
1 of 23

National Collegiate Programming Contest 1998

Notes for Contestants

1. There are 8 problems for the contest. You may work on the problems in any order.

2. You may use any algorithm/method to solve the problems. However, the execution

time of your program for each problem must not exceed 30 seconds, otherwise the

program will be considered run-time exceeded.

3. The judging system, PC2, is provided by ACM. For detailed information of system

environment and operational instructions, please refer to the additional Contest

Handbook.

4. Input files for the problems are preinstalled in the system for automatic judging.

The input files are named according to the problem ID, where “px.dat” is the input

file for Problem X.

5. If you have any questions during the contest, you may communicate with the

judges by sending message to the judges through the Clarification System in PC2.

6. Since Visual Basic does not support console mode applications, VB programs

should print output to the file “output.txt” instead of the standard output.

2 of 23

Problem A Logic Circuit Simulation

Input Output
A B Y
0 0 0
1 0 0

0 1 0

1 1 1

AND Gate (AND Operation)

Y = A AND B

Y
A

B

Output

If any input is 0, then the output is 0.

Input Output
A B Y
0 0 0
1 0 1

0 1 1

1 1 1

OR Gate (OR Operation)

Y = A OR B

Y
A

B

Output

If any input is 1, then the output is 1.

Input Output
A Y
0 1
1 0

Inverse Gate (NOT Operation)

Y = A

YA
Output

Input Output
A B Y
0 0 1
1 0 1

0 1 1

1 1 0

NAND Gate (AND+NOT Operation)

Y = A AND B

Y
A

B

Output

If any input is 0, then the output is 1.

Input Output
A B Y
0 0 1
1 0 0

0 1 0

1 1 0

NOR Gate (OR+NOT Operation)

Y = A OR B

Y
A

B

Output

If any input is 1, then the output is 0.

3 of 23

is equivalent to

is equivalent to

Within the circuit, you will see the following circuit modules, which are called flip-

flops. You may like to use the following truth tables to determine their output values

in terms of the input data and their previous output status.
Input Output

R S Y0 Y1
Initial status� 1 1 1 0

0 1 1 0

1 0 0 1

1 1 Y0- Y1-
0 0 1 1

R

S

Y0

Y1 Y0- and Y1-: If the previous outputs are not all 1’s,
the outputs remain unchanged. However, if the
previous outputs are all 1’s, they will go back to the
initial status.

Input Output
R S Y0 Y1

Initial status� 0 0 0 1
0 1 1 0

1 0 0 1

0 0 Y0- Y1-
1 1 0 0

R

S

Y0

Y1 Y0- and Y1-: If the previous outputs are not all 0’s,
the outputs remain unchanged. However, if the
previous outputs are all 0’s, they will go back to the
initial status.

A logic circuit using the logic gates above is designed to implement a desired logic

operation. You are asked to write a program to simulate the circuit shown in FIGURE 1.

Please note that A0 is the least significant bit and A15 is the most significant bit.

4 of 23

FIGURE 1. The circuit diagram to be simulated

Input (Two Bytes)

A0

A1

A2

A3

A4

A5

A6

A7

A8

A9

A10

A11

A12

A13

A14

A15

Output (One Byte)

Y0

Y1

Y2

Y3

Y4

Y5

Y6

Y7

5 of 23

The Input

A set of two-byte data in hexadecimal will be read from a disk file with the format

described as follows:

Line Number Data in the File Explanation
1 n (a positive integer less than 512) The length of the two-byte data sets
2 0503 (two-byte data in hexadecimal) The first data input to the circuit
3 F3B4(two-byte data in hexadecimal) The second data input to the circuit

… … …
n+1 F2B2(two-byte data in hexadecimal) The last data input to the circuit

� Please note that the Line Number and Explanation are not given in the file. They

are shown here only to assist you in reading the data.

The Output

Write your output Byte data (Y0 – Y7) sets to the standard output. The format should

be the same as the input. The only difference is that the output has only one-byte data

in a line. When hex digits A∼F are output, print out the upper case letters. Please

note that since there is feedback in the circuit, the outputs are often affected by the

previous output status. This means that the same inputs may produce different outputs

depending on the previous output data.

Sample Input

10
7F80
569A
8D69
33F3
73B3
3344
66BC
8840
4000
73B1

� The first number of the input data is the most significant bits: A12 to A15, and the

last number is the least significant bits: A0 to A3.

6 of 23

Sample Output

10
A5
A5
25
A5
AE
A5
A5
25
95
99

� The first number is the most significant bits: Y4 to Y7, and the second number is

for Y0 to Y3.

7 of 23

Problem B Dropping Balls

A number of K balls are dropped one by one from the root of a fully binary tree

structure FBT. Each time the ball being dropped first visits a non-terminal node. It

then keeps moving down, either follows the path of the left subtree, or follows the

path of the right subtree, until it stops at one of the leaf nodes of FBT. To determine a

ball’s moving direction a flag is set up in every non-terminal node with two values,

either false or true. Initially, all of the flags are false. When visiting a non-terminal

node if the flag’s current value at this node is false, then the ball will first switch this

flag’s value, i.e., from the false to the true, and then follow the left subtree of this

node to keep moving down. Otherwise, it will also switch this flag’s value, i.e., from

the true to the false, but will follow the right subtree of this node to keep moving

down. Furthermore, all nodes of FBT are sequentially numbered, starting at 1 with

nodes on depth 1, and then those on depth 2, and so on. Nodes on any depth are

numbered from left to right.

For example, FIGURE 1 represents a fully binary tree of maximum depth 4 with the

node numbers 1, 2, 3, …, 15. Since all of the flags are initially set to be false, the first

ball being dropped will switch flag’s values at node 1, node 2, and node 4 before it

finally stops at position 8. The second ball being dropped will switch flag’s values at

node 1, node 3, and node 6, and stop at position 12. Obviously, the third ball being

dropped will switch flag’s values at node 1, node 2, and node 5 before it stops at

position 10.

98

4

1110

5

2

1312

6

1514

7

3

1 Depth = 1

Depth = 2

FIGURE 1. An example of FBT with the maximum depth 4 and sequential node numbers.

Now consider a number of test cases where two values will be given for each test. The

first value is D, the maximum depth of FBT, and the second one is I, the Ith ball being

dropped. You may assume the value of I will not exceed the total number of leaf

8 of 23

nodes for the given FBT. Please write a program to determine the stop position P for

each test case.

For each test cases the range of two parameters D and I is as below:

2 ≤ D ≤ 20, and 1 ≤ I ≤ 524288.

The Input

Contains l+2 lines.
Line 1 l the number of test cases
Line 2 D1I1 test case #1, two decimal numbers that are separated by one blank
…
Line k+1 DkIk test case #k
Line l+1 DlIl test case #l
Line l+2 -1 a constant –1 representing the end of the input file

The Output

Contains l lines.
Line 1 the stop position P for the test case #1
…
Line k the stop position P for the test case #k
…
Line l the stop position P for the test case #l

Sample Input

5
4 2
3 4
10 1
2 2
8 128
-1

Sample Output

12
7
512
3
255

9 of 23

Problem C Movement of Reading Head

Suppose we have K files representing by F1, F2, F2, …, FK. The total length of these

files, measured in block numbers, is N blocks, and the length of each file is Li block(s)

for 1 ≤ i ≤ K. We denote the bth block of a file Fi as Fi(b) for 1 ≤ b ≤ Li; e.g., the 9th

block of F2 file is F2(9), and the 4th block of F3 file is F3(4). Now consider a storage

space S consisting of a single reading head and N blocks with sequential number

starting from 0 to N-1. These K files are stored to the space S in a sequential order

from F1, F2, F3, …, FK. We will assume that there is no spare blocks left for storing

these K files. Apparently, this means that

NL
K

i
i =∑

=1

When reading from S, a profile array PF is used to indicate the starting block of the

reading for every file, and the reading order is to read a block at F1, then a block at F2,

…, a block at FK with one block being read for a file at one time. After FK is being

read, we restart to read the next block at F1, then the next block at F2, …, and the

process circulates in this fashion. Within a file when the previous reading has reached

to the last block, the next block to be read is the first block of this file. Obviously, the

reading head has to move through several blocks during each time of reading. Thus,

we define a term TB(P) to be the total number of blocks that the reading head needs

to move for the P consecutive times of reading. Apparently, we will be interested in

finding the value of TB(P). Given the profile array PF you may assume the reading

head is initially rested on the starting block of the first file that is going to be read, and

thus TB(1) = 0.

For example: let K = 3, N =12, L1 = 5, L2 = 3, L3 = 4, PF be 2, 3, 3. These three files

will be stored to S as shown in FIGURE 1.

0 1 2 3 4 5 6 7 8 9 10 11

F1(1) F1(2) F1(3) F1(4) F1(5) F2(1) F2(2) F2(3) F3(1) F3(2) F3(3) F3(4)

File F1 File F2 File F3

Storage S

FIGURE 1. An example of three files being stored in the storage S.

10 of 23

According to the given PF the reading head is initially rested on the second block of

the first file, i.e., F1(2). When reading from S, the first time of reading is to read the

second block of F1, i.e., F1(2), which is located at position 1. At this time TB(1) = 0.

The second time of reading is to read the third block of F2, i.e., F2(3), which is located

at position 7. Thus, the total number of blocks that the reading head has to move for 2

consecutive times of reading, i.e., TB(2), is 6 blocks. Similarly, the third time of

reading is to read the third block of F3, i.e., F3(3), which is located at position 10. This

means that the reading head has to move 3 blocks for the third time of reading. Thus,

the total number of blocks that the reading head has to move for 3 consecutive times

of reading is 9 blocks, i.e., TB(3) = 0 + 6 + 3 = 9 blocks. Similarly, the fourth time of

reading is to read the third block of F1, i.e., F1(3), which is located at position 2. This

means that the reading head has to move 8 blocks for the fourth time of reading. Thus,

the total number of blocks that the reading head has to move for 4 consecutive times

of reading is 17 blocks, i.e., TB(4) = 0 + 6 + 3 + 8 = 17 blocks.

Now given the parameters K, N, Li, PF, P, please write a program to report the value

of TB(P), where
K: number of files,
N: number of blocks in the storage S,
Li: the length of each file, where each value is separated by a blank,
PF: an array of K integers representing the starting block of the reading for

each file where each value is separated by a blank, and
P: number of the consecutive times of reading.

The range of each parameter is as below:
1 ≤ K ≤ 10
1 ≤ N ≤ 200
1 ≤ Li ≤ 100 for each i
1 ≤ entry in PF ≤ 100 for each file, and
1 < P ≤ 1000.

The Input

Contains l + 2 lines.
Line 1 l the number of test cases
Line 2 K N L1 L2 … Lk PF P test case #1, 2K+3 decimal values each of which is

separated by a blank
…
Line k+1 K N L1 L2 … Lk PF P test case #k
…
Line l+1 K N L1 L2 … Lk PF P test case #l
Line l+2 -1 a constant –1 representing the end of the input file

11 of 23

The Output

Contains l lines.
Line 1 output for the value of TB(P) at the test case #1
…
Line k output for the value of TB(P) at the test case #k
…
Line l output for the value of TB(P) at the test case #l

Sample Input

5
3 12 5 3 4 2 3 3 3
3 12 5 3 4 2 3 3 4
3 12 5 3 4 1 1 1 4
2 10 5 5 1 1 2
2 10 5 5 1 2 2
-1

Sample Output

9
17
15
5
6

12 of 23

Problem D Convex Hull Finding

Given a single connected contour, which is either convex or non-convex (concave),

use any algorithm to find its Convex Hull, i.e., the smallest convex contour enclosing

the given shape. If the given contour is convex, then its convex hull is the original

contour itself. The maximal size of the shape is 512×512, and the maximal number of

the vertices of the shape is 512. Write a program to read the input data (the given

shapes) from a disk file, implement your convex hull finding algorithm, and then

output the shape data of the results to the standard output.

The Input

The order of the vertices is counterclockwise in X-Y Cartesian Plane (if you consider

the origin of the display window is on the upper-left corner, then the orientation of the

vertices is clockwise), and none of the neighboring vertices are co-linear. Since all the

shapes are closed contours, therefore, the last vertex should be identical to the first

vertex. There are several sets of data within a given data file. The negative number –1

is used to separate the data set.

Line
Number

Data in
the File

Explanation

1 K a positive integer showing how many sets of data in this file
2 N a positive integer showing the number of vertices for the shape
3 X1 Y1 two positive integers for the first vertex (X1, Y1)
4 X2 Y2 two positive integers for the next neighboring vertex (X2, Y2)
…

N+2 XN YN two positive integers for the last vertex (XN, YN)
N+3 -1 Delimiter
N+4 M a positive integer showing the number of vertices for the next shape
N+5 XX1 YY1 two positive integers for the first vertex

…
� Please note that the Line Number and Explanation are not given in the file. They

are shown here only to assist you in reading the data.

The Output

Output the convex hull of all K input shapes to the standard output. The data format

should be the same as the input file. In addition, the vertex with the smallest Y value

should be the first point and if there are points with the same Y value, then the

smallest X value within those points should be the first point.

13 of 23

(0, 0)

Sample Input

3
15
30 30
50 60
60 20
70 45
86 39
112 60
200 113
250 50
300 200
130 240
76 150
47 76
36 40
33 35
30 30
-1
12
50 60
60 20
70 45
100 70
125 90
200 113
250 140
180 170
105 140
79 140
60 85
50 60
-1
6
60 20
250 140
180 170
79 140
50 60
60 20

The contour shape of the first data set is shown in figure as follows:

14 of 23

(0, 0)

Sample Output

3
8
60 20
250 50
300 200
130 240
76 150
47 76
30 30
60 20
-1
6
60 20
250 140
180 170
79 140
50 60
60 20
-1
6
60 20
250 140
180 170
79 140
50 60
60 20

The convex hull of the above shape is shown in the following figure:

15 of 23

Problem E Whoever-pick-the-last-one-lose

Consider the following whoever-pick-the-last-one-lose game. The game is played on

a 5×5 board. Initially every array cell has a piece in it. Two players remove pieces

alternatively from the board. The player can remove any number of consecutive

pieces in a row or column. For example, in the configuration depicted below where

one indicates a piece, the player can either remove one piece (A1, A2, or B1), or

remove two pieces (A1 and A2, or A1 and B1) simultaneously. The game ends when

one player is forced to take the last piece, and the other player wins the game.

1 2 3 4 5
A 1 1 0 0 0
B 1 0 0 0 0
C 0 0 0 0 0
D 0 0 0 0 0
E 0 0 0 0 0

Write a program that evaluates board configurations from this game. The program

must output “winning” when there exists a winning move that no matter how the

opponent responds, it will force the opponent to take the last piece. Otherwise, the

program must output “losing”. Note that during the game tree evaluation, if the

current configuration has a winning move, then it is not necessary to search any

further because the configuration is guaranteed to be winning. This can greatly reduce

the game tree search time.

The Input

The input file contains 5c + 1 lines.
Line 1 c the number of configurations
Lines 2-6 … configuration #1
… …
Lines 5c–3 to 5c+1 … configuration #c

The Output

The output contains c lines.
Line 1 evaluation result of configuration #1
…
Line c evaluation result of configuration #c

16 of 23

Sample Input

3
1 1 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 1 0 0 0
0 0 0 0 0
1 1 0 0 0
0 0 0 0 0
0 0 0 0 0
1 1 1 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

Sample Output

winning
losing
winning

17 of 23

Problem F Character Decoding

This is a test for decoding characters’ values. Assume a numerical expression is

encoded in English characters by replacing some digit numbers (from 0 to 9) with

English characters. So this kind of numerical expressions can be expressed in new

forms, such as

2BAD = ABE + CD

Please write a program to decode the expressions in characters and output the

numerical value of characters, according to the following rules and assumptions.

1. All character values are integers between 0 to 9 both inclusive.

2. An expression is represented as a set of items combined with operators. Only the

operators +, - and = are used in each expression. And at most 5 items are used in

one expression.

3. There is one and only one operator = in each expression. And only one item is in

the left-hand side of the operator =.

4. Each item is represented by a combination of capital English characters and digital

numbers. The value of the left-most character in each item is not 0.

5. The input data are represented as several rows of numerical expressions and are

stored in a file. Each row is an independent expression with other rows. The end of

the input file is a star symbol (*).

6. Output the value of the left-most item in each expression row by row, in the same

order as that in the input file.

7. If there are multiple solutions, print out the smallest values for each left-most item.

If no possible solutions exist, print out a question mark (?) instead.

Input File

Contains k lines, with k-1 expressions.
Line 1 the first expression
…
Line k-1 the (k-1)th

Line k A star symbol indicating end-of-file

18 of 23

Output File

Contains k - 1 lines. Each line is the smallest value that satisfies the corresponding

expression.
Line 1 value
…
Line k-1 value

Sample Input

CA = AB + 6C
DDE5 = DEFG – EHI + DDH
A = 0
*

Sample Output

81
1115
?

19 of 23

Problem G Integral Determinant

Write a program to find the determinant of an integral square matrix. Note that the

determinant of a square matrix can be defined recursively as follows: the determinant

of a 1×1 matrix M = (a1,1) is just the value |M| = a1,1; further, the determinant of an

n×n matrix is |M| =∑ =
+ ⋅−n

i i
i

1 ,1
1 ||)1(M . Here the notation M1,i is the (n-1)×(n-1) matrix

by removing the first row and the ith column of the original n×n matrix M.

A straightforward method of calculating the determinant of an n x n matrix by the

recursive method will end up with n! multiplications, a very time-consuming

algorithm. To give you a feeling about this, note that 15! = 1,307,674,368,000. To

reduce the time complexity, there are two ways of modifying the original matrix for

easier computation.

1. Exchanging two columns (or rows) of a matrix will change the sign of the

determinant; for example

34

12

43

21
−=

2. Multiplying one column by any constant, and add them to another column will not

change the value of the determinant; for example:

27987

24654

22312

987

654

312

×+
×+
×+

=

Using the above methods, you shall be able to write a program for computing the

determinants of matrices, even for a size like 30×30, very efficiently. Below is an

example to show how this can be done:

27
23

90

231

905

001

214141

251555

212111

441

155

211

144

551

112

249484

217161

225232

984

761

532

−=
−

−=−−=
×−−
×−−
×−−

−=

−==
×−−
×−−
×−−

=

20 of 23

Note that the answer shall be an integer. That is, all the operations needed are just

integer operations; by reducing to floating numbers would result in the round-off

errors, which will be considered as the wrong answer. Do not worry about the

problem of integral overflows problem. You can assume that the given data set will

not cause the integer overflow problem. What is emphasized here is the required

integer precision.

The Input

Several sets of integral matrices. The inputs are just a list of integers. Within each set,

the first integer (in a single line) represents the size of the matrix, n, which can be as

large as 30, indication an n×n matrix. After n, there will be n lines representing the n

rows of the matrix; each line (row) contains exactly n integers. Thus, there is totally n2

integers for the particular matrix.

These matrices will occur repeatedly in the input as the pattern described above. An

integer n = 0 (zero) signifies the end of input.

The Output

For each matrix of the input, calculate its (integral) determinant and output them in a

line. Output a single star (*) to signify the end of outputs.

Sample Input

2
5 2
3 4
3
2 3 5
1 6 7
4 8 9
0

Sample Output

14
-27
*

21 of 23

Problem H Least Path Cost

Given a positive integer ∆ (0 < ∆ < 10000), which is called the overhead, and M (0 <
M ≤ 200) straight line segments in a two-dimensional plane with the following

properties:

1. each line segment has a height, which is a positive integer;

2. two line segments only intersect with each other on endpoints;

3. no two line segments are overlapped.

Each line has a unique number between 1 and M. Each endpoint in the plane has a

unique number between 1 and N (0 < N ≤ 400), where N is the total number of

endpoints. A line segment is represented by its two endpoints (ni, nj). Let height(L) be

the height of a line segment L.

A path is a sequence of line segments
1CL ,

2CL , …,
kCL , such that k > 1,

� � � �� �≠ ∀ ≠ ,
iCL intersects with

1+iCL for all 1≤ i < k, one endpoint of
1CL does

not intersect with any other line segments, and one endpoint of
kCL does not intersect

with any other line segments. The cost between two intersection line segments
iCL

and
1+iCL is

)()(
1+

−
ii CC LheightLheight

That is, for example you can image, the number of stairs that one has to climb (up or
down) by walking from

iCL to
1+iCL . The cost of a path

1CL ,
2CL , …,

kCL is

∑
−

=
+

+∆⋅
1

1

),(cos
1

k

i
CC ii

LLtk .

In the example shown in FIGURE 1, ∆ = 25, M = 8, and N = 9. Then cost(L2, L3) = 1

and cost(L1, L6) = 8. L1, L4, L5 is not a path. There are three paths in the plane. The cost

for the path L1, L6, L7, L8 is 109. The cost for the path L1, L4, L5, L8 is 131. The cost for

the path L2, L3 is 51. Hence L2, L3 is the path with the least cost.

You may also assume there is at least one path in the plane. Write a program to find

the least cost among all paths.

22 of 23

2

1

4

3

5

6

9

8

7

L1 height = 1

L4 height = 2

L5 height = 20

L8 height = 8

L7

height = 9

height = 9

L6

L2 height = 10

L3

height = 9

FIGURE 1. An example of 8 straight lines with 9 endpoints.

The Input

The first line is l, the number of test cases. The first three lines of test case #i are Mi,

Ni and ∆i which are the numbers of line segments and endpoints, and the overhead,

respectively. The following Mi lines each contains the two endpoints of each line

segment, starting from L1 to iML , and its height. Each line segment is represented by

three integers, separated by blanks.

The Ouput

Contains l lines. The ith line contains the least cost of all paths in the ith test case.

23 of 23

Sample Input

2
8
9
25
1 2 1
8 9 10
7 8 9
1 4 2
4 5 20
1 3 9
3 5 9
5 6 8
6
6
21
1 2 1
1 4 2
4 5 20
1 3 9
3 5 9
5 6 8

Sample Output

51
93

