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1. Introduction
Phylogenetic footprinting is a technique that identifies regulatory elements by finding unusually well conserved regions in a set of orthologous non-coding DNA sequences from multiple species.
2.  The substring parsimony problem
2.1
A dynamic programming algorithm

Inputs :

A set of orthologous sequences S1,…,Sn from n different species.

The phylogenetic tree T relating these species.

The length k of the motifs to look for.

An integer d.

Outputs :


All sets of substrings s1,…,sn of S1,…,Sn respectively, each of length k, such that the parsimony score of s1,…,sn on T is at most d.
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2.2
Improved algorithm

An auxiliary table X(u,v) for each edge (u,v) in the tree, where u is the parent of v.
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a set of sequence Bp, called the boundary, which contains exactly the sequences s such that 
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 be the set of neighbors of string t.
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2.3 Sibling bounds

2.4 Parent bounds

2.5 Filtering substrings

Reduce the computation time by avoiding the computation of useless entries in W and X tables.

When v is not a leaf, let y be an arbitrary leaf in the subtree rooted at v. Then X(u,v)[s] <= d implies that s must have Hamming distance at most d to some substring of Sy, which in turn implies that X(x,y)[s] <= d. This means that X(u,v) has no more entries than X(x,y), which we showed is O(l•(3k)d) Many entries X(u,*)[s] end up being rejected because they add up to more than d. To avoid that situation, we are going to compute the entries of the X(u,*) tables in parallel.
2.6 General edit-distance metric

We can allow substitutions, insertions, and deletions, instead of only substitutions. The complexity of the resulting algorithm would not be that mentioned above, but would be a rather complex expression.
2.7 Reporting solutions
When the input sequences contain a conserved region that is much longer than k, in which case all length k substrings of the conserved region would be reported. If two sets of substrings overlap in exactly the same manner in each of the n input sequences, these substrings will be merged and displayed as only one solution.
3 Conclusion and future work
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‘Technique Time Space #Entries Time Space #Entries
No bounds - - ~ 160 x 10° - - ~1x10°
d-bounds only ~5008 ~1000M  ~20x10% [~10000s  ~5000M  ~150x108
Sibling bounds only 325 40M $10130 7278 340M 6999597

Sibling-+parent bounds 24s 30M 414207 573s 315M 3642586
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Performance obtained when the various bounding and filtering techniques described in Sections 2.3, 2.4, 2.5
are used. Data set: c-mye proto-oncogene 3° UTR. sequences, k=12, d=3, n=10. Sequence length varies
between 450 and 900 nucleotides. The solution consists of 3 distinct conserved substrings. The program ran
on a Pentium III 550 MHz, with a 512M RAM.
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