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Abstract—In this paper, we propose the stochastic pro-
gramming (SP) model with risk measure conditional value
at risk (CVaR) for investing stocks in Taiwan stock market.
In each period of investment, 200 scenarios are generated
for solving SP, and the CVaR is utilized to manage the
risk. The experiment interval starts from 2005/1/1 and ends
on 2013/12/31, which has totally 2235 trading periods. The
experimental results show that our method is able to earn
positive return. We also perform superior predictive ability
test to illustrate that our method can avoid the data snooping
problem. Our method achieves the best annualized return
13.26%, which is higher than the buy-and-hold annualized
return 12.19%.

Keywords-Stock; Stochastic programming; Conditional
value at risk; Superior predictive ability.

I. I NTRODUCTION

The portfolio problem is a very import issue in the
investment. One investor always prefers to have their
return as high as possible, but to have the risk as low as
possible at the same time. However, an investment with
high return usually accompanies with high risk. Markowitz
[9] proposed the mean-variance model, which built the
foundation of portfolio theory.

In the investment, it is difficult to evaluate the per-
formance of one asset, and there are many uncertain
parameters for modeling the problem. Therefore, to make
appropriate decision to earn return requires mathematical
analysis. Many researchers were devoted to the study of
mathematical models for dealing with uncertainty for mak-
ing better decisions. Ben-Talet al. [2] proposed robust the
multistage model for the portfolio problem. Li and Ng [8]
solved the multistage mean-variance model and they pro-
vided the analytic solution. Bertsimas and Pachamanova
[3] proposed the robust modeling of mutlistage portfolio
with transaction cost. Topaloglouet al. [15] utilized CVaR
for control the risk in the investment, and they utilized
stochastic programming (SP) and CVaR [16] for solving
the international asset allocation problem. However these
results mainly discussed theoretical models, it seems to
require more effectiveness in the investment.

Some researchers utilized evolutionary computing tech-
niques for solving particular portfolio problems which are
NP-complete or NP-hard. Changet al. [4] discussed port-
folio optimization problems with various risk measures by
the genetic algorithm. Chenet al. [5] utilized the genetic
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network programming for solving portfolio optimization
problems, Soleimaniet al. [14] utilized the genetic al-
gorithm for solving portfolio optimization problems with
cardinality constraints. These techniques are mainly to
deal with optimization problems which are difficult to
solve efficiently. However, approximate solutions can be
obtained by the evolutionary computing techniques.

In this paper, we consider the problem of the active
stock portfolio management. In multistage investment,
rebalancing capital decisions are required. The transac-
tion fee has a large influence to the portfolio return
since frequent transaction will cause large transaction
fee and a potential increase in risk exposure. Stochastic
programming (SP) is a method for modeling optimization
problem involving uncertainty. Deterministic optimization
problems are formulated with known parameters [13]. In
the investment, investors may not always predict future
return of stocks precisely, but it is possible to predict the
future return in a confidence interval. Uncertainty in input
parameters of SP is represented by discrete scenarios that
describe the joint distribution of the random variables, and
the expected cost and constraints of these scenarios are
added into the model. After the scenarios are generated,
the uncertainty problem is transformed into a deterministic
problem, which can be solved efficiently.

Risk management aims to avoid portfolios that may
suffer large loss in the investment. The basel committee
on banking supervision recommended the value at risk
(VaR) as the basis for modelling market risk. However,
VaR is not a coherent risk measure, it is not satisfy the sub-
additivity property [1], which is not consistent with the
principle that diversification is able to reducing risk . Con-
ditional value at risk (CVaR) [10] is a related risk measure,
which computes the expected loss below the VaR, and it
is a coherent risk measure. Rockafellar and Uryasev [11]
introduced the CVaR for continuous distribution, and they
also gave definition of the CVaR for general distribution
[12]. Topaloglouet al. [16] utilized mutlistage stochastic
programming with CVaR for international portfolio.

In this paper, we confine our investment in the Taiwan
stock market, and our goal is to earn return in the
investment. We also employ superior predictive ability
(SPA) test [6] for the wealth process to verify our method
without data snooping problem. The experiment interval
is from 2005/1/1 to 2013/12/31, which has totally 2235
trading periods. We employ the stochastic programming
with CVaR to control the risk in the investment. The best
annualized return of our method for portfolio sizen = 5
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Figure 1. A scenario tree withT stages.

andn = 10 achieves 13.26% and 12.9%, respectively.
The rest of this paper is organized as follows. In Section

II, we will present some background knowledge, including
the stochastic programming, the conditional value at risk,
and the superior predictive ability. In Section III, we
will propose our method, which is able to earn return
in the stock market. In Section IV, we will present the
experimental results of our method. Finally, the conclusion
of this paper will be given in Section V.

II. PRELIMINARIES

In this section, we will give an introduction to the
stochastic programming, the conditional value at risk,
and the superior predictive ability, which serve as the
background knowledge used in this paper.

A. Stochastic Programming for Investment

How to describe uncertainty is a critical issue for
modeling a problem. The key uncertain variables in our
method are the future returns of stocks. A major advantage
of the stochastic programmingis that it does not require
any assumption for the random variables. It is able to
deal with any discrete distribution which is expressed by
a scenario tree as shown in Figure 1. Onescenario is a
path starting from the root to the leaf node, a stage is the
moment when a decision is making, which is the level of
a tree, and the period is the interval between two time
points, which is the edge length between two neighboring
nodes.

The basic idea oftwo-stage tochastic programmingis
that the decisions should be made by the data available at
the time and they should not depend on future observa-
tion, which is called non-anticipativity property [13]. The
classical two-stage stochastic programming is formulated
as Equation 1.

minx∈X {g(x) := f(x) + E(Q(x, ξ))},
s.t. Ax ≤ b,x ≥ 0,

miny∈Y qTy,

s.t. Tx+Wy ≤ h,y ≥ 0,

(1)

wherex represents the vector of the first stage decision,
X represents the domain ofx, which is defined by a finite
number of constraintsAx ≤ b andx ≥ 0, E(·) represents
the expectation operator,Q(x, ξ) represents the optimal

value of the second stage,ξ = (q,T,W,h) contains the
data of the second stage, whereq represents the vector of
coefficients fory, T represents the matrix of constraint
values forx, W represents the matrix of constraint values
for y, andh represents the vector of constraints values;y

represents the vector of the second stage decision, and
Y represents the domain ofy, which is defined by a
finite number of constraintsTx+Wy ≤ h and y ≥ 0.
At the first stage, we have to make a decisionx before the
realization of the uncertain dataξ with the costf(x) plus
the expected cost of the optimal second stage problem.
At the second stage, after the realization ofξ becomes
available, we optimize the decision by solving the second
stage problem, which is also called recourse action.

The standard approach for solving stochastic program-
ming is to assume that the random vectorξ has a finite
number of possible realization, which is calledscenarios,
denoted asξ1, · · · , ξk, with respective to probabilities
p1, · · · , pk. Therefore, the expectation can be written as
Equation 2.

E(Q(x, ξ)) =

K
∑

k=1

pkQ(x, ξk). (2)

After generating the scenarios, the original nondeter-
ministic equations of the stochastic programming can be
transformed into deterministic ones, which are usually able
to be solved efficiently.

B. Conditional Value at Risk

Value at risk (VaR) is a percentile based metric that
has become financial standard for risk measurement. It
is usually defined as the maximal allowable loss with a
certain confidence levelα× 100%. The definition of VaR
is given in Equation 3.

V aR(x, α) = min{u : P (x ≤ u) ≥ 1− α}, (3)

wherex represents the random variable to be measured,
α represents the confidence level, andP (·) represents the
probability measure.

However, VaR is not a coherent risk metric, since it does
not satisfy the sub-additivity property [1], which is not
consistent with the financial principle that diversification
is of help to risk reduction. Conditional value at risk
(CVaR) [10] is an improved risk measure, which computes
the expected loss below the VaR, and it is a coherent
risk measure. Rockafellar and Uryasev [11] introduced the
CVaR for continuous distribution as shown in Equation
4, and they also gave definition of the CVaR for general
distribution [12] as shown in Equation 5.

CV aR(x, α) = E(x|x ≤ V aR(x, α)), (4)

CV aR(x, α) = (1−
∑

{s∈Ω|xs≤z} ps

1−α
)z+

1

1−α

∑

{s∈Ω|xs≤z} psxs,
(5)
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where z = V aR(x, α), xs is the realized value ofx
of scenarios, E(·) represents the expectation operator,s

represents a scenario,ps is the probability that the scenario
s is realized, andΩ represents the set of all scenarios.

According to the study of Topaloglouet al. [15], the
CVaR can be reformulated as Equation 6.

ys = max(0, z − xs),

z −∑

s∈Ω
psys = (1−

∑
{s∈Ω|xs≤z} ps

1−α
)z+

1

1−α

∑

{s∈Ω|xs≤z} psxs.

(6)

Then the CVaR can be optimized by using linear
programming (LP). The goal function of LP is the optimal
CVaR measure at a confidence levelα× 100% as shown
Equation 7.

max z − 1

1−α

∑S

s=1
psys

s.t. xs ∈ X, z ∈ R,

ys ≥ z − xs,

ys ≥ 0,
s = 1, 2, · · · , S

(7)

C. Superior Predictive Ability Test

Some researchers applied statistical and machine learn-
ing models to return maximization in the investment by
adjusting different parameters. And some models were
found to have ability to earn positive returns. However, the
approach to search profitable models has a serious issue,
which is called thedata snoopingproblem. Data snooping
is the inappropriate use of data mining or statistics to
induce misleading relationships in data. When such data
are repeatedly tested, there exists the possibility that any
satisfactory results obtained may simply be due to luck
rather than to any merit inherent in the method yielding
the results [18].

Hansen [6] proposed thesuperior predictive ability
(SPA) test, which is a multiple test for testing if there
is any model in a given set whose performance is better
than the benchmark model without data snooping.

Given M models, letdm,t represent the performance
measure of modelm related to the benchmark model at
period t . The null hypothesis is to determine whether a
model outperforms the benchmark model, and it is shown
in Equation 8. If no any model can beat the benchmark
model, the mean of the relative performancedm,t should
be less than or equal to zero.

Hm
0 : µm ≤ 0,where1 ≤ m ≤ M, (8)

where theµm represents the expectation ofdm,t.
The SPA statistics is given as follows.

SPAT = max( max
1≤m≤M

√
T
d̄m

ω̂m

, 0), (9)

whereω̂m represents the consistent estimator of the stan-
dard deviation of performance measure of themth model.
When the performance of many models is inferior to the
benchmark model, the situation that the power of the test
is decreased should be avoid. Hence in Equation 9, the
statistics set the statistics to zero if the value

√
T d̄m

ω̂m

is
negative.
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Figure 2. Flowchart of our method.

In SPA test,µ̂m is estimated as follows.

µ̂m = d̄m1(
√
T d̄m ≤ −ω̂m

√

2 log log T ), (10)

whered̄m represents the mean of the relative performance
measuredm,t of model m, and 1{·} is the indicator
function.

III. STOCK INVESTMENT WITH STOCHASTIC

PROGRAMMING

In this section, we propose our method for investment.
The flow chart of our method is shown in Figure 2.

The stochastic programming for modeling an investor’s
wealth with CVaR as risk management in the investment
is given in Equation 11, which is inspired from the paper
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proposed by Bertsimas and Pachamanov [3], however
they only considered maximize return and the robust
formulation of the problem.

max z − 1

1−α

∑S

s=1
psys

s.t. ys ≥ z −∑M

m=0
wm

t (1 + rmt+1,s),
wm

t = (1 + rmt )wm
t−1 + bmt − smt ,

w0
t = (1 + r0t )w

0
t−1−

∑M

m=1
(1 + cmb,t)b

m
t +

∑M

m=1
(1− cms,t)s

m
t ,

ys ≥ 0,
wm

t ≥ 0, w0
t ≥ 0,

bmt ≥ 0, smt ≥ 0,
t = 1, · · · , T,m = 1, · · · ,M,

s = 1, · · · , S,

(11)

wherez represents the variable of CVaR defined in Equa-
tion 5, which is equal to VaR at the optimal solution,
s represents a scenario for the uncertain joint returns of
assets of periodt + 1, ys represents the portfolio wealth
loss in excess of VaR,ps represents the probability of
a scenarios, wm

t represents the wealth invested in risky
assetm in period t, w0

t represents the wealth invested
in riskless asset in periodt, bmt represents the amount
of money that an investor buys risky assetm in period
t, smt represents the amount of money that an investor
sells risky assetm in period t, rmt represents that the
return of assetm in period t, rmt+1,s represents that the
return of assetm in period t + 1 in the scenarios, cmb,t
represents that the buying transaction fee of assetm in
period t, cms,t represents that the selling transaction fee
of assetm in period t, M denotes the number of risky
assets,T denotes the number of investment periods, and
S denotes the number of scenarios.

The decision variables in Equation 11 arez, ys, wm
t , w0

t ,
bmt and smt . Other variablesrmt , cmb,t, andcms,t are known
at timet, and all the variablesrmt+1,s of the scenarios are
also generated , hence they are parameters in the equation.

We view each decision in periodt as a second stage
stochastic programming, and the decision of each stage is
independent. In each stage, we generate scenarios by the
heuristic moment matching method proposed by [7]. This
method requires five statistics for generating scenarios,
which are the mean, the standard deviation, the skewness,
the kurtosis, and the correlation matrix of return of all
stocks in periodt in the portfolio. For computing these
statistics, we utilized pasth periods returns (including
current trading period) to estimate these statistics. After
generating scenarios of periodt+ 1 returns, we solve the
Equation 11 to get optimal value of decision variablesz,
ys, wm

t , w0
t , bmt andsmt . We apply thebmt andsmt to all

the stocks in the portfolio and updating the wealth. Those
steps are repeated until the last periodT .

For solving the stochastic programming, we utilize
the software python-based stochastic programming (PySP)
[17], which is an open source software for solving the
stochastic programming optimization problem.

Table I
THE STOCKS WITH THE TEN LARGEST MARKET VALUE AT

2013/12/31.

Rank Symbol Company name
1 2330 Taiwan Semiconductor Manufacturing Company
2 2317 Hon Hai Precision Industry Company
3 6505 Formosa Petrochemical Corporation
4 2412 Chunghwa Telecom Company
5 2454 Mediatek Incorporation
6 2882 Cathay Financial Holding Company
7 1303 Nan Ya Plastics Corporation
8 1301 Formosa Plastics Corporation
9 1326 Formosa Chemicals & Fibre Corporation
10 2881 Fubon Financial Holding Company

IV. EXPERIMENTAL RESULTS

The dataset is collected from the Taiwan Economic
Journal database and it contains the adjusted return. We
choose the ten stocks with the top ten largest market value
on 2013/12/31 as our investment targets, and these stocks
are listed in Table I.

In the experiments, we assume that we can always buy
and sell the shares of these stocks at the after-hour trading
in Taiwan stock market and the wealth which is invested
in a stock is fractional. The experiment interval starts from
2005/1/1 and ends on 2013/12/31, which has totally 2235
trading periods in the interval. In each periodt, we apply
the heuristic moment matching method [7] to generating
200 scenarios of the joint returns of the portfolio of period
t+1 by five statistics, the mean , the standard deviation, the
skewness, the kurtosis, and the correlation matrix. These
statistics are estimated by using the returns of each stock
in the portfolio of pasth periods, including the current
period. The buying and selling transaction fee,cmb,t and
cms,t are set to 0.1425% and 0.4425% , respectively, and
all the risk-free returnsr0t are set to 0, for all periods and
for all stocks in Equation 11.

Our method contains three parameters (n, h, α), which
represent the portfolio size, the historical interval for
estimating statistics, and the confidence level of CVaR.
In the experiments, we considern ∈ {5, 10}, h ∈
{10, 20, · · · , 80} and α ∈ {0.5, 0.55, · · · , 0.95, 0.99},
hence there are total2× 8× 11 = 176 trials. For getting
robust results, we run each trial three times.

The experiment results are shown in Tables II and III.
In these tables, we observe that our method is able to
earn cumulative return while the confidence level0.5 ≤
α ≤ 0.95 and the historical intervalh ≥ 20. Besides,
the longerh is, the higher return is. By observing the
cumulative returns of the same historical intervalh but
with different confidence levelα of CVaR , our method
is consistent to the idea that the investment is a tradeoff
between return and risk, that is, the higher risk is, the
higher return of our method is. Whenn = 5 andh = 10,
we cannot earn return, because that a short historical
interval for estimating statistics may be biased and it may
cause the model to make inappropriate decision in the
investment. In addition, we cannot earn positive return
whenα = 0.99, because that it is too conservative to buy
promising stock while the stock prices are rising. Some
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Table II
THE AVERAGE AND STANDARD DEVIATION OF CUMULATIVE

RETURNS OF PORTFOLIO SIZEn = 5, WHERE ALL THE VALUES ARE

SHOWN IN PERCENTAGE, AND THE VALUES INSIDE PARENTHESES

ARE STANDARD DEVIATION.

α h =10 20 30 40
0.50 4.26(3.16) 109.43(4.37) 126.15(5.54) 162.44(5.11)
0.55 3.04(4.92) 112.88(0.46) 130.61(2.60) 151.83(4.34)
0.60 -1.75(3.57) 125.12(5.73) 127.70(3.16) 146.01(3.48)
0.65 3.08(2.51) 125.26(2.37) 133.17(2.74) 144.32(3.36)
0.70 -2.66(1.42) 123.45(3.84) 137.83(4.87) 137.22(3.36)
0.75 -13.58(3.50) 120.04(4.27) 140.78(5.90) 138.12(6.69)
0.80 -18.76(1.51) 117.05(7.11) 139.01(2.16) 134.62(2.73)
0.85 -31.23(2.41) 90.92(5.04) 143.48(3.13) 146.98(3.29)
0.90 -37.51(1.68) 77.27(4.89) 129.48(4.85) 137.47(5.11)
0.95 -50.43(1.62) 27.51(3.01) 80.02(10.74) 101.47(2.77)
0.99 -65.45(3.77) -46.90(5.62) -32.13(2.91) -41.58(7.23)

α, h =50 60 70 80
0.50 174.25(2.85) 175.06(1.77) 189.01(1.82) 192.76(6.48)
0.55 172.03(7.64) 180.73(4.94) 188.96(1.56) 190.36(2.75)
0.60 163.95(4.19) 173.85(2.86) 187.08(6.82) 200.13(9.21)
0.65 161.23(1.85) 168.25(3.49) 181.13(3.47) 206.58(5.25)
0.70 161.81(4.03) 163.82(4.67) 182.57(3.09) 200.34(1.33)
0.75 143.71(2.40) 167.75(1.11) 178.31(0.41) 196.24(7.25)
0.80 155.89(4.63) 156.41(2.82) 172.42(8.27) 192.22(2.68)
0.85 149.49(2.32) 150.11(2.10) 151.85(6.76) 178.87(5.14)
0.90 153.68(6.60) 146.36(1.31) 152.68(8.97) 153.06(3.75)
0.95 115.72(1.46) 112.18(9.21) 111.31(11.45) 127.11(0.65)
0.99 -41.55(3.34) -40.87(1.12) -48.99(7.39) -48.62(7.79)

Table III
THE AVERAGE AND STANDARD DEVIATION OF CUMULATIVE

RETURNS OF PORTFOLIO SIZEn = 10, WHEN ALL THE VALUES ARE

SHOWN IN PERCENTAGE, AND THE VALUES INSIDE PARENTHESES

ARE STANDARD DEVIATION.

α h =10 20 30 40
0.50 - 80.22(4.20) 94.70(4.42) 146.40(3.02)
0.55 - 70.08(3.17) 99.53(4.16) 137.77(6.62)
0.60 - 77.48(1.98) 92.85(1.14) 132.48(3.88)
0.65 - 73.80(3.29) 91.42(5.29) 135.41(2.68)
0.70 - 72.03(4.67) 89.96(6.79) 120.88(3.81)
0.75 - 70.39(7.33) 88.36(3.55) 112.85(3.79)
0.80 - 54.79(6.63) 90.31(3.67) 108.90(3.98)
0.85 - 47.21(4.70) 84.56(5.72) 101.77(1.77)
0.90 - 36.59(3.60) 63.55(3.76) 87.78(9.89)
0.95 - 7.52(0.59) 32.93(10.33) 48.97(10.66)
0.99 - -57.73(4.04) -58.57(0.86) -65.59(5.11)

α h =50 60 70 80
0.50 167.41(3.38) 175.23(5.26) 171.19(4.51) 179.67(6.19)
0.55 159.57(6.08) 167.77(2.56) 175.87(4.57) 184.56(6.59)
0.60 155.08(2.70) 165.99(6.49) 187.36(10.77) 195.40(5.37)
0.65 149.57(10.56) 162.07(5.08) 180.52(4.81) 188.11(1.71)
0.70 138.19(0.49) 154.00(4.56) 177.66(4.83) 193.44(8.50)
0.75 133.56(5.81) 138.17(2.85) 170.62(7.64) 179.70(4.93)
0.80 126.72(6.92) 133.44(5.81) 150.43(2.34) 164.45(13.07)
0.85 119.51(2.21) 127.24(7.09) 142.57(6.87) 152.93(2.08)
0.90 116.24(4.06) 114.12(3.66) 115.86(4.71) 139.09(3.61)
0.95 70.24(2.27) 75.96(14.30) 70.77(2.16) 87.33(8.55)
0.99 -64.03(1.72) -69.35(3.09) -71.68(3.39) -72.20(4.20)

experimental results for the columnh = 10 in Table III
are not available since the historical interval is too short
so that the correlation matrix cannot be performed by the
Cholesky decomposition in the heuristic moment matching
method for generating scenarios.

The superior predictive ability (SPA) test is applied to
the parameters of our method to check if there exist some
parameters which have the ability to earn portfolio return
without data snooping. The number of samples for SPA
is set to 5000 to get precise p-values. The performance

Table IV
THE P-VALUE OF SUPERIOR PREDICTIVE ABILITY TEST OF

PORTFOLIO SIZEn = 5. ***, **, AND * REPRESENTS SIGNIFICANCE

AT 0.01 (1%), 0.05 (5%),AND 0.1 (10 %),RESPECTIVELY. THE

STANDARD DEVIATION IS SHOWN INSIDE PARENTHESES.

α h =10 20 30
0.50 0.3787 (0.0181) **0.0308 (0.0011) **0.0284 (0.0034)
0.55 0.3483 (0.0343) **0.0273 (0.0006) **0.0262 (0.0007)
0.60 0.4241 (0.0081) **0.0208 (0.0035) **0.0253 (0.0034)
0.65 0.3808 (0.0162) **0.0208 (0.0000) **0.0195 (0.0012)
0.70 0.3959 (0.0092) **0.0197 (0.0008) **0.0162 (0.0012)
0.75 0.5091 (0.0405) **0.0242 (0.0041) **0.0161 (0.0014)
0.80 0.5753 (0.0053) **0.0313 (0.0052) **0.0129 (0.0023)
0.85 0.6515 (0.0173) **0.0431 (0.0096) **0.0201 (0.0043)
0.90 0.7591 (0.0029) *0.0801 (0.0098) **0.0249 (0.0021)
0.95 0.8735 (0.0201) 0.2045 (0.0217) *0.0680 (0.0117)
0.99 0.9360 (0.0138) 0.8651 (0.0171) 0.6993 (0.0089)

α h =40 50 60
0.50 **0.0113 (0.0024) ***0.0027 (0.0008) ***0.0032 (0.0000)
0.55 **0.0151 (0.0007) ***0.0027 (0.0008) ***0.0032 (0.0000)
0.60 **0.0165 (0.0015) ***0.0027 (0.0008) ***0.0037 (0.0008)
0.65 **0.0156 (0.0006) ***0.0032 (0.0000) ***0.0037 (0.0008)
0.70 **0.0189 (0.0019) ***0.0027 (0.0008) ***0.0032 (0.0000)
0.75 **0.0192 (0.0026) ***0.0037 (0.0008) ***0.0037 (0.0008)
0.80 **0.0173 (0.0015) ***0.0037 (0.0008) ***0.0053 (0.0015)
0.85 **0.0125 (0.0006) ***0.0064 (0.0013) ***0.0064 (0.0013)
0.90 **0.0167 (0.0019) ***0.0048 (0.0000) ***0.0080 (0.0013)
0.95 **0.0451 (0.0074) **0.0149 (0.0030) **0.0191 (0.0077)
0.99 0.7689 (0.0339) 0.7743 (0.0189) 0.7768 (0.0184)

α h = 70 80
0.50 ***0.0032 (0.0000) ***0.0032 (0.0000)
0.55 ***0.0032 (0.0000) ***0.0032 (0.0000)
0.60 ***0.0032 (0.0000) ***0.0032 (0.0000)
0.65 ***0.0032 (0.0000) ***0.0016 (0.0013)
0.70 ***0.0037 (0.0015) ***0.0016 (0.0000)
0.75 ***0.0021 (0.0008) ***0.0011 (0.0008)
0.80 ***0.0037 (0.0008) ***0.0016 (0.0000)
0.85 ***0.0043 (0.0015) ***0.0016 (0.0000)
0.90 ***0.0059 (0.0027) ***0.0037 (0.0008)
0.95 **0.0208 (0.0039) **0.0112 (0.0013)
0.99 0.9013 (0.0351) 0.8730 (0.0764)

measure for SPA test is described as follows.

d̄m =
1

T

T
∑

t=1

Rm,t, (12)

whered̄m represents the average performance measure of
the mth model in the test,T represents the number of
trading periods, andRm,t represents the portfolio return
of themth model in periodt.

The results of SPA test are shown in Tables IV and V. In
the two tables, we can see that almost all the results with
positive returns are significant in statistics, which means
that our method can indeed earn positive returns without
data snooping.

The wealth process of the highest return of the best
parameters for portfolio sizen = 5 andn = 10 and the
buy-and-hold rule is shown in Figure 3. In this figure, we
can observe that the process of our method is more smooth
than the buy-and-hold rule, since our method considers the
risk management, which decrease the volatility of wealth
process in the investment.

Compared with the buy-and-hold strategy with capital
allocation to each stock equally, the cumulative return
Rcum and the annualized returnARcum are shown in
Table VI. As we can see, our method get better annualized
return (13.26%) than the buy-and-hold strategy (12.19%).
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Table V
THE P-VALUE OF SUPERIOR PREDICTIVE ABILITY TEST OF

PORTFOLIO SIZEn = 10. ***, **, AND * REPRESENTS SIGNIFICANCE

AT 0.01 (1%), 0.05 (5%),AND 0.1 (10 %),RESPECTIVELY. THE

STANDARD DEVIATION IS SHOWN INSIDE PARENTHESES.

α h =10 20 30
0.50 - *0.0674 (0.0065) *0.0576 (0.0025)
0.55 - *0.0816 (0.0085) *0.0538 (0.0050)
0.60 - *0.0736 (0.0009) *0.0627 (0.0069)
0.65 - *0.0795 (0.0025) *0.0589 (0.0064)
0.70 - *0.0837 (0.0067) *0.0580 (0.0045)
0.75 - *0.0835 (0.0079) *0.0623 (0.0057)
0.80 - 0.1123 (0.0105) *0.0553 (0.0028)
0.85 - 0.1220 (0.0177) *0.0653 (0.0068)
0.90 - 0.1684 (0.0199) 0.1032 (0.0191)
0.95 - 0.3331 (0.0099) 0.2019 (0.0513)
0.99 - 0.8917 (0.0301) 0.9190 (0.0092)

α h =40 50 60
0.50 **0.0176 (0.0000) ***0.0032 (0.0000) ***0.0032 (0.0000)
0.55 **0.0261 (0.0038) ***0.0027 (0.0008) ***0.0032 (0.0000)
0.60 **0.0237 (0.0026) ***0.0027 (0.0008) ***0.0032 (0.0000)
0.65 **0.0239 (0.0010) ***0.0032 (0.0013) ***0.0032 (0.0000)
0.70 **0.0287 (0.0028) ***0.0059 (0.0008) ***0.0037 (0.0008)
0.75 **0.0357 (0.0048) ***0.0069 (0.0008) ***0.0059 (0.0015)
0.80 **0.0378 (0.0029) ***0.0096 (0.0023) ***0.0080 (0.0013)
0.85 **0.0431 (0.0020) ***0.0091 (0.0020) ***0.0085 (0.0030)
0.90 *0.0612 (0.0104) **0.0101 (0.0007) **0.0165 (0.0042)
0.95 0.1303 (0.0249) *0.0697 (0.0078) *0.0626 (0.0304)
0.99 0.9707 (0.0095) 0.9647 (0.0055) 0.9819 (0.0099)
α h =70 80
0.50 ***0.0032 (0.0000) ***0.0032 (0.0000)
0.55 ***0.0032 (0.0000) ***0.0032 (0.0000)
0.60 ***0.0027 (0.0008) ***0.0032 (0.0000)
0.65 ***0.0032 (0.0000) ***0.0032 (0.0000)
0.70 ***0.0032 (0.0000) ***0.0032 (0.0000)
0.75 ***0.0032 (0.0000) ***0.0032 (0.0000)
0.80 ***0.0043 (0.0008) ***0.0032 (0.0000)
0.85 ***0.0048 (0.0013) ***0.0037 (0.0008)
0.90 **0.0181 (0.0042) ***0.0048 (0.0000)
0.95 *0.0557 (0.0175) **0.0344 (0.0045)
0.99 0.9862 (0.0028) 0.9871 (0.0108)

Table VI
THE CUMULATIVE RETURN COMPARISON OF OUR METHOD, WHERE

ALL THE VALUES ARE SHOWN IN PERCENTAGE.

method n Rcum ARcum

Buy & hold 5 181.56 12.19
Buy & hold 10 160.84 11.24
Our method (α = 0.65, h = 80) 5 206.58 13.26
Our method (α = 0.60, h = 80) 10 195.40 12.79

V. CONCLUSION

In this paper, we propose one effective model for
investment in stocks. Our method consists of two phases:
(1) generating scenarios of joint returns of periodt + 1
by five statistics, the mean, the standard deviation, the
skewness, the kurtosis, and the correlation matrix in period
t; (2) solving Equation 11 to get optimal values ofbmt and
smt , and apply the decisions to our portfolio; By the results
of the superior predictive ability test shown in Tables IV
and V, our method can effectively avoid the data snooping
problem.

In the future work, it is worth finding a more precise
way to generate scenarios, because the heuristic moment
matching method only considers the static statistical prop-
erties, but the time series has been proven the existence
of autocorrelation properties. In addition, our method
can involve more constraints for approaching the real
investment.
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Figure 3. Wealth process of portfolio sizen = 5 andn = 10.
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