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1. Introduction

Sparsity is a phenomenon that has long been exploited in the design of efficient
algorithms. For instance, it is known how to take advantage of sparsity in
graphs, and indeed most of the best graph algorithms take time bounded by a
function of the number of actual edges in the graph, rather than the maximum
possible number of edges. In this paper, we study the impact of sparsity in
sequence analysis problems, which are typically solved by dynamic program-
ming in a matrix indexed by positions in the input sequences. We use the term,
sequence analysis, in a broad sense, to include sequence comparison problems
and RNA structure computations in molecular biology. Although sparsity is
inherent in the structure of this class of problems, there have been few attempts
to exploit it, and no general technique for dealing with it is available.

It is well known that a number of important computational problems in
computer science, information retrieval, molecular biology, speech recognition,
geology, and other areas have been expressed as sequence analysis problems.
Their common feature is that one would like to find the distance between two
given input sequences under some cost assumptions. Only two such problems
are already known to be solved by algorithms taking advantage of sparsity:
sequence alignment [28, 29] and finding the longest common subsequence
[5, 12].

In the sequence alignment problem, as solved by Wilbur and Lipman [28,
29], a sparse set of matching fragments between two sequences is used to build
an alignment for the entire sequences in 0( n + m + M*) time. Here n and m
are the lengths of the two input sequences, and A4 s nm is the number of
fragments found. The fastp program [16]. based on their algorithm, is in daily
use by molecular biologists, and improvements to the algorithm are likely to
be of practical importance. Most previous attempts to speed up the Wilbur-
Lipman algorithm are heuristic in nature; for instance, reducing the number of
fragments that need be considered. Our algorithm runs in 0( n + m +
M log log min( A/l, nm /iW)) time for linear cost functions and therefore greatly
reduces the worst-case time needed to solve this problem, while still allowing
such heuristics to be performed. The log function here, and throughout the
paper, is assumed to be log x = log Z(2 + x); that is, when x is small,
the logarithm does not become negative.

The second problem in which sparsity was taken into consideration is to
determine the longest common subsequence of two input sequences of length m
and n. This can be solved in 0( run) time by a simple dynamic program, but if
there are only A4 pairs of symbols in the sequences that match, this time can be
reduced to 0(( h4 + rz)log s) [12]. Here s is the minimum of m and the
alphabet size. The same algorithm can also be implemented to run in 0( n log
s + A? log log n) time. Apostolic and Guerra [5] showed that the problem can
be made even more sparse, by only considering dominant matches (as defined
by Hirschberg [10]); they also reduced the time bound to 0( n log s + m log
n + d log( run/d)), where d s M is the number of dominant matches. A
different version of their algorithm instead takes time 0( n log s + d log log n).
We give an algorithm that runs in 0( n log s + d log log min( d, nm / d)) and
therefore improves all these time bounds. Longest common subsequences have
many applications, including sequence comparison in molecular biology as well
as to the widely used cliff file comparison program [4].

We show also that sparsity helps in solving the problem of predicting the
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RNA secondary structure with linear cost functions for single loops [23]. We

give an 0( n + M log log min( A4, n2 /&I)) algorithm for this problem, where
n is the length of the input sequence, and A4 < n2 is the number of possible
base pairs under consideration. The previous best known bound was 0( nz)
[13]. Our bound improves this by taking advantage of sparsity.

In the companion paper [7], we study the case where the cost of a gap in the
alignment or of a loop in the secondary structure is taken as either a convex or a
concave function of the gap or loop length. In particular, we show how to solve
the Wilbur– Lipman sequence comparison with concave cost functions in
0( n + m + M log M) and with convex cost functions in 0( n + m +
M log JWU(A4)). Moreover, we give a 0( n + &l log A4 log min(&f, n2/M))
algorithm for RNA structure with concave and convex cost functions for single
loops. This time reduces to 0( n + ikf log A4 log log min( M, n2 /M)) for many
simple cost functions. Again, the length of the input sequence(s) is denoted by
n (and m). M is the number of points in the sparse problem; it is bounded for
the sequence comparison problems by nrn, and for the RNA structure problems
by n2.

The terms of the form log min( &l, x/&f) degrade gracefully to 0(1) for
dense problems. Therefore, all our times are always at least as good as the best
known algorithms; when &l is smaller than nm (or n2), our times will be
better than the previous best times.

Our algorithms are based on a common unifying framework, in which we
find for each point of the sparse problem a range, which is a geometric region
of the matrix in which that point can influence the values of other points. We
then resolve conflicts between different ranges by applying several algorithmic
techniques in a variety of novel ways.

The remainder of the paper consists of five sections. In Section 2, we present
an algorithm for the sparse RNA secondary structure, whose running time will
be analyzed in Section 3. Section 4 deals with Wilbur and Lipman’s sequence
alignment problem. In Section 5, we describe how to get a better bound for the
longest common subsequence problem. Section 6 contains some concluding
remarks.

2. Sparse RNA Structure

In this section, we are interested in finding the minimum energy secondary
structure with no multiple loops of an RNA molecule.

An RNA molecule is a polymer of nucleic acids, each of which may be any
of four possible choices: adenine, cytosine, guanine and uracil (in the following
denoted respectively by the letters A, C, G and U). Thus, an RNA molecule
can be represented as a string over an alphabet of four symbols, The string or
sequence information is known as primary structure of the RNA. In an actual
RNA molecule, hydrogen bonding will cause further linkage to form between

pairs of bases. A typically pairs with U, and C with G. Each base in the RNA
sequence will base pair with at most one other base. Paired bases may come
from positions of the RNA molecule that are far apart from each other. The set
of linkages between bases for a given RNA molecule is known as its secondary
structure. Such secondary structure is characterized by the fact that it is
thermodynamically stable, that is, it has minimum free energy.

Many algorithms are known for the computation of RNA secondary structure.
For a detailed bibliography, we refer the reader to [20]. The common aspect of
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all these algorithms is that they compute a set of dynamic programming
equations. In what follows, we are interested in a system of dynamic program-
ming equations predicting the minimum energy secondary structure with no
multiple loops of an RNA molecule. Let y = y ~Yz c o“ y. be an RNA sequence
and let x = y.y. _l ... y ~. Waterman and Smith [23] obtained the following
dynamic programming equation:

D[i, j] =min{ll[i - I,j - 1] +b(i, j), H[i, j], V[i, j], E’[i, j]},

(1)

where

V[i, j] = &l~[D[k, j – 1] + W’(k, i)

H[i, j] = &liij D[i -1, 1] + W’(l, j)

E[i, j] = min ll[k, i] +w(k+l,i+ j),
O<k<l–1
O</<j– 1

(2)

(3)

(4)

The function w corresponds to the energy cost of a free loop between the two
base pairs, and w’ corresponds to the cost of a bulge (see [20] for definitions of
free loops, bulges as well as the following terminology). Both w and w’
typically combine terms for the loop length and for the binding energy of bases
i and j. The function b( i, j) contains only the base pair binding energy term,
and corresponds to the energy gain of a stacked pair. For sake of simplicity and
without loss of generality, we assume from now on that k and 1 in recurrence 4
are bounded above by i and j instead of i – 1 and j – 1.

The obvious dynamic programming algorithm solves recurrence 1 for
sequences of length n in time 0( ni) [23]: this can be improved to 0( n3) [24].
When w and w’ are linear functions of the difference of their arguments.
another easy dynamic program solves the problem in time 0( no ) [13]. We
discuss this case below. Eppstein et al. [6] considered cost functions satisfying
certain convexity or concavity conditions, and found an 0( nz log z n) algorithm
for such costs; this was later improved to 0( n2 log n) [2]. We treat this case in
the companion paper [7].

In recurrence 1, it may be that D is not defined for certain pairs (i, j); for
RNA structure this occurs when two bases do not pair. For the energy functions
that are typically used, base pairs will not have sufficiently negative energy to
form unless they are stacked without gaps at a height of three or more; thus we
can restrict our attention to pairs that can be part of such a stack [20]. Further,
the RNA structure computation really uses only half of the dynamic program-
ming matrix. These factors combine to greatly reduce the number of possible
pairs, which we denote by ill, from its maximum possible value of nz to a
value closer to n2 / 128. If we required base pairs to form even higher stacks,
this number would be further reduced. The computation and minimization
in this case is taken only over positions (i, .j) which can combine to form a base
pair. Such problems can still be solved with the algorithms listed above, by
giving a value of + m to 11[ i, j] at the missing positions. However, the
complexity measures of the previous algorithms for the problem do not depend
on the number of possible base pairs, but only on the length of the input
sequence. We would like to speed up these algorithms by taking more careful
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advantage of the existence of the missing positions, rather than simply working
around them.

Before we start our discussion on how to compute recurrence 1, we outline an
algorithm for finding all the M pairs (i, j) for which we have to compute D.
Assume that we are interested in finding all pairs stacked without gaps at a
height of k or more. This is equivalent to finding all substrings x, xi+, “ “ “

‘L+[–~ and ‘J+[–l X]+[–2 “ “ “ XJ of length 1> k such that xl+ ~ base pairs
with XJ+~_~ for O < h < 1 – 1. We obtain such substrings as follows.

We find a sequence x* complementary to x and in the reverse order; that is,
if xl is A, C, G, or U we set x~_l+l equal to C, A, U, or G, respectively. We
then find all common substrings of length 1 ~ k between x and x*. This task,
and in fact the more general task of finding all common substrings of length
1> k between any two sequences x and y (which we use for the sparse
sequence alignment problem), can be performed in linear time by using the
suffix tree data structure.

We outline the steps involved in such computation, pointing out the time
bound for each of them. The reader is referred to [17] and [26] for a definition
of suffix tree of a string z, as well as for an algorithm that constructs it in
0( I z I log s), where s is the size of the alphabet. In general, s can be taken
without loss of generality to be less than I z I ; however, here s = 6 (we add
two new endmarker symbols to the four possible bases) and so the log s term
vanishes.

We build the suffix tree for string x$, y$z, where $, and $2 are two different
endmarkers which match no symbol of x and y. Each leaf li of the tree
corresponds to a suffix of the string, starting from position i in the string.
Further, every node in the tree has a string associated with it, which is the
common prefix of all suffixes corresponding to leaves below the node in
the tree. In particular, given two leaves 1, and lJ corresponding to positions
in x and y, the least common ancestor of the leaves corresponds to the
maximal common prefix of the two leaves, which is the maximum common
substring of the two strings starting at positions i and j.

Thus, to accomplish our goal we need only find each node u of the tree with
the length 1(u) of the corresponding string satisfying 1(u) > k; and for each
such node find all pairs i and j with i s n and j > n (so that i corresponds to
a position in x, and j to a position in y), and with u the least common
ancestor in the tree of li and lj. The first part of this task, finding nodes with
long enough corresponding substrings, is easily accomplished with a pre-order
traversal of the suffix tree. We mark these nodes, so that we can quickly
distinguish them from nodes with corresponding substrings that are too short.

Next observe that a node u is the least common ancestor of /i and lJ if, and
only if, 1, and lJ descend from different children of u. Thus, to enumerate the
desired substrings corresponding to u, we need simply take each pair u and w
of children of u, such that u # w, and list pairs (i, j) with /i a descendant of u
with i s n and lj a descendant of w with j > n. To speed this procedure, we
should consider only those u having descendants li meeting the condition
above, and similarly for w; in this way, each pair of children considered
generates at least one substring, except for the pairs u, v of which there are
linearly many in the tree.

To be able to perform the above computation, at the time we consider node u
we must have for each of its children two lists of their descendant leaves,
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corresponding to positions in the two input strings. By performing a post-order
traversal of the tree, we can list the substrings corresponding to each node u as
above, and then merge the lists of leaves at the children of u to form the lists at
u ready for the computation at the parent of u.

Thus, to summarize the generation of matching substrings, we first compute a
suffix tree; next, we perform a preorder traversal to eliminate those nodes
corresponding to suffixes that are too short; and finally, we perform a postorder
traversal, maintaining lists of leaves descended from each node, to generate
pairs of positions corresponding to the desired common substrings. The genera-
tion of the suffix tree and the preorder traversal each takes time 0(n). The
postorder traversal and maintenance of descendant lists also takes time 0(n),
and the generation of pairs of leaves corresponding to common substrings takes
time 0( M). Thus the total time for these steps is 0( n + A4). For arbitrary
input strings x and y taken from an alphabet of size S, the time would be
O(nlogs+itf).

Now let us return to the computation of recurrence 1. As we have said, we
assume in this paper that w and w’ are linear function of the difference of their
arguments, that is, W(S, f) = c “ (t – S) and w’(s, t) = c’ “ (t – S) for some
fixed constants c and c’. In the companion paper [7], we investigate the case
when these weight functions are either convex or concave.

It can be easily shown that 11[ i, j] and V[ i, j] can be computed in constant
time for each of the M pairs we are interested in. For instance, in the
computation of If[ i, j], we simply maintain for each i the value of 1, with
1< j, minimizing D[ i – 1. 1] – c’1, which supplies the minimum in recur-
rence (3); then the minimum for j + 1 can be found by a single comparison
between the previous minimum and D[ i – 1, j] – c’ j. Thus, the difficulty in
the computation is to efficiently compute 13[ i, j] given the required values of
D. We perform this computation of E in order by rows.

For brevity, let C(k, 1; i, j) stand for D[k, 1] + w(k + 1, i + j). Define
the range of a point (k, 1) to be the set of points (i, j) such that i > k and
j >1. By the structure of recurrence (4), a point can only influence the value of
other points when those other points are in its range. Two points (k, 1) and
(k’, 1’) can have a nonempty intersection of their ranges. The following fact is
useful for the computation of recurrence (4).

FACT 1. Let (i, j) be a point in the range of both (k, 1) and (k’, 1’)
and assume that C(k, 1; i, j) s C(k’, 1’; i, j). Then, C(k, 1: x, y) s
C( k’, 1’; x, y) for each point (x, Y) common to the range of both
(k, 1) and (k’, 1~. In other words, (k, 1) is always better than or equal
10 ( k’, l’) for all the poinls common to the range of both.

PROOF. The difference

(D[k,l] +c. ((i+j) - (k+/))) - (D[k’,1’] +c. ((i+j)

-(k’+ 1’))) = (D[k,l] -c. (k+ 1)) - (D[k’,1’] -c. (k’+ 1’))

depends only on (k, 1) and (k’, 1’). ❑

From now on, we assume that there are no ties in range conflicts, since they
can be broken consistently.
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For the nonsparse version of the dynamic program, it can be further shown
from the above fact that the point (k, 1) giving the minimum for (i, j) is either
(i – 1, j – 1) or it is one of the points giving the minimum at (i – 1, j) or
(i, j – 1). Thus at each point we need only compare three values to find the
minimum of recurrence (4). This gives a simple 0( n~ ) dynamic programming
algorithm, first pointed out by Kanehisi and Goad [13]. We now describe how
to improve this time bound, when A4 is less than n2, by taking advantage of the
sparsity of the problem.

Let i,, i2, . . ..iP. p s M, be the nonempty rows of E and let ROW[s] be
the sorted list of column indices representing points for which we have to
compute E in row is. Our algorithm consists of p steps, one for each
nonempty row. During step s s p, the algorithm processes points in ROW [s]
in increasing order. Processing a point means computing the minimization at
that point, and, if appropriate, adding it to our data structures for later
computations. For each step s, we keep a list of active points. A point (i., j’) is
active at step s if and only if r < s and, for some maximal interval of columns
[~ + 1, h], ( i,, j’) is better than all points processed during steps 1,2, ...,
s – 1. We call this interval the active interval of point (i,, j’). Notice that the
active intervals partition [1, n].

Given the list of active points at step s, the processing of a point (i,, j~) can

be outlined as follows: The computation of the minimization at (is, jq) simply
involves looking up which active interval contains the column jq. We see later
how to perform this lookup. The remaining part of processing a point consists
of updating the set of active points, to possibly include (is, jq). This is done as
follows: Suppose (i,, j’), r < s, supplied the minimum value for (is, jq).
Then, the range of (i,, j’) contains that of (i,, (q). By Fact 1, if C( i,, j’; i, +
1, jq + 1) < C(i~, .ja; i. + 1, jg + 1), then point (i,, =jq) will never be active.
Therefore, we do not add it to the list. Otherwise, we must reduce the active
interval of (i,, j’) to end at column .jQ, and add a new active interval for
(is, j~) starting at column j~. Further, we must test (i,, j~) successively
against the active points with greater column numbers, to see which are better
in their active intervals. If (is, j~) is better, the old active point is no longer
active, and (is, j~) takes over its active interval. We proceed by testing against
further active points. If (i,, j~) is worse, we have found the end of its active
interval by Fact 1 and this interval is split as described above.

A detailed description of step s is as follows: Let A CT1V13 denote the list of
all active points ( leaderl, c1), ( ieaderz, C2), . . . , ( leaderU, CU) during step .s.
Each element in A C2YP’73 is composed of an information field (leader) and of
a key field (column): the meaning of each pair ( leaderl, c/), 1 s 1< u, is that

the point denoted by the pair has active interval [Cl + 1, Cl+ 11. The first
and last pair are dummy pairs taking care of boundary conditions, We set
c1 = o, C,l = n and leader ~ = leaderU = O. Moreover, we set C( leaderl, c1:
i, j) = +CO and C(leader,,, CU; i, j) = –~.

The list ACTIVE satisfies the following invariants, which will be maintained
by our algorithm:

(l) O=cl<cz<”. ”<c,, =n;
(2) ( leaderl, cl), 1 s 1< u, has active interval [cl + 1. Cl+, 1;
(3) All points (i,, j.), r < s, not in ACTIVE need not be considered for the

computation of E on row is and beyond.
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For a given jq in ROW [ ,s], the computation of 13[ is, jq] is performed as
follows. Using the keys in A CT’’VJ!?, we look up which active interval jq
belongs to. That is, we find an 1 such that c1 < ~~ s cl+ ~. If c1 = O, then

E[ i~,j~] does not depend on any of the points processed in previous steps and it
is therefore set to the value given by the initial conditions in recurrence (4). If
c1 # O, E[ is, j~] is set to Cl leaderl, c[; i,, jq). BY definition of active Point
and the invariants (2) and (3) above, E[ is, ~~] is correctly computed. We refer
to the operation of obtaining for a given .Iq in ROW [s] the interval that it
belongs to as LOOKUP( ACTIVE, j.). Namely, LOOIYUP( ACTIVE, j.)
returns the largest column number in A CT1V13 less than jg.

Once we have all values of E on row is, we can compute the corresponding
values of D. Based on these latter values, not all the points in either ACTIVE
or RO W[ .s] may turn out to be active at later steps, because new range
conflicts may now arise. We resolve such conflicts between different points by
first doing the following for each jQ in RO W[sl. Let ( leaderl. c[). 1 ~ 1, be
the point that provides the minimum in recurrence 4 for (i,, jg). We check
whether C(leader/, CI; i, + 1, j~ + 1) ~ C(i., j~; i, + 1> j~ + 1). If this

is the case, we delete j~ from ROW [s] since (is, .jg) cannot be active by

Fact 1. Otherwise, we check whether ~q = Cl+ 1. If this test is negative> We
do nothing and (i,, j~) remains in ROW [s]. If the test is positive, we have
that the range of (is. jg) is completely contained in the range of ( il+ 1, CI+ 1).

Thus, one of the two points must be deleted. Indeed, if C( leader[+ 1, Cl+ 1;

i,+ l,jq+ 1) 5 C(i,. jq; i,+ l+.i~ + 1), we delete (i,, jq) from ROWIS]
since it cannot be active by Fact 1. Otherwise, we will later delete ( leaderl+ 1,
cl+,) from ACTIVE.

Letj~,7~,..., &’ be the column indices of the surviving points in RO W[s]
(listed in sorted order). Starting from j!, we discard all the column indices ~~
immediately following it such that C( i,, 7(; i. + 1, l; + 1) s C( i,, l;; i, +
1, ~~ + 1). When we find a point q’ such that C(i,, J’; is + 1, 1~ + 1) >
C(Z~, j~t: is + 1, j~, + 1), we stop and repeat the same process for q’. As a

result, we discard from ROW [s] all column indices j: such that C( i,, ~~;

is+ l,jj + l)< c(is,j~;is+ 1, Y( + 1), for some p’ < p. Again, by Fact
1, all discarded points cannot be active at later steps. The result is a list of
points (i~, jo, . . . . ( i,, jj) that must all be inserted in A CTIP’73. We refer to

the process of obtaining the sorted list (is. ~{), . . . . (is, ~j) from (i.,

fl), (i~, jl) . . . . . (is, l;) as REDUCE( ROW IS]). It is implemented as a
simple scan of a sorted list and therefore requires 0( I ROW [s] I ) time. As
a consequence of Fact 1, for each ~q and ~1 in ROW [ S1, q < 1! we have that

We must now insert into ACTIVE the remaining points in ROW. However,
the insertion of such points may cause the deletion of other points in A C2’W’E.
We proceed by first deleting, in increasing order by column. all points in
ACTIVE that cannot be active any longer. Then, we insert points from
l?O W[S]. The detection of all points that must be deleted from ACTIVE can
be performed as follows. We start with the first column index jl in ROW. Let
1 be such that C[ < j, s C,+,. By “walking” on ACTIVE, We find the
minimal h, 1 < h < n, such that C(is, J“l; is + 1; c}, + 1) > cfleaderh> Ch:

is+ I;ch + 1) and C(i,$, jl; i~ + l,c~ + 1) s C(leaderg, cg: ix+ l.c~ +
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1), 1< q < /z. During this walk, we mark as deletable all points ( leader~, Cg),
1< q < h from ACTIVE. We repeat the above process with jz, starting at h,
if jz s c~. Otherwise, we start at an index 1 such that c1 < Jz S c[~,. We
iterate through this process with successive indices in ROW [s] and A C2YV72
until we reach the end of either list. Then, we remove all deletable points
from A C7YP23. We refer to the operation of deleting a pair (leader, c) from
A C7’’VI3 as DEL( ACTIVE, c). By Fact 1 and inequality (5), all the deleted
points cannot be active in any of the subsequent steps.

After this step, all the possible range conflicts between points in ROW and
A C7’lVE have been examined and solved. Therefore, all the remaining points
in A C7’U”13 and ROW will be active for later computation. Thus, we insert in
A CIW’73 all the points with column index in ROW [s]. We refer to each
insertion as INSER T( A CTIVE, j).

Let NEXT( LIST, item) denote the operation that returns the element
succeeding item in LIST and assume that the last element in ROW [s] is a
dummy column index, say n + 1. Moreover, let APPEND( LIST, item)
denote the operation that appends item at the end of LIST. The algorithm
discussed above can be formalized as shown in Figure 1.

THEOREM 1. Algorithm SRNA correctly computes recurrence (4).

PROOF. By induction, using the discussion preceding the algorithm. ❑

In order to simplify the presentation of algorithm SRNA, we have assumed
that each column index is an integer between O and n. We remark that a slight
variation of the same algorithm works correctly if we label column indices to be
integers between O and min( n, M). Such a labeling can be clearly obtained in
O(n) time.

3. Time Complexity

In this section we analyze the running time of algorithm SRNA. We must
account for a preprocessing phase of 0(n), which is also the time we need to
read the input. Furthermore, it is easily seen that there are no more than 0(M)
insertions, deletions and lookup operations on A CT7VE and the rest of the
algorithm takes just 0(M). Therefore, the total time of SRNA is 0( n + M’ +
T(M)), where T( ill) is the time required to perform the 0(M) insertions,

deletions and lookup operation on ACTIVE. This time complexity depends on
which data structure we use for the implementation of A CTHL?3.

If ACTIVE is implemented as a binary search tree [3, 15, 21], we obtain an
0( n + A4 log M) time bound. However, we can obtain a better time bound by
exploiting the fact that ACTIVE contains integers in [0, min( n, M)]. Indeed,
if ACTIVE is implemented as a flat tree [22] we obtain a bound of 0( n +
M log log min( n, A4)), since each operation on ACTIVE costs O(log
log min( n, M)). Even better, by using the fact that the operations performed
on ACTIVE are blocks of either insertions or deletions or lookup operations,
we can use Johnson’s variation to flat trees [9] to obtain an 0( n +

M log log min( M, n2 /k/)) time bound. We now discuss such an implementa-
tion as well as its timing analysis; this requires some care and some knowledge
of the internal working of Johnson’s data structure.

Johnson’s priority queue maintains a set of items with priorities that are
integers in the interval { 1, . . . . n}. It takes O(log log G) time to initialize the
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Algorithm SRNA:
ACTIVE ~ ((O, O), (0, n));

fors~ Itop do begin
j - NEXT(ROWIS]. 0):

while j # n + 1 do begin

/* compute E[i.. J] and decide whether to keep j in ROW[s] */
jdead + false;
(leader, c) F LOOKUP( A CTIVE, j);
E[i,, j] - D[leader, c] + w(leader + c, i, + j);

nextj + NEXT(RO W(s], j);

if C(leader, c; i, + 1, j + 1) s C(i~, j; is + 1, j + 1) then begin
DEL(ROWIS], j):

jdead + true;
end;

( leader, c) ~ NEXT( ACTIVE, c);
if(c=~) and C(leader, c; i,+ l,J+ 1) < C(t$, j;i~+ l,j+ l) then

if jdead = false then

DEL(ROWIS]. j);

j + nextj;

end;
/* remove from RO W[s] the points no longer able to be actwe */

ROWIS] * REDUCE(ROWIS]);
/* delete elements from ACTIVE*/

j- NEXT(ROW[s], @),

(leader, c) + LOOKUP( ACTIVE, j);
(leader, c) - NEXT( ACTIVE, c):
OLD + ~;
while j # n + 1 and (c # n) do begin

while C(leader, c; IS + 1, c + 1) > C(i~, j; is + 1, c + 1) do begin

APPEND(OLD, C):

(leader, C) + NEXT( ACTIVE, c);
end;
j * NEXT(ROWIS], j):
if j > c then begin

(leader, c) G LOOKUP( ACTIVE, j);

(leader. c) G NEXT( ACTIVE, c):
end;

end;
APPEND(OLD, n + 1);

/* delete points in OLD from ACTIVE *I
c F NEXT(OLD, ~);

while c # n + 1 do begin
DEL(ACTIVE, C);
c F NEXT(OLD, c);

end;
/* insert points from ROW into ACTIVE*/

j * NEXT(ROW, ~);
while J # n + 1 do begin

INSER T( ACTIVE, j);
J + NEXT(ROWIS], J);

end:
end;

FIGURE 1
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data structure, to insert or delete an item in the data structure, or to lookup for
the neighbors of an item not in the data structure, where G is the length of the
gap between the nearest integers in the structure below and above the priority of
the item being inserted, deleted, or searched for.

We need to know the following facts about Johnson’s data structure. The
items are kept in n buckets, one for each integer in the domain { 1, . . . . n}.
Each bucket contains items of the corresponding priority. Non-empty buckets
are maintained in a doubly linked list sorted according to the priority.

As for van Erode Boas’ flat trees, the idea is to maintain a complete binary
tree with n leaves and traverse paths in this tree using binary search. The
leaves of the binary tree correspond in a left-to-right order to the items in the
priority domain. Each integer in {1, . . . . n} and therefore each bucket defines
a unique path to the root of the tree. The length of such paths is at most
O(log n).

These paths are dynamically constructed whenever needed. When an item has
to be inserted, a new path segment is added to the tree, while the deletion of an
item implies the removal of a path segment. In both cases, the length of the path
segment involved is O(log G) in the worst case. By constructing and visit-
ing just a logarithmic number of nodes in each path segment, we get the
O(log log G) bounds.

The following lemma was implicit in [9].

LEMMA 1. A homogeneous sequence of k s n operations (i. e., all

insertions, all deletions, or all Iookups) on Johnson’s data structure
requires at most O(k log log(n /k)) time.

PROOF. We first prove that it “suffices to consider just sequences of inser-
tions. In fact, k deletions are just the reversal of the corresponding k insertions
and therefore require the same time. On the other hand, k lookup opera-
tions can be performed by performing the corresponding insertions, then
finding the lookup results by inspecting the linked list of buckets, and finally
deleting the k inserted items. Thus, the total time of k lookup operations is
bounded above by the total time of k insertions. In the companion paper [7] we
present an alternate proof of the time bound for lookups that does not require
the modification of the data structure.

It remains for us to bound the cost of k insertions. Denote by t,,1 s i s k,
the length of the new path added to the data structure because of the ith
insertion. The total cost of k insertions will therefore be 0( Z ~=~ log t,).

Let us now consider the total additional size of the resulting tree after
the k insertions, z ~=~tj.This will be maximized when the k items to be
inserted are equally spaced in the priority domain { 1, . . . . n}, givi~g rise to

~~= I t, = k + k log( n / k). BY convexity of the log function, Z 1= 1 log t,
is 0( k log( 1 + log( n / k))) and therefore the total cost of k insertions is
O(k log log( n /k)). ❑

We are now able to analyze the overall time bound of the SRNA algorithm.

THEOREM2. Algorithm SRNA solves the sparse RNA secondary struc-
ture problem in a total of O(n -t Mlog log min(M, n2/iW)) time.

PROOF. By the above discussion, SRNA requires at most 0( n + M +
T(M)) time, where T(M) is the worst-case time of performing the 0(M)
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insertions, deletions and lookup operations in ACTIVE. By implement-
ing ACTIVE with Johnson’s data structure, T( Al) is 0( A4 log log G) and
therefore 0( M log log Al).

It remains to show that the time complexity of SRNA is bounded by
0( n + A!? log log( rzz/&f)). By Lemma 1, the total time spent by algorithm
SRNA on row i, 1 s i s p, is 0(A41 log log( n /Afl)), where M, < n denotes
the number of points in row i. This gives a total of O(Zf=, iWI log log( n /~,))
time. Define a, = n /iM,, 1 s i < p, for each row i. Then, the total time of
SRNA is asymptotically bounded by Zf’= ~ Eg, log log u, subject to the
constraint Z;= ~ Zyy; ~ CYis n2. By convexity of the log log function,

x:=, Egl log log CYi~ ~ loglog(n’/~).
Therefore, SRNA requires at most 0( n + Al log log min( M, rzz/&f))

time. ❑

4. Wilbur-Lipman Fragment Alignment Problem

In this section we consider the comparison of two sequences, of lengths n and
m, which differ from each other by a number of mutations. An alignment of the
sequences is a matching of positions in one with positions in the other, such that
the number of unmatched positions (insertions and deletions) and matched
positions with the symbol from one sequence not the same as that from the other
(point mutations) is kept to a minimum. This is a well-known problem, and a
standard dynamic programming technique solves it in time 0( nm) [19]. In
a more realistic model, a sequence of insertions or deletions would be consid-
ered as a unit, with the cost being some simple function of its length; sequence
comparisons in this more general model can be solved in time 0( n3) [25]. The
cost functions that typically arise are convex; for such functions this time has

been reduced to 0( n2 log n) [6, 8, 18] and even 0( rz2a(rz)), where a is a very
slowly growing function, the functional inverse of the Ackermann function
[14].

Since the time for all of these methods is quadratic or more than quadratic in
the lengths of the input sequences, such computations can only be performed for
fairly short sequences. Wilbur and Lipman [28, 29] proposed a method
for speeding these computations up, at the cost of a small loss of accuracy, by
only considering matchings between certain subsequences of the two input
sequences. Since the expected number of point insertions. deletions and muta-
tions in the optimal alignment of two random sequences is very low, especially
for small alphabets, considering longer subsequences has also the advantage of
computing more meaningful alignments.

Let the two input sequences be denoted x = xl xl “ “ “ x~ and y =

YIY2 “’” Yn. Wilbur and Lipman’s algorithm first selects a small number
of fragments, where each fragment is a triple (i, j, k) such that the k-tuple of
symbols at positions i and j of the two strings exactly match each other; that is,
xt=yJ, Xt+l =YJ+17 ..., x,+ ~_, = yj +~_ ~. Wilbur and Lipman took their
set of fragments to be all pairs of matching substrings of the two input strings
having some fixed length k. Recall that in the description of the RNA structure
algorithm, we gave a procedure for finding all such fragments; they may be
found in time 0(( n + m)log ,s + M), where n and m are the lengths of the
two input sequences, and s is the number of symbols in the input alphabet; we
assume in our time bounds that this is the procedure used to generate the
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fragments. However, our algorithm for sparse sequence alignment does not
require that this procedure be used, and, in fact, it gives the correct results even
when we allow different fragments to have different lengths.

A fragment (i’, f, k’) is said to be below (i, j, k) if i + k < i’ and
j + k < j’; that is, the substrings in fragment (i’, i’, k’) appear strictly after
those of (i, j, k) in the input strings. Equivalently, we say that (i, j, k) is
above (i’, j’, k’). The length of fragment (i, j, k) is the number k. The
diagonal of a fragment (i, j, k) is the number j – i. An alignment of
fragments is defined to be a sequence of fragments such that, if (i, j, k)
and (i’, j’, k’) are adjacent fragments in the sequence, either (i’, j’, k’) is
below (i, j, k) on a different diagonal (a gap), or the two fragments are
on the same diagonal, with i’ > i (a mismatch). PJote that with this definition,
mismatched fragments may overlap. For instance if

.x = AUGCUUAGCCUUA

and

y = AUGGCUUAGAUUUA .

a possible alignment of fragments is ~1 = (1, 1, 3), fz = (4, 5, 3), f ~ =
(6, 7, 3), fd = (11, 12, 3), which shows a gap between f, and f,, an overlap-
ping mismatch between fz and f~ and a nonoverlapping mismatch between fq
and fd. The cost of an alignment is taken to be the sum of the costs of the gaps,
minus the number of matched symbols in the fragments. The cost of a gap is
some function of the distance between diagonals W( I (j – i) – (j’ – i’) I). The
number of matched symbols may not necessarily be the sum of the fragment
lengths, because two mismatched fragments may overlap. Nevertheless it is
easily computed as the sum of fragment lengths minus the overlap lengths of
mismatched fragment pairs.

When the fragments are all of length 1, and are taken to be all pairs of
matching symbols from the two strings, these definitions coincide with the usual
definitions of sequence alignments. When the fragments are fewer, and with
longer lengths, the fragment alignment will typically approximate fairly closely
the usual sequence alignments, but the cost of computing such an alignment
may be much less.

The method given by Wilbur and Lipman [29] for computing the least cost

alignment of a set of fragments is as follows. Given two fragments, at most one

will be able to appear after the other in any alignment, and this relation of

possible dependence is transitive; therefore h is a partial order. Fragments are

processed according to any topological sorting of this order. Some such orders
are by rows (i), columns (j), or back diagonals ( i + }). For each fragment, the
best alignment ending at that fragment is taken as the minimum, over each
previous fragment, of the cost for the best alignment up to that previous
fragment together with the gap or mismatch cost from that previous fragment.
The mismatch cost is being taken care of by the total number of matched
symbols in the fragments; if the fragment whose alignment is being computed is
f = (i, j, k) and the previous fragment is f’ = (i – 1, j – 1, k’), then the
number of matched symbols added by f is k if f’ and f are non-overlapping
and k – (k’ – 1) otherwise. Therefore, in both cases the number of matched
symbols added by f is k – max(O, k’ – 1). For instance, in the ex-
ample given above the number of matched symbols added by fq is 3 –
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max(O, 3 – 2) = 2, while the number of matched symbols added by fq is
3 – max(O, 3 – 5) = 3. Formally, we have

D(i, j,k) =

[

~i_lrni:[ ~,)D[i – 1, j – Z, W] + max((), k’ – 1)

–k+min
>.

ll[i’, j’, k’] + w(l(j -i) - (j’- i’)I).
(6)

min
(i’. j’, k’) above (i, j, k)

The naive dynamic programming algorithm for this computation, given by
Wilbur and Lipman, takes time 0( lt!f2 ). If Al is sufficiently small, this will be
faster than many other sequence alignment techniques. However, we would like
to speed the computation up to take time linear or close to linear in ill; this
would make such computations even more practical for small A!l, and it would
also allow more exact computations to be made by allowing M to be larger.

We consider recurrence (6) as a dynamic program on points in a two-
dimensional matrix. Each fragment (i, j, k) gives rise to two points, (i, j) and
(i + k – 1, j + k – 1). We compute the best alignment for the fragment at
point (i. j); however, we do not add this alignment to the data structure of
already computed fragments until we reach (i + k – 1, j + k – 1). In this
way, the computation for each fragment will only see other fragments that are
above it. We compute the best mismatch for each fragment separately; this is
always the previous fragment from the same diagonal, and this computation can
easily be performed in total time of 0(M). From now on, we ignore the
distinction between the two kinds of points in the matrix, and the complication
of the mismatch computation. Thus, we ignore k in recurrence (6) and consider
the following two-dimensional subproblem: Compute

where 11[ i, j] is an easily computable function of E[ i, j].
As in the RNA structure computation, each point in which we have to

compute recurrence (7) has a range consisting of the points below and to the
right of it. However, for this problem, we divide the range into two portions,
the left influence and the right influence. The left influence of (i, j) consists
of those points in the range of (i, j) that are below and to the left of the forward
diagonal j – i, and the right influence consists of the points above and to the
right of the forward diagonal. Within each of the two influences, W( I p –

ql) = W(P – 9) or w(I p – ql) = w(q –p); that is, the division of the
range in two parts removes the complication of the absolute value from the cost
function.

For brevity, let

C(i’, j’; i, j) = D[i’, j’] + w(l(j - i) - (j’ - i’)1).

We have the following fact:

FACT 2. Let (i, j) be a point in the left influence (right influence,
respectively) of both (k, 1) and (k’, l’) and assume that C( k, 1; i, j) –
C(k’, l’; i, j) s O. Then (k, 1) is always better than (k’, 1’) for the compu-
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tation of recurrence (7) on all points common to the left influence (right
influence, respectively) of both.

Notice that if we had not split the ranges of points into two parts, we could
not show such a fact to be true, Since it is similar to the central one used in the
RNA structure computation, one would expect that the computation of recur-
rence (7) (and thus recurrence (6) can be performed along the same lines of
recurrence (4). Indeed, we can write recurrence (7) as

E[i, j] = min{L1[i, j], R1[i, j]}, (8)

where

RI[i, j] = min D(i’, ~) + w((j - i) - (j’ - i’)) (9)
(i’, j’) above (i, j)

]–~,<j–~

and

Ll[i, j] = ~r ~)~$e{i ~, D(i’, j’) + w((J - i’) – (j - i)). (10)

~–i<~–i{’

Both recurrences (9) and (10) look very similar to recurrence (4), except that
they must be put together to compute recurrence (7). Thus, the order of
computation of the points must be the same for the two recurrences. Moreover,
now we have two collections of influences that are eighth-planar geometric
regions while in the RNA structure computation we had ranges that were
quarter-planar geometric regions.

In what follows, we choose to compute the values at points in order by their
rows. As a consequence, we have that the computation of recurrence (9) is
the same as (4), the only difference is that here regions are bounded by
forward diagonals instead of by columns. That is, algorithm SRNA can
compute recurrence (9) provided that each point (i,, j), 1 s r < s, is repre-
sented in A CT1V13 by the pair (i,, j – i,) and that each point (is, j) is
represented by j – is in RO W[s].

If we could perform the minimization for left influences in order by columns,
we would get that SRNA could be adapted to compute recurrence (10).
However, this would conflict with the order of computation for right influences.
Instead, we need a slightly more complicated algorithm, so that we can compute
recurrence (10) in order by rows.

We now briefly outline our approach to the computation of ( 10) by rows. We
again maintain a collection of active points, each of which is best for some of
the remaining uncomputed points. As a consequence, the matrix LI can be
partitioned into geometric regions such that for each region R there is a point
(i, j) that is the best for the computation of (10) for points in R. Obviously,
R is contained in (i, j)’s left influence. We refer to (i, j) as the owner of
region R.

However, unlike in the computation of (9), the regions in which such points
are best may be bounded also by forward diagonals, according to the bound-
aries of the left influences. As a result, each region is either a triangle or a
convex quadrilateral, since the boundaries of each region are composed of
rows, diagonals and columns (see Figure 2). Furthermore, it is no longer true
that each point will own at most one region; when we insert a new point in the
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FIG. 2. Regions and points in the dynamic programming matrix for sparse sequence comparmon.

Solid lines represent either forward-diagonal or column boundaries. Dashed lines are reported where

the insertion of a new region sphts an existing region into two.

set of active points it may split a region into two parts. As a consequence, each
point may own more than one region. However, all regions owned by a point
are disjoint.

There is one further complication: We do not know in advance the boundaries
of these regions, but we actually discover them row by row. Assume that in the
computation of (10) we are processing row i. At this step, our algorithm
has computed the partition of the matrix LI up to row i, but we do not know
the behavior of the currently active regions after row i. A region R is said to
be active at row i, 1 5 i < m, if and only if R intersects row i. It can happen
that a new point (i’, j?, i’ > i, contained in a region R active at i may split R
into two parts, depending on whether (i’, j’) is better than the owner of R in
their common left influence. In such a case, we wait until row i’ before
deciding whether R should be split. Furthermore, when we have a region
bounded on the left by a forward diagonal and on the right by a column, we
must remove it when the row on which these two boundaries meet is processed.
At this point, we compare the two regions on either side, to see whether their
boundary should continue as a diagonal or as a column. Once again, we decide
it when considering the row in which their boundaries meet. While processing
row z’, the active points m-e the owners of active regions. In our computation of
(10) by rows, we maintain a set of active regions under the updates required by
the insertions and deletions of regions described above.

Even though there are two types of border, it can be shown that the regions
appear in a linear order for the row we are computing, and this order can be
maintained under the changes in the set of active regions required by the
insertion of new points and by the removal of regions. Therefore, we may use a
binary search tree to perform the computation in time 0( M log M). Because
of the two types of border, however, the points being searched for cannot be
represented as a single set of fixed integers. Therefore, the algorithm sketched
above does not seem to benefit directly from the use of the flat trees of van
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Erode Boas [22], or Johnson’s [9] improvement to flat trees, which depend on
the points being dealt with being unchanging integers. However, we can use
two flat trees, one for column boundaries and one for diagonal boundaries. The
diagonal boundaries can be represented as the integer numbers of the diagonals,
and the column boundaries can be represented as the integer numbers of the
columns. Searching for the region containing a point is then accomplished by
finding the rightmost boundary to the left of the point in each flat tree, and
choosing among the two resulting column and diagonal boundaries the one that
is closer to the point. Thus, we may perform the computation of fragment
alignment in the same time bounds as for RNA structure computation.

Let il, iz, . . ..ifl. p < M, be the nonempty rows of LI in (10). Our
algorithm for the computation of LI consists of p steps. At step S, we compute
LI for row is. Assume that we have q active regions R ~, R ~, . . . . R ~ listed in
sorted order of their appearance on row i,. We keep the owners of these
regions in a doubly linked list OWNER. The ith element in OWNER is the
owner of R i. Initially, OWNER contains the dummy point (A, h) that owns
the whole matrix LI. OWNER implicitly maintains the order in which active
regions appear in row is.

We maintain the boundaries of the q active regions by means of two sorted
lists C-BOUND (column boundary) and D-BOUND (diagonal boundary).
Each element in C-BOUND is a pair ( rightr, c), where riglitr is a pointer to
an element in OWNER and c is a column number. The meaning of such
pair is that column c is the boundary of two active regions. The region whose
owner is pointed to by rightr is to the right of c. Pairs are kept sorted
according to their column number.

Similarly, each element in D-BOUND is a pair ( abover, d), where abover
is a pointer to an element in OWNER and d is a diagonal number. The
meaning of such pair is that diagonal d is the boundary of two active regions.
The region whose owner is pointed to by abover is above d. Pairs are kept
sorted according to their diagonal number.

We notice that given two adjacent column boundaries in C-BOUND, itmay
happen that the two regions bounded by those columns are not adjacent since
regions bounded by diagonals may be in between these two regions. A similar
thing may happen to adjacent diagonal boundaries in D-BOUND. Thus, we
need to use both data structures to locate in which active region a point (i., -il)
falls.

We also keep lists INTERSECT[ r], 1 < r s m, for each row of LI. Such
lists contain points in which we must resolve a conflict between the two active
regions meeting at that point. At step s, we maintain the invariant that
INTERSECT[r] = ~, 1 s r s is – 1. A column index c is in INTER-
SECT[ c – d], c – d > is, if and only if c is left boundary of an active region
R and the region to the left of R has diagonal d as its bottom boundary. We
refer to the point (c – d, c) as an active intersection point. Equivalent y,
(c – d, c) is an active intersection point if and only if c and d are boundaries
of two active regions and neither c intersects another diagonal boundary nor d
intersects another column boundary in any row from is to c – d – 1.

Each column c can be in at most one intersection list. We assume that each
column in some intersection list has a pointer to the item representing it in such
list. We also assume that each diagonal has a flag which is on when that
diagonal is involved in an active intersection point. However, we will ignore
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the details of the update of the intersection lists and of the corresponding
pointers for columns and flags for diagonals.

Assuming that INTERSECT[ r] = d, 1 s r s i, – 1 and that C-BOUND
and D-BOUND correctly represent the active regions at step S, we locate the
active region containing (i,, jl) as follows. We find a pair ( righfrU, CU)

in C-BOUND such that CU < .ils CU+ 1 and we find a pair ( abover., d.) in
D-BOUND such that d. s jl – i, < d.b ~. Consider the row CU – du
in which column c,, and diagonal dU intersect. If CU – du a i,, then (i,, jl)
belongs to the region owned by the element in OWNER pointed to by rightr,,
(see Figure 3(a)) since column CU“hides” the region bounded from below by
clU as well as the regions bounded by columns preceding CU. If c,, – du < i,,
then ( is, j{) falls into the region owned by the element in O FWV-ER pointed to

by aboveru (see Figure 3(b)) since diagonal dU’ ‘hides” the region bounded by
CU as well as the regions bounded by diagonals preceding du.

We refer to the process of finding pairs in C-BOUND (D-BOUND,
respectively) for a given (i,, jl) in ROW [s] as LOOKUP( C-BOUND. jl)
( LOOKUP( D-BOUND, jl), respectively.

We also denote the process of computing the owners of regions containing

given (i,, jl) in RO W[s] as WINNER( jl). Given the results of the two
LOOKUP operations, WINNER( jl) can be performed in constant time.
Moreover, based on the results of WINNER, we can compute recurrence (10)
and then recurrence (6) (via (8)) in constant time for (is, jt).

After computing D for row is, not all points on this row may turn out to
generate active regions. Indeed, assume that (i,, .j~) provided the minimum in
recurrence (10) for (is, jl). The left influence of ( i,, j~) totally contains the left
influence of (is, jl). If C(i,, j~; is + 1, jl + 1) s C’(i,, jl; i. + l,~i + 1),

we can discard (is, jl) since, by Fact 2, it will never own an active region.
Consequently, we discard all points in row is that are dominated by the owners
of their active regions. We refer to this process as REDUCE( RO W [ is]). It
produces a sorted subsequence of the column indices in ROW [s]. Once we
know the values of D for points in row i, and the outcomes of the LOOKUP
operations, REDUCE can be implemented in 0( I ROW [s] I ) time.

We must now show how to update C-BOUND and D-BOUND so as to
include the boundaries of active regions owned by points in ROW [s] that
survived RED UCE. Moreover, we must update OWNER. The insertion of
these boundaries may also cause the insertion of new active intersection points
and the deletion of old ones. Thus, we have to update such lists as well.

Assume that we have correctly processed the first 1 – 1 points in ROW [s]
and let (i,, jl) be the next point to be processed. Let ( rightrh, c~) and
(rightr.+,, c~+~ ) be two pairs in C-BOUND such that c~ < J[ < Cfi. ~. Simi-

larly, let ( abover~, d~) and ( abover~ + ~, d~+ ~) be two pairs in D-BOUND
such that d~ s jl – is < dk+l. All these pairs can be found by means of
LOOKUP operations. We now proceed as shown in the following cases:

(a) Point (i,, jl) falls in the region owned by the point in OWNER pointed
to by rightr~.

Let this point be (i,, Cfi). We distinguish two subcases: c~+ ~ > Jl and

Ch+l ‘JI,

(al) ch+l > j,. The region owned by (i,, cl,) must be split into two and
the region owned by (is, ji) must be inserted between them (see Figure 4(a)).
Thus, we generate two new entries for OWNER, that is, (is, ~i) and (i,, Ck),
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FIGURE 3

and we insert them (in the order given) in OWNER immediately after the entrv
pointed to by rightrk. We insert ~lso the pair (T, jl) in C-BOUND and the pai’r
(a, .jl – i.) in D-BOUND, where ~ points to (i,, jl) and a points to the new
occurrence of (i,, c~) in 0 WNER. The insertion of the region owned by
(is, .jl) may cause the creation of an active intersection point, that is, ( Ck+ ~ –

(jl – is), c~+l). Indeed, if c~+l is not in any intersection list, we insert it in
INTERSECT[c~~ ~ – ( jl – i,)].

(a.2) c~,+l = j(. Point (is, c~+ ~) falls on the border of two active regions,
one owned by (i,, c~) and the other owned by (i,,, cl, + ~), where this lat-
ter point is pointed to by rightrk + ~ in 0 WNER (see Figure 4(b)). We
know that C( i,,, c~+l;i~+ l,c~+l + 1) s C(i,, ck; i~+ l,c~+l + 1) and
that C(i,, c~+l; i, + 1, c~+l + 1) s C(i,, c~; is + 1, c~+l + 1). We have to
establish whether ( ir,, Ch+ ~) is better than ( is, Cfi+, ) in the left influence of this
latter point. If this is the case, we do nothing. Otherwise, (i., Cfi+ ~) conquers

part of (i., c~+ ~)‘s left influence. The border between these two regions is
diagonal cl, +, – is. Accordingly, we insert the entry (is, c~+, ) in OWNER
immediately before the entry pointed to by rightr~ + ~. We insert also (o, jl – i,)
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in D-BOUND, with c = rightr~ +, and set righ trk +, in C-BOUND to point
to the newly inserted entry in OWNER. The insertion of the region owned by
(is, c~+,) may cause the creation of an active intersection point, that is,

(Ch+z – (Ch+l – i,), c~+~). Indeed, if Cfi+~ is in no intersection list, we insert
it in INTERSECT~c~~z – (c~+, – is)].

(b) Point (is, .jl) falls in the region owned by the point in OWNER pointed
to by abover~.

Let this point be (i,, d~, + i.), k’ > k. We have three subcases: d~ < J[ – i,
and Ch+l >J”l; d~ = jl – i, and ch+l >jl; ck+l = jl.

(b. 1) d~ < jl – is and Cfi+, > jl. The region owned by (i,, d~ + i,) must
be split into two and the region owned by (is, j~) must be inserted in between
them (see Figure 5(a)). The details for the corresponding update of OWNER
are analogous to the ones reported in case (a. 1) and are left to the reader. The
insertion of the region owned by ( i,, jl) can cause the creation of two active
intersection points, ( ck +, – (~[ – i.), Ck+ ~) and (~1 – d~, ~1), and the deletion
of a possibly active intersection point, ( ch +, — dk. ck + 1). indeed, if column
c~~, is in INTERSECT(c~~ ~ – d~] we delete it from there and insert it
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in INTERSECT[ c~~ ~ – ( jl – i.)]. Finally, we must insert column j{ in
INTERSECT[ jj – d~].

(b.2) d~ = jl – i, and Cfi+l > .jl. Point (i., jl) falls on the border between
two regions, one owned by (i,, d~, + i,) and the other owned by (i,,, d~ + i,,),
where this latter point is the immediate predecessor of the element in OWNER
pointed to by abover~ (see Figure 5(b)). If C(i,,, d~ + i,,; is + 1, jl + 1) <

C( i,, J[: is + 1, .il + 1), we can discard (is, jl) by Fact 2. Otherwise, we
insert the point (i,, j[) in OWNER immediately to the left of the element
pointed to by abover~. This is equivalent to creating a new active region. We
insert the pair (y, j[) in C-130 UND, where ~ points to the newly inserted
element. The insertion of this new region may cause the creation of an active
intersection point, ( j[ – d~ _ ~, j[). Indeed, if diagonal d~ _, has its flag off, we
must insert jl in INTERSECT[ jl – d~ _, ].

(b.3) Ck+l = jl. This case is analogous to case (a.2).
We notice that at most a constant number of Iookups, insertions and deletions

in C-BOUND and D-BOUND is performed. Furthermore, the sum of the
time taken by all the other operations involved in the corresponding update of
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OWNER and the intersection lists adds up to a constant. We have the following
lemma.

LEMMA 2. The total number of active regions is at most 2 M,

PROOF. Each point (i, j) inserted for the first time in OWNER introduces a
new active region and splits an old one into two. Since there are at most A4
points that can be inserted in OWNER, the bound follows immediately. El

In order to finish step s, we must process all active intersection points in
between rows is and i~f, – 1. Assume we have processed intersection lists for
rows is, . . . , t – 1. Here we show how to process INTERSECT~ t], t < i$~ ~.

If INTERSECT[ t] is empty, we ignore it. Thus, let INTERSECT[ t] # 4.
We first bucket sort the indices (column numbers) in the list. Proceeding in
increasing order, we find ( rightr, j~) in C-BOUND and ( abover, j~ – t)

in D-BOUND for each jg in INTERSECT[ t ]. This can be performed using
LOOKUP. As a result, we obtain two sorted lists of pairs. one from C-BOUND
and the other from D-BOUND. We process these lists in increasing order
taking a pair from each list. Assume that we have processed the first 1 – 1
pairs in both lists. This corresponds to having processed the first 1 – 1 points in
INTERSECT[ t ]. We now show how to process ( rightr, jl) and ( abover, j[ –
t). This is equivalent to processing (t, j[).

Since (t, jl) is an active intersection point, three active regions meet there
(see Figure 6). Namely, the active region having diagonal jl – t as an upper
boundary, let it be R“, the active region having jl – t as lower boundary, let it
be R‘, and the active region having column JI as its left boundary, let it be R.
Moreover, let (i ~rj.i[ – t + i,), (ir, c? and (i,, jt) be the owners of regions
R“, R’, and R, respectively. We can find those points in OWNER by using
either rightr or abover.

R’ cannot be active any more since ( i~, c’) is worse than (i,,,, j{ – t +

i,’, ) (( i,, j~) ~ respectively) for points in R” ( R * respectively). We delete its
owner from OWNER. Next, we have to decide whether R” gets extended to
the right of column J[.

If C(i,, j[; t + 1, jl+ 1) s C(i,,jl - t + i,,,; t + l,jl+ 1), R“doesnot
extend to the right of j[. Thus, we remove ( abover, jl – t) from D-BOUND
since jl – t is not bottom boundary of any region. The removal J, – t may
cause the creation of a new active intersection point between column .jl and
some diagonal boundary d, d < jl – t. It may also cause the deletion of one
active intersection point. This involves the update of intersection lists with row
number greater than t.The possible intersection points to be inserted or dele-
ted can be easily located as explained above. Each insertion in the intersection
lists can be accomplished in constant time. As for the deletions, we defer the
actual removal of the items from the intersection list to the time when the list
is considered and bucket sorted. This will give a constant amortized time
complexity also for each deletion.

Otherwise, R“ gets extended to the right of jl. We set abover = rightr and
delete ( rightr, j,) from C-BOUND since R“ and R now share a diagonal
boundary. Again, the removal of column ji may create a new active intersec-
tion point between diagonal jl – t and some column boundary c, c > j[.
Again, this involves the update of intersection lists with row number greater
than t,which can be accomplished as explained above.
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We remark that the bucket sorting of INTERSECT[ t] is not really required
for its processing. Indeed, there is a more complicated processing of the points
in INTERSECT[ t] that avoids the bucket sorting of the points. However, it
achieves no gain in time complexity.

We have the following lemma.

I,ENINIA 3. The total number of active intersection points is bounded
above by 4M.

PROOF. The algorithm creates active intersection points either when insert-
ing a point in O JVNER for the first time or when processing an active
intersection point. Each new point inserted in OWNER can create at most two
active intersection points. Thus, no more than 2 M active intersection points can
be created while updating OWNER.

Each new active intersection point introduced during the processing of
intersection lists may be amortized against an active region being deleted. Thus,
by lemma 2, no more than 2 M new active intersection points may be created
during this phase. ❑

Let ITEM( LIST, pointer) and PREVIOUS( LIST, pointer) denote the
operations that return the item in LAST pointed to by pointer and the item in
LIST preceding it, respectively. Furthermore, let ESSENTIALS be a list
which contains all the boundaries of active regions generated by points in

O W [s]. The above algorithm can be formalized as shown in Figure 7.
We have the following theorem.

THEOREM 3. A Igorithm Left Influence correctly computes recurrence
o).

PROOF. By induction, using the discussion preceding the algorithm. ❑
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AlgorithmLeft Influence:
OW’NER - (L X),
for s -1 to p do begin

J + NEXT(RO!i’[s]. 0):
while J # n + 1 do begin

/* compute L1[,~, J] and decide whether to keep j in ROWIS] *!
(righfr, c) * LOOKUP(C-BOUND, J):

(abover, d) ‘- LOOKUP( D-BOUND, J),

(1, cl) + WINNER(J):
L~[l,, J] +D[z, c/] + W(d – 1) – (J – ~,)).

if C(I, cl,/,+ 1.J+ l)s C(/,, J, f,+ l,J+ l) then
DEL(ROWIS]. J)

else APPEND[ ESSENTIALS, ( rightr, c). (abover. d)).
j+ NEXT(ROW[s]. j).

end.
/* insertthe boundarws of the act,ve reqons owned by points m ROT* ’Is

j ‘= NEA-T(ROP?’[S]. 4).

( righfr, c) t NJ?XT(ESSENTIALS. 6).

( abover, d) + NEXT( ESSENTIALS, (rlghtr. c));

while J # n + 1 do begin

if lTEA4(0 WNER. nghfr) = WINNER(J) then
update C-BOUND. D-BOUND. OWNER.

ond INTERSECT following case (a).

else update C-BOUND. D-BOUND, OWNER,
and INTERSECT following case (b),

end.
J+ NEXT(ROW’[s]. J),
(rzghtr, c) + NEXT( ESSENTIALS, (abover. cl)),
(ubover. d) + NEXT(ESSENTIALS, (r{ghtr. c)):

end;
I* remove active mters.ectlonpoints between rows [, and /,+, */

for t+~,to [,+1 – ldo begin
if IN7’ERSECT[ t] # @ then begin

INTERSECT[ t] - BUCKETSOR T( INTERSECT( 11)
J ~ NEXT( INZERSECT[ f] >0),

while J # n + 1 do begin
(rzghtr, c) + LOOKUP(C-BOUND, j).

(abover. d) + LOOKUP(D-BOUND, j)),
APPEND( ESSENTIALS. ( rightr. c), (abover. d)).
J + NEXT( INTERSECT( t]> J),

end,

APPEND( ESSENTIALS. (A. n + 1))
(rightr, c) * NEXT( ESSENTIALS, 4).
(abover, d) * NEXT(ESSENTIALS, ( rlghtr, c)),
while (rightr, c) # (h. n + 1) do begin

( i“, c“) ‘= PREVIOUS(OJ4’NER, abover),
(i. j) + ITEM( O WNER, rithtr ),

I* remove the region no longer active +/

DEL (OWNER. abo ver )

if c’(l, J,tt l,J+ 1) s C(r’’, c’’, f+ l,J+ I) then begin
DEL(D-BOUND. J – t):
update mtersecuon hsts,

end else begin
DEL(C-BOUND, J),
update ]ntersect]on Ilsts;

end;
(rzghtr, c) - NEXT(ESSENTIALS, ( abover. d)),
(abover, d) * NEXT( ESSENTIALS, (rightr. c)).

end;
end,

end,
end,

] */

FIGURE7
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The time complexity can be analyzed as follows:

THEOREM 4. Wilbur and Lipman’s fragment alignment problem can be
solved in a total of O(m + n + Mlog log min(M, nm /M)) time.

PROOF. The problem can be solved by computing recurrence (6). As we
mentioned, this can be reduced to the computation of (8), (9), and (10).
Recurrence (9) can be computed using algorithm SRNA and therefore by
Theorem 2 in 0( M’ log log min( M, nm /M)) time.

To bound the overall time required to compute recurrence (10), we need to
analyze algorithm Left Influence. By the above discussion, the time required by
this algorithm is 0( m + n + M + T(M)), where T(M) is the total time
required to maintain the lists C-BOUND and D-l?O UND and to bucket sort
each INTERSECTION list.

By Lemma 2 and by Lemma 3, there can be at most 0(M) insertions,
deletions, and lookup operations in C-BOUND and D-BOUND. Furthermore,
Left Influence requires that for each row at most a constant number of
homogeneous sequences of these operations (i.e., all insertions, all deletions, or
all lookups) is performed. If we use Johnson’s data structure to support them,
an argument completely analogous to the proof of Theorem 2 gives a total of
O(M log log min( M, nm /M)) time.

As for bucket sorting the INTERSECTION lists, assume there are Ci points
to bucket sort at row i, 1 s i < m. If we use again Johnson’s data structure
[9], this can be done in O(C, log log min( M, n /cl)). Therefore, the total time
is O(Z~. ~ci log log min(M, n /cZ)). By Lemma 3, x~l, c, s 4A4. Again, a
total of 0( M log log min( M, run /M)) time results by convexity of the log log
function.

Once the value of L1[ i, j] and RI[ i, j] are available, the computation of
E[ i, j] and D[ i, j] can be performed in constant time.

Therefore, the total time required to solve the fragment alignment problem is
O(m + n + M log log min(M, nm /iW)). ❑

5. The Longest Common Subsequence Problem

In this section, we describe how to solve efficiently the longest common
subsequence problem. We assume that the reader is familiar with the algorithms
of Apostolic and Guerra [5].

Recurrence (4), used for the computation of RNA structure with linear loop
cost functions, can also be used to find a longest common subsequence of
two input sequences. The differences are that now we are looking for the maxi-
mum rather than the minimum, and that D[ i, j] depends only on E[ i, j].
Indeed, D[ i, j] = E[i, j] + 1 for pairs of symbols (i, j) that match, and
D[ i, j] = E[ i, j], otherwise. The cost function W( x, y) is always zero
(and therefore linear). Thus, any bounds on the time for solving recurrence (4)
will also apply to the longest common subsequence problem. As we have stated
the solution, the time bound applies with M being the total number of matching
positions between the two input strings.

Apostolic and Guerra [5] cleverly showed that the problem can be made
even more sparse, by considering only dominant matches. They give an
algorithm that runs in 0( n log s + m log n + d Iog( nm / d)), where d is the
number of dominant matches. A different version of this algorithm can be also
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implemented in 0( n log s + d log log n) time. We now outline how to achieve
a better time bound, by modifying their algorithm to take advantage of our
techniques.

The key observation is to replace the C-trees defined and used in [5] with
Johnson’s data structure [9]. Apostolic and Guerra showed that their algorithm
performs at most 0(d) insertions, deletions and lookup operations on integers
in {l,..., n}. Furthermore, their algorithm can be implemented in such a way
that for each step insertions, deletions, and lookup operations are never
intermixed on the same priority queue. Therefore, we can apply Lemma 1 and
the same argument of Theorem 2 to obtain an algorithm that runs in 0( d log
log min(d, run /d)).

As in the algorithm of Apostolic and Guerra, and other similar algorithms
for this problem, our algorithm also includes a preprocessing phase; this takes
time 0( n log S), where s is the alphabet size (without loss of generality at most
m + 1). We must also initialize 0(S) search structures, with total cardinality of
at most n; using Johnson’s data structure this can be accomplished in 0(s log
log( n /s)) time that is dominated by the 0( n log s) term.

Therefore, the total time is O(n log s + d log log min(d, run /d)).

6. Conclusions

We have shown how to efficiently solve the Wilbur- Lipman sequence align-
ment problem, the minimal energy RNA secondary structure with single loops
and the longest common subsequence problem. Our approach takes advantage
of the fact that all the above problems can be solved by computing a dynamic
programming recurrence on a sparse set of entries of the corresponding
dynamic programming matrix. We have also assumed that the weight functions
involved are linear. In the companion paper [7], we analyze the case where the
weight functions are either convex or concave. Our algorithms have time
bounds that vary almost linearly in the number of points that need to be
considered. Even when the problems are dense. our algorithms are no worse
than the best known algorithms; when the problems are sparse, our time bounds
become much better than those of previous algorithms.

We remark that all our algorithms are independent of the particular heuristics
used to make the input sparse. This is especially important for the Wilbur –
Lipman sequence alignment algorithm, where such heuristics may vary
depending on which application the algorithm is used for.
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