\), we construct the six dominating sets \(X^+, X^-, Y, Y^+, Y^-\) and \(H\) of \(H\). The dominating sets \(X^+, X^-\) are created for the situation when \(H(Q_1,u_1)\) is a dominating set of \(G_1\).

Meanwhile, the dominating sets \(Y, Y^+, Y^-\) are built for the situation when \(P(G_1,u_1)\) is a dominating set of \(G_1\), where \(Y = P(G_1,u_1) \cup S^+_2 \cup S^+_1 \cup \ldots \cup S^+_k, Y^+ = (Y - S^+_2) \cup D(G_2,u_2),\) and \(Y^- = (Y - S^+_2) \cup F\{(P(G_3,u_3),P'(G_3,u_3),\hat{P}(G_3,u_3))\};\)

If \(r\) is even, then the induced subgraphs \(H[X^+,H[X^-]\) and \(H[Y]\) all contain perfect matchings. The output \(S = F\{(X^+,X^-)\}\) is selected from \(X^+, X^-\) and \(Y \) based on the weights of the sets. We will show that \(S\) is a \(\kappa_2\)-dominating set of \(H\) with respect to \(u_1\). Similarly, if \(r\) is odd, then the induced subgraphs \(H[X],H[Y^+]\) and \(H[Y^-]\) all contain perfect matchings. And, we will show that the output \(S = F\{(X,Y^+,Y^-)\}\) is a \(\kappa_2\)-dominating set of \(H\) with respect to \(u_1\) in this situation. The procedure is detailed in the next page.

Procedure 3 Finding \(P(H,u_1)\)

Input: Dominating sets \(D(G_i,u_i), P(G_i,u_i), P'(G_i,u_i), \) and \(P(G_i,u_i)\) for \(1 \leq i \leq k\).

Output: A \(\kappa_2\)-paired-dominating set \(S\) of \(H\) with respect to \(u_i\).

1. find the dominating sets \(X, X^+,\) and \(X^-\) as described in Procedure 2;
2. let \(Y \leftarrow P(G_1,u_1) \cup S^+_2 \cup S^+_1 \cup \ldots \cup S^+_k\);
3. let \(Y^+ \leftarrow (Y - S^+_2) \cup D(G_2,u_2);\)
4. let \(Y^- \leftarrow (Y - S^+_2) \cup F\{(P(G_3,u_3),P'(G_3,u_3),\hat{P}(G_3,u_3))\};\)
5. if \(r\) is even, then let \(S \leftarrow F\{(X^+,X^-,Y)\};\) otherwise, let \(S \leftarrow F\{(X,Y^+,Y^-)\};\)
6. return \(S\).

Lemma 3 Given the dominating sets \(D(G_i,u_i), P(G_i,u_i), P'(G_i,u_i), \) and \(P(G_i,u_i)\) for \(1 \leq i \leq k\),
Procedure 3 outputs a κ_2-paired-dominating set S of H with respect to u_1 in $O(k)$ time.

Proof. The procedure certainly can be completed in $O(k)$ time. To prove the correctness of the procedure, it suffices to show that the output S is a minimum-weight dominating set of H such that $u_1 \not\in S$ and $H[S]$ contains a perfect matching. Further, since $u_1 \in D(G_1, u_1) \cap P(G_1, u_1)$ and B is a clique, X, X^+, X^-, Y, Y^+ and Y^- are all dominating sets of H. Thus, it remains to show that the weight $w(S)$ of S is minimized subject to the condition that $H[S]$ contains a perfect matching.

Notice that, for $2 \leq i \leq k$, both $G_i[D(G_i, u_i) - u_i]$ and $G_i[P(G_i, u_i)]$ contain perfect matchings and $u_i \not\in P'(G_i, u_i) \cup P(G_i, u_i)$. We first consider the situation when r is even. For the case when $D(G_1, u_1)$ is a dominating set of G_1, in order to satisfy the condition that $H[X]$ contains a perfect matching with minimum cost, we may replace S^*_1 with $D(G_1, u_1)$ or replace S_3^* with $F(\{P(\beta, u_3), P(\beta, u_3), P(\beta, u_3)\})$. Thus, X^+ and X^- become the two potential candidates for S when $D(G_1, u_1) \subseteq P(H, u_1)$. For the case when $P(G_1, u_1)$ is a dominating set of G_1, $H[Y]$ contains a perfect matching. We select $S = F(X^+, X^-, Y)$ from X^+, X^- and Y based on the weights of the sets. As a consequence of selections of S^*_1, S_3^*, and S^*_2 for $2 \leq i \leq k$, one can verify that the output S is a minimum-weight dominating set of H such that $H[S]$ contains a perfect matching. Using a similar method of the above arguments, one can show that the correctness also holds for the situation when r is odd.

3.3 Determination of $P'(H, u_1)$

Recall that $P'(H, u_1)$ is a minimum-weight dominating set of H such that $u_1 \not\in P'(H, u_1)$ and $H[P'(H, u_1)]$ has a perfect matching. Therefore, either $P'(G_1, u_1) \subseteq P'(H, u_1)$ or $P(G_1, u_1) \subseteq P'(H, u_1)$ is a dominating set of G_1. For case of subsequent discussion, we consider the two cases $P'(G_1, u_1) \subseteq P'(H, u_1)$ and $P(G_1, u_1) \subseteq P'(H, u_1)$, respectively, in the rest of this subsection.

More concretely, a paired-dominating set Q_1 is created for the former situation. Meanwhile, a paired-dominating set Q_2 is built for the latter situation. Clearly, $P'(H, u_1)$ can be selected from Q_1 and Q_2 based on the weights of H.

3.3.1 Finding Q_1

Below we present an $O(k)$-time procedure for finding Q_1. The procedure solves the problem by considering eight cases C_1, C_2, \ldots, C_8 depending on S^*_1 and r. For $1 \leq i \leq 8$, the case $C_i = (c_1, c_2, c_3, c_4, c_5)$ is an ordered 5-tuple. For $1 \leq j \leq 5$, $c_j = 1$ if condition D_j holds, and $c_j = 0$ otherwise. Further, we have $c_j = \ast \ast \ast$ if condition D_j is known never to occur. The five conditions D_1, D_2, \ldots, D_5 are defined as follows:

- $D_1 : S^*_1 = P(G_1, u_1)$ for some $2 \leq i \leq k$.
- $D_2 : r$ is odd.
- $D_3 : r$ is equal to 1.
- $D_4 : r$ is equal to 0.
- $D_5 : S^*_1 = P(G_i, u_1)$ for some $2 \leq i \leq k$.

Then, we define the cases $C_1 = (1, 1, \ast, \ast, \ast), C_2 = (1, 0, \ast, \ast, \ast), C_3 = (0, 1, 1, 1, 1), C_4 = (0, 1, 1, 0, 0), C_5 = (0, 1, 0, 1), C_6 = (0, 0, 1, 1), C_7 = (0, 0, 1, 0), C_8 = (0, 0, 0, 1)$.

For example, case C_1 represents the situation when there exists an index t such that $S^*_t = P(G_t, u_1)$ with $2 \leq t \leq k$ and r is an odd number. Further, case C_7 represents the situation when there exists no index t such that $S^*_t = P(G_t, u_1)$ or $S^*_1 = P(G_1, u_1)$ and $r = 0$, i.e., $S^*_1 = P'(G_1, u_1)$ for $2 \leq i \leq k$. Moreover, one can verify that all the possible combinations of the five conditions have been considered.

Next, some notations and paired-dominating sets are introduced. Let α' be the index in $\{2, 3, \ldots, k\} - \{\alpha\}$ such that $S^*_\alpha' \neq D(G_{\alpha'}, u_{\alpha'})$ and $w(D(G_{\alpha'}, u_{\alpha'})) - w(S^*_\alpha')$ is minimized. Let γ be the index in $\{2, 3, \ldots, k\}$ such that $S^*_\gamma \neq P(G_\gamma, u_\gamma)$ and $w(P(G_\gamma, u_\gamma)) - w(S^*_\gamma)$ is minimized. Let $I = \{i \mid S^*_1 = P(G_i, u_i) \text{ and } 2 \leq i \leq k\}$. We define the following paired-dominating sets of H, which are the potential candidates for Q_1.

$$
Z_1 = P'(G_1, u_1) \cup S^*_1 \cup S_3^* \cup \cdots \cup S_8^*.
$$

$$
Z_1' = Z_1 - S_3^* \cup F(\{P(\beta_3, u_3), P(\beta_3, u_3), P(\beta_3, u_3)\}).
$$

$$
T_1 = (Z_1 - S^*_1) \cup P(G_\gamma, u_\gamma).
$$

$$
T_2 = (Z_1 - S^*_1 - S_3^*) \cup D(G_\alpha, u_\alpha) \cup D(G_{\alpha'}, u_{\alpha'}) \cup D(G_{\alpha''}, u_{\alpha''}).
$$

$$
T_3 = (Z_1 - \cup_{i \in I} S^*_1) \cup \cup_{i \in I} P'(G_1, u_1).
$$

$$
T_4 = (Z_1 - S^*_1) \cup P(G_\beta_3, u_3).
$$

$$
T_5 = (Z_1 - S^*_1) \cup F(\{P(\beta_3, u_3), P(\beta_3, u_3), P(\beta_3, u_3)\}).
$$

$$
T_6 = (Z_1 - S^*_1 - S_3^*) \cup P(G_\gamma, u_\gamma) \cup P(G_{\gamma}, u_\gamma) \cup
\cup_{i \in I} P'(G_1, u_1).
$$

$$
T_7 = (Z_1 - S^*_1 - S_3^*) \cup P(G_{\gamma}, u_\gamma) \cup P(G_{\gamma}, u_\gamma) \cup
\cup_{i \in I} P'(G_1, u_1) \cup P(G_{\beta_3}, u_3).
$$

$$
T_8 = (Z_1 - \cup_{i \in I} S^*_1 - S_3^*) \cup (\cup_{i \in I} P'(G_1, u_1)) \cup
\cup_{i \in I} P(\beta_3, u_3).
$$

As mentioned earlier, we solve the problem by considering the eight cases C_1, C_2, \ldots, C_8. The relations between the cases C_1, C_2, \ldots, C_8 and the dominating sets $Z_1, Z_1^+, Z_1^-, T_1, \ldots, T_6$ are detailed in the following procedure. We will prove its correctness and analyze its running time in Lemma 4.

Procedure 4 Finding Q_1

Input: Dominating sets $D(G_i, u_i), P(G_i, u_i), P'(G_i, u_i)$, and $P(G_i, u_i)$ for $1 \leq i \leq k$.

Output: A minimum-weight dominating set S of H such that $u_1 \notin S, H[S]$ has a perfect matching, and $P'(G_1, u_1) \subseteq S$.

1. If C_0 or C_3 holds, then $S \leftarrow F(\{Z_1^+, Z_1^-\})$.
2. If C_2 or C_5 or C_8 holds, then $S \leftarrow Z_1^-$.
3. If C_3 holds, then $S \leftarrow F(\{Z_1^+, T_4, T_6, T_8\})$.
4. If C_4 holds, then $S \leftarrow F(\{Z_1^+, T_3, T_2\})$.
5. If C_6 holds, then $S \leftarrow F(\{T_3, T_2, T_3\})$.
6. Return S.

Lemma 4 Given the dominating sets $D(G_i, u_i), P(G_i, u_i), P'(G_i, u_i)$, and $P(G_i, u_i)$ for $1 \leq i \leq k$, Procedure 4 outputs a minimum-weight dominating set S of H such that $u_1 \notin S, H[S]$ has a perfect matching, and $P'(G_1, u_1) \subseteq S$. Moreover, the procedure can be completed in $O(k)$ time.

Proof. Clearly, all the paired-dominating sets $Z_1, Z_1^+, Z_1^-, T_1, \ldots, T_6$ can be constructed in $O(k)$ time. Hence, the procedure certainly runs in $O(k)$ time. Further, one can verify that all possible combinations of conditions D_1, D_2, \ldots, D_5 have been considered in cases C_1, C_2, \ldots, C_8. Hence, to prove the correctness of the procedure, it suffices to show that each step of the procedure is correct.

First, we consider cases C_1 and C_2. In both of these cases, there exists an index ℓ such that $S_\ell^* = P(G_\ell, u_\ell)$. Therefore, Z_1, Z_1^+, and Z_1^- are dominating sets of H. It follows that, if r is even, then Z_1 is a minimum-weight dominating set of H such that $u_1 \notin Z_1$ and $H[Z_1]$ has a perfect matching due to the selections of S_ℓ^* for $2 \leq \ell \leq k$. So, we have $S = Z_1$ for case C_2.

On the other hand, if r is odd, then in order to satisfy the condition that $H[Q_1]$ contains a perfect matching with minimum cost, we can either replace S_ℓ^* with $D(G_\ell, u_\ell)$, or replace S_ℓ^* with $F(\{P(G_\ell, u_\ell), P'(G_\ell, u_\ell), P(G_\ell, u_\ell)\})$. This implies that we have $S = F(\{Z_1^+, Z_1^-\})$ for case C_1.

Next, we consider cases C_3, C_4, and C_5. Notice that in all three cases, there exists no index ℓ such that $S_\ell^* = P(G_\ell, u_\ell)$ and r is an odd number. Moreover, for any paired-dominating set Q_1 of H, we have either $S_\ell^* = P(G_\ell, u_\ell)$ for $2 \leq \ell \leq k$ or $V(B) \cap V(Q_1) \neq \emptyset$, where $B = H[\{u_1, u_2, \ldots, u_k\}]$.

In case C_3, a paired-dominating set T_6 is created for the former. Meanwhile, paired-dominating sets Z_1^+, T_4, and T_6 are built for the latter. As a consequence of $r = 1$, in order to ensure $H[Q_1]$ contains a perfect matching when $V(B) \cap V(Q_1) \neq \emptyset$, we replace S_ℓ^* with $D(G_\ell, u_\ell)$ in Z_1^+, replace S_3^* with $P(G_3, u_3)$ in T_4, and replace S_5^* and S_6^* with $P(G_5, u_5)$ and $F(\{P(G_5, u_5), P(G_5, u_5)\})$ in T_6, respectively. Under the premise of minimizing weight, one can verify that Z_1^+, T_4, and T_6 are exactly the three potential candidates for Q_1. In case C_4, we have $S_\ell^* = D(G_\ell, u_\ell)$ and $S_3^* = P'(G_3, u_3)$ for $2 \leq \ell \leq k$ and $i \neq 3$. Using a similar method of the above arguments, one can show that $S = F(\{Z_1^+, T_3, T_7\})$ is true for case C_4.

In case C_5, we have $r \geq 3$. Therefore, for the same reasons as case C_1, we have $S = F(\{Z_1^+, Z_1^-\})$ for case C_5.

Finally, we consider cases C_6, C_7, and C_8. Notice that in all three cases, there exists no index ℓ such that $S_\ell^* = P(G_\ell, u_\ell)$ and r is an even number. In case C_6, we have either $S_\ell^* = P'(G_\ell, u_\ell)$ or $S_\ell^* = P(G_\ell, u_\ell)$, where $1 \leq \ell \leq k$. To ensure $H[Q_1]$ contains a perfect matching, we replace S_ℓ^* with $P(G_\ell, u_\ell)$ in T_1, replace S_4^* and S_5^* with $D(G_\ell, u_\ell)$ and $D(G_\ell, u_\ell')$ in T_2, and replace S_8^* with $P'(G_\ell, u_\ell)$ for all $i \in I$ in T_3, respectively. Under the premise of minimizing the weight $w(S)$, one can verify that $T_1, T_2, T_3, and T_4, T_5, T_6$ are exactly the three potential candidates for Q_1. Notice that, in case C_7, $S_\ell^* = P'(G_\ell, u_\ell)$ for $2 \leq \ell \leq k$. Further, $r \geq 2$ is an even number in case C_8. Thus, we have $S = Z_1$ for the same reasons as case C_2.

3.3.2 Finding Q_2

In the following, we present a procedure to find the paired-dominating set Q_2. Similar to Procedure 4, the procedure solves the problem by considering six cases $C_9, C_{10}, \ldots, C_{14}$. For $9 \leq i \leq 14$, the case $C_i = (c_1, c_2, c_3, c_4)$ is an ordered 4-tuple. Further, the value of c_3 has the same definition as before for $1 \leq k \leq 4$. Then, we define $C_9 = (1, 1, 1, 1)$, $C_{10} = (1, 0, 0, 1)$, $C_{11} = (0, 1, 1, 1)$, $C_{12} = (0, 1, 0, 0)$, $C_{13} = (0, 0, 1, 1)$, and $C_{14} = (0, 0, 0, 0)$. Again, one can verify that all the possible combinations of the four conditions have been considered in cases $C_9, C_{10}, \ldots, C_{14}$. The paired-dominating sets $Z_2, Z_2^+, Z_2^-, T_9, \ldots, T_{12}$ of H are defined below, which
are the potential candidates for Q_2.

$$Z_2 = \bar{P}(G_1, u_1) \cup S_2^1 \cup S_3^1 \cup \ldots \cup S_k^1.$$

$$Z_3 = (Z_1 - S_3^1) \cup D(G_a, u_a).$$

$$Z_4 = \{Z_1 - S_3^1\} \cup F\{P(G_{\beta}, u_{\beta}), P(G_{\beta}, u_{\beta}), \bar{P}(G_{\beta}, u_{\beta})\}.$$

$$T_9 = (Z_2 - S_3^2) \cup P(G_{\gamma}, u_{\gamma}).$$

$$T_10 = (Z_2 - S_3^2 - S_4^2 \cup D(G_a, u_a) \cup D(G_{\alpha'}, u_{\alpha'}).$$

$$T_{11} = (Z_2 - S_3^3) \cup P(G_{\beta}, u_{\beta}).$$

$$T_{12} = (Z_2 - S_3^3 - S_4^3) \cup P(G_a, u_a) \cup F\{P(G_{\beta}, u_{\beta}), \bar{P}(G_{\beta}, u_{\beta})\}.$$

Moreover, the relations between the cases $C_9, C_{10}, \ldots, C_{14}$ and the paired-dominating sets $Z_2, Z_3^2, Z_4^2, T_9, \ldots, T_{12}$ are detailed in the following procedure.

Procedure 5 Finding Q_2

Input: Dominating sets $D(G_i, u_i), P(G_i, u_i), P'(G_i, u_i)$, and $\bar{P}(G_i, u_i)$ for $1 \leq i \leq k$.

Output: A minimum-weight dominating set S of H such that $u_i \notin S$. $H[S]$ has a perfect matching, and $P(G_1, u_1) \subseteq S$.

1. if C_9 or C_{12} holds, then
 let $S \leftarrow F\{Z_2^3, Z_3^2\};$
2. if C_{10} or C_{14} holds, then
 let $S \leftarrow Z_2^3;$
3. if C_{11} holds, then
 let $S \leftarrow F\{Z_2^3, T_{11}, T_{12}\};$
4. if C_{13} holds, then
 let $S \leftarrow F\{T_9, T_{10}\};$
5. return S.

Lemma 5 Given the dominating sets $D(G_i, u_i), P(G_i, u_i), P'(G_i, u_i)$, and $\bar{P}(G_i, u_i)$ for $1 \leq i \leq k$, Procedure 5 outputs a minimum-weight dominating set S of H such that $u_i \notin S$, $H[S]$ has a perfect matching, and $P(G_1, u_1) \subseteq S$. Moreover, the procedure can be completed in $O(k)$ time.

Proof. Clearly, each step of the procedure can be completed in $O(k)$ time. Therefore, the procedure runs in $O(k)$ time. Further, one can verify that all the possible combinations of conditions $D_1, D_2, D_3,$ and D_4 have been considered in cases $C_9, C_{10}, \ldots, C_{14}$. Hence, to prove the correctness of the procedure, it suffices to show that each step of the procedure is correct.

First, we consider cases C_9 and C_{10}. In both of these cases, there exists an index ℓ such that $S_{\ell}^2 = P(G_\ell, u_\ell)$. Therefore, for the same reasons as cases C_1 and C_2 in Procedure 4, we have $S = F\{Z_2^3, Z_3^2\}$ for case C_9 and $S = Z_2^3$ for case C_{10}, respectively. Next, we consider cases C_{11}, and C_{12}. Notice that in both cases, there exists no index ℓ such that $S_{\ell}^2 = P(G_\ell, u_\ell)$ and r is an odd number. Since we have $r = 1$ in case C_{11}, in order to satisfy the condition that $H[Q_2]$ contains a perfect matching with minimum cost, we replace S_{α}^2 with $D(G_{\alpha}, u_{\alpha})$ in Z_{2}^2, replace S_{β}^2 with $P(G_{\beta}, u_{\beta})$ in T_{11}, and replace S_{γ}^2 and S_{δ}^2 with $P(G_{\gamma}, u_{\gamma})$ and $F\{P(G_{\beta}, u_{\beta}), P(G_{\beta}, u_{\beta})\}$. Hence, the procedure is completed in $O(k)$ time. Finally, we consider cases C_{13}, and C_{14}. Notice that in both cases, there exists no index ℓ such that $S_{\ell}^2 = P(G_\ell, u_\ell)$ and r is an even number. In case C_{13}, either $S_{\ell}^2 = P'(G_\ell, u_\ell)$ or $S_{\ell}^2 = \bar{P}(G_\ell, u_\ell)$ for $1 \leq i \leq k$. Therefore, to satisfy the condition that $H[Q_2]$ contains a perfect matching, we replace S_{α}^2 with $P(G_{\alpha}, u_{\alpha})$ in T_9, and replace S_{α}^2 and S_{β}^2 with $D(G_{\alpha}, u_{\alpha})$ and $D(G_{\alpha'}, u_{\alpha'})$ in T_{10}, respectively. Again, under the premise of minimizing the weight, one can verify that T_9 and T_{10} are exactly the two potential candidates for Q_2. Notice that, in case C_{14}, $r \geq 2$ is an even number. Thus, we have $S = Z_2^3$ for the same reasons as case C_9 in Procedure 2.

Combining Lemmas 4 and 5, we obtain the following result.

Lemma 6 Given the dominating sets $D(G_i, u_i), P(G_i, u_i), P'(G_i, u_i)$, and $\bar{P}(G_i, u_i)$ for $1 \leq i \leq k$, a κ_3-paired-dominating set $\bar{P}(H, u_1)$ can be determined in $O(k)$ time.

3.4 Determination of $\bar{P}(H, u_1)$

Remember that $\bar{P}(H, u_1)$ is a minimum-weight dominating set of $H - u_1$ and u_1 is not dominated by $\bar{P}(H, u_1)$. Hence, by the definition of $\bar{P}(H, u_1)$, the only composition is $P(H, u_1) = P(G_1, u_1) \cup P'(G_2, u_2) \cup \ldots \cup P'(G_k, u_k)$. This implies that, given the dominating sets $D(G_i, u_i), P(G_i, u_i), P'(G_i, u_i)$, and $\bar{P}(G_i, u_i)$ for $1 \leq i \leq k$, a κ_4-paired-dominating set $\bar{P}(H, u_1)$ can be determined in $O(k)$ time. Thus, we have the following result.

Lemma 7 Given the dominating sets $D(G_i, u_i), P(G_i, u_i), P'(G_i, u_i)$, and $\bar{P}(G_i, u_i)$ for $1 \leq i \leq k$, a κ_4-paired-dominating set $\bar{P}(H, u_1)$ can be determined in $O(k)$ time.
4 Conclusion and Future Work

In this paper, we have presented an optimal algorithm for finding a paired-dominating set of a block graph G. The algorithm uses a dynamic-programming approach to iteratively determine $D(H, u)$, $P(H, u)$, $P'(H, u)$, and $P(H, u)$ in a bottom-up manner, where H is a subgraph of G and $u \in V(H)$ is a cut vertex of G. When the graph is given in an adjacency list representation, our algorithm runs in $O(n + m)$ time. Moreover, the algorithm can be completed in $O(n)$ time if the block-cut-vertex structure of G is given.

Below we present some open problems related to the paired-domination problem. It is known that distance-hereditary graphs is a proper superfamily of block graphs. Therefore, it is interesting to study the time complexity of paired-domination problem in distance-hereditary graphs. In [3], Chen et al. proposed an approximation algorithm with ratio $\ln(2\Delta(G)) + 1$ for general graphs and showed that the problem is APX-complete, i.e., has no PTAS. Thus, it would be useful if we could develop an approximation algorithm for general graphs with constant ratio. Meanwhile, it would be desirable to show that the problem remains NP-complete in planar graphs and design an approximation algorithm.

References

