
Equa t ion (22) may be proved by inspection of (18),
while (21) may be demonst ra ted by expanding the
logar i thm in (17) into a Taylor series and retaining
only the first two terms. Equat ions (21) and (22) show
that as the number o f accesses becomes immaterial ,
one should use very small resident and overflow records
to reduce the total s torage volume. Substituting (21)
and (22) into eq. (13), we get

V* ~ , R . s / a + R . s . (a -- 1)/a = R . s , (23)

which is the absolute minimal storage volume needed,
wi thout any "ove rhead" added by the storage method.

Appendix

PROPERTY 1. F o r all a > 1,

p*(a) < q*(a). (A1)

PROOF. Instead o f (A1), we prove the equivalent

exp (q* /s) /exp (p*/s) > 1. (A2)

Let us in t roduce the fol lowing no ta t ion :

b = a + (a 2 -- 1) ~, c = 2(a -- 1). (A3)

Then it is easily seen that

q*/s = 2 / (b -- 1), (A4)
p* / s = In (b/c) . (A5)

Substi tut ing (A4) and (A5) into (A2) a nd expanding
the numera to r as a Tay lo r series, retaining the first
three terms, we get

exp (q*/s) exp (2/(b -- 1))

exp (p*/s) b /c
> 1 -+- 2 / (b - - 1) + 2/ (b -- 1) 2 _ (b z + 1)c (A6)

b/c (b -- 1)2b

F r o m definition (A3), we get the fol lowing identi ty:

(b -- 1) 2 = b.c . (A7)

Subst i tut ing (A7) into (A6), we finally have

exp (q*/s) > (b 2 + 1) .c _ b 2 - I -1 > 1.
exp (p*/s) b 2. c b 2

Received February 1974; revised March 1975

References
1. Benner, F.H. On designing generalized file records for man-
agement information systems. Proc. AFIPS 1967 FJCC, Vol. 31,
AFIPS Press, Montvale, N.J., pp. 291-303.
2. Burroughs DISK FORTE Users Manual. Burroughs Corp.,
Detroit, Mich., 1973.
3. Collmeyer, A.J., and Shemer, J.E. Analysis of retrieval per-
formance for selected file organization techniques. Proc. AFIPS
1970 FJCC, Vol. 37, pp. 201-210.
4. Olle, T.W. Generalized systems for storing structured variable
length data and retrieving information. In Mechanized Information
Storage, Retrieval and Dissemination, K. Samuelson, Ed., Rome,
1968.
5. Wilde, D.J., and Beighfler, C.S. Foundations of Optimization.
Prentice-Hall, Englewood Cliffs, N.J., 1967.

3511

Programming
Techniques

G. Manacher , S.L. G r a h a m
Editors

A Fast Algorithm for
Computing Longest
Common
Subsequences
James W. Hunt
Stanford University
Thomas G. Szymanski
Princeton University

Previously published algorithms for finding the
longest common subsequence of two sequences of length
n have had a best-case running time of O(n2). An
algorithm for this problem is presented which has a
running time of O((r + n) log n), where r is the total
number of ordered pairs of positions at which the two
sequences match. Thus in the worst case the algorithm
has a running time of O(n 2 log n). However, for those
applications where most positions of one sequence
match relatively few positions in the other sequence,
a running time of O(n log n) can be expected.

Key Words and Phrases: Longest common
subsequence, efficient algorithms

CR Categories: 3 .73, 3 .63 , 5 .25

Copyright © 1977, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part of
this material is granted provided that ACM's copyright notice is
given and that reference is made to the publication, to its date of
issue, and to the fact that reprinting privileges were granted by per-
mission of the Association for Computing Machinery.

The work of the first author was partially supported by Bell
Laboratories' Cooperative Research Fellowship Program. The work
of the second author was partially supported by NSF Grants
GJ-35570 and DCR74-21939.

Author's addresses: J.W. Hunt, Department of Electrical
Engineering, Stanford University, Stanford CA 94305; T.G.
Szymanski, Dept. of Electrical Engineering and Computer Science,
Princeton University, Brackett Hall, Engineering Quadrangle,
Princeton, NJ 98540.

Communications May 1977
of Volume 20
the ACM Number 5

Introduction

Many algorithms [1, 4, 6] for finding the longest
common subsequence of two sequences of length n
have appeared in the literature. These algorithms all
have a worst-case (as well as a best-case) running time
of O(n~)2

A more relevant parameter for this problem is r, the
total number of matching pairs of positions within the
sequences in question. We shall present an O((r+n)
log n) algorithm for the longest common subsequence
problem. In the worst case this is of course O(n 2 log n).
However, for a large number of applications, we can
expect r to be close to n. In these situations our al-
gorithm will exhibit an O(n log n) behavior. Typical of
such applications are the following:
(1) Finding the longest ascending subsequence of a

permutation of the integers from 1 to n [3].
(2) Finding a maximum cardinality linearly ordered

subset of some finite collection of vectors in 2-space
[7].

(3) Finding the edit distance between two files in
which the individual lines of the files are con-
sidered to be atomic. The longest common subse-
quence of these files, considered as sequences,
represents that common "core" which does not
have to be changed if we desire to edit one file
into the other.

Thus in the general case our algorithm will not take
much longer than the algorithms of [1, 4, 6], whereas in
many common applications, our algorithm will per-
form substantially better.

Let A be a finite sequence of elements chosen from
some alphabet. We denote the length of A by t A I.
A[i] is the ith element of A and A[i'.j] denotes the se-
quence A [i], A [i-k- 1], . . . , A [j].

If U and V are finite sequences, then U is said to be a
subsequence of I r if there exists a monotonically in-
creasing sequence of integers r l , r~, • • • , rw~ such that
U[i] = V[r~]for 1 < i < I U I. U i s a c o m m o n s u b s e -
quenceo f A and B if U is a subsequence of both A and
B. A longest common subsequence is a common subse-
quence of greatest possible length.

Throughout this paper A and B will be used to
denote the sequences in question. For ease of presenta-
tion, we shall assume both sequences have the same
length which will be denoted by n. The number of
elements in the set {(i, j) such that A[i] = B[j]} will
be denoted by r.

Preliminary Results

1, T~,2 = 3, Ts,a = 6, T5.4 = 7, T5,5 = undefined.
Each T~,k may thus be considered as a pointer

which tells us how much of the B sequence is needed to
produce a common subsequence of length k with the
first i elements of A.

Note that each row of the T array is strictly in-
creasing; that is,

LEMMA 1. If T i n , Ti.~ , "'" , T~,v are defined, then
Ti,1 < T~,~ < . . . < T i , v .

PROOF. Consider the common subsequence of
length k contained in All:i] and B[l:Ti,k]. Clearly
B[T~,k] is the last member of this common subsequence
or else T~.~ would not be minimal. Therefore All :i] and
B [I : T ~ , k - 1] contain a common subsequence of
length k - 1, that is, Ti,k-1 <__ T~,k -- 1. []

This linear ordering is of paramount importance in
the efficient implementation of our algorithm.

Suppose that we have computed T~,k for all values
of k and wish to compute T~+1,k for all values of k.
We first show T~+x,k must lie in a specific range of values.

LEMMA 2. Ti,k-1 < Ti+l,k _~ Ti,k.
PROOF. If A [1 :i] and B[1 :T~,k] have a common sub-

sequence of length k, then certainly A[I:i-t-1] and
B[l:Ti,k] do also. Thus Ti+Lk <__ Ti,k .

By definition, A [l : i+ l] and B[I:T¢+I,k] have a
common subsequence of length k. Deleting the last
element from each of these sequences can remove at
most one element from this common subsequence.
thus A[I:i] and B[I:T~+Lk--1] have a common subse-
quence of length k -- 1. Accordingly Ti,k_~ <__ T¢+~,k -- 1
and Ti,k-1 < T~+L~ • []

The following rule suffices to compute T~+Lk from
T~,k-1 and Ti.k.

LEMMA 3.

f smallest j such that A[iq- 1] = B[i]
T~+Lk = ~ and Ti,k-1 < j <__ Ti,k

ITi ,~ i f no such j exists

PROOF.
Case 1. No such j exists. By the minimality of

T~+~,k, any common subsequence of the sequences
A[I:i-t-1] and B[I:T~+~,k] must have B[T~+Lk] as its
last element. Moreover, by Lemma 2 and the premise
of this case, B[T~+L~] does not match A[iq-1]. There-
for the same common subsequence of length k is also
contained in A[I:i] and B[l:Ti+l,k]. Thus Ti,k ~ Ti+l,k
and by Lemma 2, T~,~ must equal Ti+l,k •

Case 2. There exists a min imal j for which A[iA-1]
= B[j] and T~,k-~ < j < Ti,~. Certainly A[l : iq- l] and
B[l:j] contain a common subsequence of length k,
namely the length k - 1 common subsequence of

The key data structure needed by our algorithm is
an array of "threshhold values" T~.~ defined by Ti,k =
the smallest j such that A[I:i] and B[I~] contain a
common subsequence of length k. For example, given
sequences A = abcbdda, B = badbabd we have T5,1 =

1 An unpublished result of Michael Paterson shows how to
construct an O(n~/log n) algorithm for the longest common sub-
sequence problem for sequences over a finite alphabet, and an
O((n ~ log log n)/log n) algorithm for sequences over an infinite
ordered alphabet. All results of this paper apply to the case of the
infinite ordered alphabet.

351 Communications May 1977
of Volume 20
the ACM Number 5

A[1 :i] and B[T~,k_I] with the pair A [i + 1], B[j] "tacked"
onto the end. Thus T~+l,k < j .

Assume temporari ly that T~+1,k < j . Since Lemma
2 guarantees that T~,k_t < T~+l,k we can conclude that
the last element of the length k common subsequence
of A [I : [+ I] and B[I:T~+I.k] does not match A [i + I] .
Thus A[I:i] and B[I:T~+I,k] also contain a common
subsequence of length k which implies that T~,k <
T~+~,k. By Lemma 2 then, T~,k = T~+l,k. However,
by the above assumption and the premise of this case,
Ti+Lk < j _< Ti,k, implying that Ti,k ~ Ti+t,k. This
contradiction leads us to conclude that the original
assumption of T~+~.k < j is incorrect and hence we
must have T~+t,k = j . []

We can now present an O(n 2 log n) algorithm for
determining the length of the longest common subse-
quence. Subsequent refinements will enable us to not
only improve the running time to O((r + n) log n) but
also recover the actual longest common subsequence.

Algorithm 1

element array ,411 :n], B[1 :n];
integer array THRESH[O:n];
integer i, j, k;
THRESH[O] := 0;
for i : = 1 step 1 until n do

THRESH[i] := n + 1;
for i := 1 step 1 until n do

for j := n step -- 1 until 1 do
if/110 = B[j] then

begin
find k such that THRESH[k--I] < j <_ THRESH[k];
THRESH[k] := j;

end;
print Largest k such that THRESH[k] ~ n + 1;

The correctness of the algorithm follows f rom
consideration of the invariant relation " T H R E S H [k]
= T~-L~ for all k " which holds at the start of each
iteration on i, and the invariant relation " T H R E S H [k]
= T~.~ for all k " which holds at the end of each itera-
tion on i.

Since the T H R E S H array is monotonically in-
creasing (Lemma 1) we can utilize a binary search to
implement the "find" operation in time O(log n).
Thus Algori thm 1 may be implemented to run in
O(n ~ log n) time.

Finally, notice that the direction of the loop on j
is crucial. Suppose that for some value of i, A [i] matches
several different B elements in a given "threshold"
interval, say B[j~], . . . , B[j~] with T H R E S H [k - - 1] =
Ti- l .k- t < j l < "'" < j,,, <_ T ~-1,:~ = T H R E S H [k] .
From Lemma 3, we see that T~.k = j t and that
T H R E S H [k] should be updated to this value. Since
the inner loop of Algorithm 1 considers values of j in
decreasing order, each of the values j,~, jm-x, " " , j l
will cause T H R E S H [k] to take on successively smaller
values until it is set equal to the desired value of jx .
I f instead the loop on j ran upwards from 1 to n, then
not only would T H R E S H [k] be set to jx , but
T H R E S H [k + I] would be set to j 2 , T H R E S H [k + 2]

would be set to j8 and so forth. Since these latter as-
signments are unwarranted, we see that the loop on j
must run downwards.

The A l g o r i t h m

A small amount of preprocessing will vastly im-
prove the performance of Algori thm 1. The main
source of inefficiency in this algorithm is the inner
loop on j in which we repeatedly search for elements
of the B sequence which match A[i]. Linked list tech-
niques obviate the need for this search.

For each position i we need a list of corresponding
j positions such that A[i] = B[j]. These lists must be
kept in decreasing order in j . All positions of the A
sequence which contain the same element may be
set up to use the same physical list of matching j ' s ;
for the sequences A = abcbdda, B = badbabd the de-
sired lists are

M A T C H L I S T [I] = (5, 2)
M A T C H L I S T [2] = (6, 4, 1)
M A T C H L I S T [3] = ()
M A T C H L I S T [4] = M A T C H L I S T [2]
M A T C H L I S T [5] = (7, 3)
M A T C H L I S T [6] = M A T C H L I S T [5]
M A T C H L I S T [7] = M A T C H L I S T [I] .

We can now display our final algorithm.

Algorithm 2

element array/111 :n], B[1 :n];
integer array THRESH[O:n];
list array MATCHLIST[1 :n];
pointer array LINK[1 :n];
pointer PTR;
comment Step 1: build linked lists;
for i := 1 step 1 until n do

set M/1TCHLIST[i] :-- (jr ,j2, . . . ,jp) such that
jx >j2 > . . . >j~andA[i] = B[jq] for I < q _< p;

comment Step 2: initialize the THRESH array;
THRESH[O] := 0;
for i := 1 step 1 until n do

THRESH[i] := n q- 1;
LINK[O] := null;
comment Step 3: compute successive THRESH values;
for i := 1 step 1 until n do

forj on M/1TCHLIST[i] do
beg~

find k such that THRESH[k--I] < j <_ THRESH[k];
i f j < THRESH[k] then

begin
THRESH[k] := j;
LINK[k] := newnode (i, A LINK[k--l]);

end;
end;

comment Step 4: recover longest common subsequence in reverse
order;

k := largest k such that THRESH[k] ~ n -t- 1;
PTR := LINK[k];
while PTR ~ null do

begin
print (i,j) pair pointed to by PTR;
advance PTR;

end;

352 Communications May 1977
of Volume 20
the ACM Number 5

The subroutine newnode invoked in step 3 is a
subroutine which creates a list node whose fields con-
tain the values of the arguments to newnode. These
arguments are, respectively, an index of a position in
the A sequence, an index of a position in the B se-
quence, and a pointer to some other list node. The
value returned by newnode is a pointer to the list
node just created.

THEOREM 1. Algorithm 2 finds and prints a longest
common subsequence of the sequences d and B in time
O((r + n) log n) and space O(r + n).

PROOF. Step 1 can be implemented by sorting each
sequence while keeping track of each element's original
position. We may then merge the sorted sequences
creating the MATCHLISTs as we go. This step takes
a total of O(n log n) time and O(n) space.

Step 2 clearly takes O(n) time.
The two outer loops of step 3 should be considered

as a single loop over all pairs (i, j) such that A [i] =
B[j] taken in order of decreasing j within increasing i.
In other words, the outer loops of step 3 induce ex-
actly r executions of the innermost statements of
step 3. Since these innermost statements involve one
binary search plus a few operations which require
constant time, we conclude that the time requirement
for step 3 is O(n + r log n).

In this step we also implement a simple back-
tracking device that will allow us to recover the longest
common subsequence. We record each (i, j) pair which
causes an element of the THRESH array to change
value. Thus whenever THRESH[k] is defined, LINK[k]
points to the head of a list of (i, j) pairs describing a
common subsequence of length k. Since at most one
list node is created per search, Step 3 wiU require the
allocation of at most O(r) list nodes.

In step 4 we recover the actual longest common sub-
sequence. Clearly this takes at most O(n) time. []

We note that certain input sequences such as
A = "aabaabaab..." and B = "ababab.. ." cause
Algorithm 2 to use O(r) space even if list nodes are
reclaimed whenever they become inaccessible. See
[4] for an algorithm which never uses more than O(n)
space nor less than O(n ~) time.

A Final Note

The key operations in the implementation of our
algorithm are the operations of inserting, deleting, and
testing membership of elements in a set where all ele-
ments are restricted to the first n integers. Peter van
Emde Boas has shown that each such operation can
he performed in O(log log n) time [2]. His data stuc-
ture requires O(n log log n) time for initialization.
Although the necessary algorithms are quite complex,
we can use them to present the following theoretical
result.

THEOREM 2. (a) Algorithm 2 can be implemented
to have a running time of O(r log log n + n log n) over an
infinite alphabet. (b) Algorithm 2 can be implemented
to have a running time of O((n + r) log log n) over a
fixed finite alphabet. (c) The longest ascending subse-
quence of a permutation oJ the first n integers may be
Jound in O(n log log n) time.

PROOF. The problem of part (c) is, of course,
equivalent to finding the longest common subsc-
quence of the given permutation and the sequence
1, 2, • • • , n. All three parts of the theorem use basically
the same algorithm although the implementation of
some of the steps varies slightly. We shall present a
common analysis.

In all three cases we require O(n log log n) time to
initialize van Emde Boas's data structures. Step 1 en-
tails a sorting procedure to set up the MATCHLISTs.
For the infinite alphabet case, this sort can be done in
O(n log n) time. In the other two cases, we can use a
distribution sort to create the MATCHLISTs in O(n)
time. Step 2 takes O(n) time, step 3 takes O(n + r
log log n) time and step 4 takes O(n) time. Finally,
for the permutation case note that each integer
appears exactly once in each sequence and thus wc have
r = n. []

Acknowledgments. The authors are indebted to M.
Douglas McIlroy who first suggested this problem to
us. Harold Stone suggested a variant of the problem
(described and solved in [5]) which led to the develop-
ment of the present algorithm. Alfred V. Aho and
Jeffrey D. UUman provided us with several enlighten-
ing conversations including the particular example
given following Theorem 1 which shows that our al-
gorithm can require as much as O(r) space. Peter van
Emde Boas made several helpful comments on an
early draft of this paper.

Received May 1975; revised January 1976

References
1. Chvatal, V., Klarner, D.A., and Knuth, D.E. Selected
combinatorial research problems. STAN-CS-72-292, Dep.
Comptr. Sci., Stanford U., Stanford, Calif., June 1972.
2. van Emde Boas, P. Preserving order in a forest in less than
logarithmic time. 16th Annual Symp. on Foundations Comptr.
Sci., Oct. 1975, pp. 75-84.
3. Fredman, M.L. On computing the length of longest increasing
subsequences. Discrete Mathematics 11, 1 (Jan. 1975), 29-35.
4. Hirschberg, D.S. A linear space algorithm for computing
maximal common subsequences. Comm. ACM 18, 6 (June 1975),
341-343.
5. Szymansld, T.G. A special case of the maximal common
subsequence problem. TR-170, Dep. Electrical Eng., Princeton U.,
Princeton, N.J., Jan. 1975.
6. Wagner, R.A. and Fischer, M.J. The string-to-string correctioP
problem. J. ACM 21, 1 (Jan. 1975), 168-173.
7. Yao, A.C. and Yao, F.F. On computing the rank function for
a set of vectors. UIUCDCS-R-75-699, Dep. Comptr. Sci., U. of
Illinois at Urbana-Champaign, Urbana, Ill., Feb. 1975.

3S3 Communications May 1977
of Volume 20
the ACM Number 5

