Bounds on the Complexity of the Longest Common

Subsequence Problem

A V. AHO
Bell Laboratories, Murray Hill, New Jersey

D S. HIRSCHBERG AND J D. ULLMAN

Princeton Unwversity, Princeton, New Jersey

ABSTRACT The problem of finding a longest common subsequence of 1wo strings is discussed This
problem arises 1n data processing apphications such as comparing two files and in genetic applications such
as studying molecular evolution The difficulty of computing a longest common subsequence of two
strings 18 examuned using the decision tree model of computation, in which vertices represent “equal -
unequal” comparisons It 1s shown that unless a bound on the total number of distinct symbols s as-
sumed, every solution to the problem can consume an amount of time that is proportional to the product
of the lengths of the two strings A general lower bound as a function of the ratio of alphabet size to
string length i1s derived The case where comparisons between symbols of the same string are forbidden
18 also considered and 1t 1s shown that this problem is of linear complexity for a two-symbol alphabet and
quadratic for an alphabet of three or more symbols

KEY WORDS AND PHRASES longest common subsequence, algorithm, computational complexiy, file
comparison, molecular evolution

CR CATEGORIES 312,373,525

1. Introduction

A subsequence of a given string is any string obtained by deleting zero or more sym-
bols from the given string. A longest common subsequence (LCS) of two strings is a
subsequence of both that is as long as any other common subsequence. For exam-
ple, “cled” and “coed” are the longest common subsequences of “schooled” and
“encyclopedia”.

Being able to determine a longest common subsequence of two strings is use-
ful in data processing and genetic applications. In data processing a longest common
subsequence is often used to measure the differences between two files of data. For
example, we can consider a file to be a string in which each line of the file is treated
as a single symbol A longest common subsequence of two files identifies those por-
tions of the files that are identical. A genetic application arises in the study of the
evolution of long molecules such as proteins; there a longest common subsequence

Copynight © 1976, Associauion for Computing Machinery, Inc General permussion to republish, but not
for profit, all or part of this matenal is granted provided that ACM’s copyright notice 1s given and that
reference 1s made to this pubhcation, 1o its date of issue, and to the fact that reprinung privileges were
granted by permission of the Association for Computing Machinery

This research was partially supported by a National Science Foundation Fellowship to D S Hirschberg
and by National Science Foundation Grant GJ-35570 to Princeton University

A preliminary version of this paper was presented at the 15th Annual IEEE Symposium on Switching and
Automata Theory, October 14-16, 1974,

Authors’ present addresses A. V Aho, Bell Laboratonies, Inc, 600 Mountain Avenue, Murray Hill, NJ
07974, D S Hirschberg, Department of Electrical Engineering, Rice University, Houston, TX 77001, J
D Ullman, Department of Electrical Engineering, Princeton University, Princeton, NJ 08540

Journal of the Association for Computing Machinery, Vol 23, No 1, January 1976, pp 1-12

2 A V AHO, D S HIRSCHBERG, ANDJ D ULLMAN

is used to measure the correlation between two such molecules [11, 14].

Using dynamic programming an LCS of two strings 4 and B can be computed
1in time proportional to the product of their lengths. For special cases an LCS can be
computed in time less than the product. For example, if A and B are length »
strings of digits 1, 2, ..., n, and no position of 4 matches more than one position of
B, then an LCS of 4 and B can be computed in O(nloglogn) time by speciahizing
the algorithms in [6, 9, 18] to integers and using van Emde Boas’ integer merging
technique [15]. Always being able to compute an LCS of two sirings in time
significantly less than the product of their lengths, however, appears very difficult
[31.

For this reason we believe that an attempt at a lower bound is in order. To
derive lower bounds a precise model for a class of algorithms is necessary. The
model we choose 1s that of a decision tree [1] in which all decisions are whether or
not two positions have or do not have the same symbol. This model fits various al-
gorithms for the LCS problem which have appeared in the literature {7, 14, 16). It
has also been used to study the related string-to-string correction problem [17], the
substring matching problem [5], and various problems on sets {13]. The model does
not, however, fit the O(nZlog logn/logn) algorithm of Paterson [12] nor the special
case algorithms of [8, 9].

For the remainder of this paper 4 and B denote two strings of length » whose
LCS we wish to compute ! Throughout, s denotes the total number of distinct sym-
bols that can appear in 4 and B (the alphabet size). T(n, s) 1s the minimum
number of comparisons under the decision tree model needed to find an LCS of A
and Bin the worst case

We shall derive both upper and lower bounds on T'(n, s). The use of lower
bounds s clear They say that there are no algorithms of lower time complexity
which can be modeled by a decision tree with “equal-unequal” comparisons. We
are thus told something about the way algorithms for the LCS problem must
behave, if they exist at all.

The need for upper bounds on 7'(n, s) is less obvious. We shall use them to
demonstrate that no stronger bounds on T'(n, s) can be shown. In principle, an
upper bound on T(n, s) is an algonthm for the LCS problem The algorithm, how-
ever, may involve essentially different decision trees for each value of n and s
Thus, it 1s possible that no uniform algorithm taking strings of arbitrary lengths and
finding their LCS can be obtained from a sequence of decision trees for all # and 5,
and such appears to be the case here.

Our principal results are the following:

1) T(n,2) =2n—1forn> 1.

(2) Foralln 2 1-

® >+ < Tlos) < minle?, =1 Q@n=P)]for2<s<m
(i) 3ns/4 < T(n, s) < n?, forn < s < 4n/3.
(i) T(n, s) = n? for s > 4n/3.
These upper and lower bounds on T(n, 5) are shown in Figure 1.

(3) The special case where all comparisons are between symbols of different
strings is shown to require 27 —1 comparisons if s = 2 and n2 comparisons if s > 3.

Y we can, 1n a straightforward manner, generalize the results of this paper to the case where the strings
are of unequal length

The Longest Common Subsequence Problem 3

1 586n n 4n/3 2

s—

FiG 1. Upper and lower bounds on T(#, s)

2. Decision Trees

This section makes precise the decision tree model of computation Intuitively, each
path starting at the root of a decision tree represents a sequence of comparisons
made between various positions in the strings 4 and B. These comparisons give us
all the informatuon we currently know about 4 and B. The informaton is in the
form of which positions in 4 and B must contain identical or distinct symbols.

More formally, we define a decision tree with “equal-unequal” comparisons for the
LCS problem as a rooted binary tree in which each interior vertex is labeled with a
pair of integers and each leaf is labeled by two lists of positions from 4 and B,
respectively. A pair of integers p.g at an interior vertex represents a comparison
between the symbols 1n positions p and g of the two strings. (p and ¢ can be posi-
tions in the same string.) Each list of positions at a leaf represents an LCS of 4 and
B

Since the only information we get about 4 and B comes from ‘“‘equal-unequal”
comparisons among symbols of the two strings, we are always dealing with relative
values of symbols 1n various positions i1n the strings. Consequently, it is convenient
to define an (n, s)-assignment (or assignment when n and s are clear) as a setting of
values from some s-symbol alphabet to the positions of 4 and B. Intuitively, an as-
signment 1s a representative of an equivalence class of pairs of input strings. Given
apath P = v, v, ..., v, from the root to some vertex (not necessarily a leaf) 1n a
decision tree, we say (n, s)-assignment C is valid for P if for each pair of positions
pq, atvertex v, 1 <1 < m, v, is the left son of v, if the symbols 1n positions p,
and g, are equal according to C, and v, ; is the right son of v, otherwise. Thus an
assignment- C 1s valid for a path if C represents a class of pairs of input strings
whose symbols are consistent with the outcomes of the comparisons made along the

4 A. V AHO, D. S HIRSCHBERG, AND J. D ULLMAN

path.

We say a decision tree D solves the (n, $)-LCS problem (or just the LCS problem
if # and s are clear) if for every leaf w of D and for every (n, s)-assignment C valid
‘for the path from the root of D to w, the two lists of positions found at w are an LCS
in the first and second strings, respectively.

The complexity of a decision tree is the length of a longest path in that tree.
We define T(n, s) to be the minimum complexity over all decision trees that solve
the (n, s)-LCS problem

A free decision tree is one which makes no comparisons whose outcomes are
already known (For example, 1f the symbols at positions p and ¢ and at positions ¢
and r have been compared and found equal, then, by transitivity, the symbols at po-
sitions p and r are also known 1o be equal.) We can, without loss of generality, as-
sume that all decision trees being considered are free. This assumption allows us to
consider decision trees in which there are no unnecessary comparisons.

Example 1. To fix the model more closely, let us consider the case where
n =5 = 2. (That is, we are to find an LCS of two strings each of length 2, and
each over the same two symbol alphabet) For convenience we let 4 = a;a, and
B = b b,. In Figure 2 we see a decision tree that solves the (2, 2)-LCS problem. It
has complexity 3, which we shall see is the minimum for this problem. Thus
T2.2)=3 0O

FIG 2. Decision tree solving the (2, 2)-LCS problem

3. Upper Bounds

There are two tnivial strategies that can be used to construct decision trees for a
fixed #» and s. The first strategy 1s to compare each symbol of one string with each
symbol of the other. It yields the following theorem.

THEOREM 1. For ali s and n, T(n, s) < n?.

For s 2 4n/3 this result 1s the best possible under our model of computation.
The second strategy is to use comparisons to determune which portions of the two
strings hold identical symbols. We cannot, of course, determine the actual symbol at

The Longest Common Subsequence Problem 5

a position with “equal - unequal” comparisons. If we know the partition of the two
strings 1nto equivalent positions, however, then we can surely select an LCS for the
string without making any additional “equal-unequal”’ comparisons. We are thus
motivated to make the following definitions.

The (m, s)-string identification problem is, given a string of length m, to deter-
mine which positions hold the same symbols, assuming all symbols are chosen from
an s-symbol alphabet A decision tree with “equal-unequal” comparisons for the string
identification problem is defined as for the LCS problem, except the leaves are labeied
with partitions of the integers 1, 2, ..., minto at most s equivalence classes.

The notions of assignment and validity of an assignment are defined as for the
LCS problem. A decision tree solves the (m, s)-string identification problem if for
each leaf w, all valid assignments for the path from the root to w have equal symbols
at a pair of positions if and only if those positions are in the same block of the parti-
tion at w. Finally, we can define /(m, s) to be the mimimum over all decision trees
D solving the (m, s)-string identification problem of the length of the longest path
in D.

LEMMA 1. T(n, s) < I(2n, 5).

PROOF Concatenate the two strings of length » into one string of length 2n,
identify the equivalent positions, and determine from them an LCS for the two
strings of length n. Note that no algorithm to solve the LCS problem for general n
and s is implied by this strategy, but using 1t we can, for fixed # and s, build a deci-
sion tree for the (n, 5s)-LCS problem given a decision tree for the (2n, s)-string
identification problem. O

LEMMA 2. I(m, s) £ (s—l)(m—-%—)foralll <s< m

PROOF Visit in turn each position of the given string, comparing the symbol
at that position with the representatives for each of the equivalence classes found so
far. If the symbol matches the representative of some class, it 1s added to that class.
If no match is found, the symbol becomes the representative of a new class. Hence,
for 1 < 1 < 5, at most 1 —1 comparisons are needed for the /th position. For/ > s,
s —1 comparisons suffice, since the sth comparison will always succeed if all others
have failed. The total number of comparnisons is thus

s—1
Ti+ (m=s)(s=1) = (=1 (m—3). 0

=1
From Lemmas 1 and 2 we conclude:
THEOREM 2. Forall s andn, T(n,s) < (s—1)Q2n —%).

Note that Theorem 1 is stronger than Theorem 2 when % > 22 = .58
and Theorem 2 is stronger otherwise.

4. String Identification

Since the string identification problem was used in the proof of Theorem 2 to bound
from above the complexity of the LCS probiem, let us digress a moment and show
that the upper bound on /(m, s) of Lemma 2 is its exact value.

To prove this result we relate the string identification problem to graph color-
ing. Given a path P in a decision tree for the LCS or string identification problem
we can associate with P an undirected graph Gp as follows. Let Rp relate two posi-
tions if they have been compared and found equal along path P. Let =p be the
least equivalence relation containing Rp. That is, p =p ¢ if and only if p = g or the
fact that p and ¢ have the same symbol is implied by the outcomes along path P.
Then the vertices of the graph Gp are the equivalence classes of =p, and there is an

6 A V. AHO, D. S. HIRSCHBERG, AND J. D. ULLMAN

edge between two vertices if members of their represented classes have been com-
pared and found unequal along path P.

An undirected graph is k-colorable if there 1s a mapping {(a k-coloring) from its
vertices to a set of numbers (colors) such that no two adjacent vertices are mapped
to the same color. A graph G is umguely k-colorable if all k-colorings of G are the
same up to a renaming of colors.

Example 2. Figure 3 shows a path P which is part of a hypothetical decision
tree for the (6,2)-string identification problem. We use ay, a, ..., ag for the posi-
tions of the string. Rp is given by:

a; RP 02
a RP as
a, RP 05

=p has equivalence classes {a,ay,03}, lag.a5), and {ag}. Since a3 # a, and
as 7 ag, the graph Gp is as shown 1n Figure 4.

{01 ,a2,a3,a6}
4,05

Fic 3. Path P Fic 4. Graph Gp

We note that all 2-colorings for Gp must color {a4,a5} and the other two ver-
tices with the other color. Thus the 2-coloring of Gp is unique up to renaming of
colors and explains one conclusion at the leaf of Figure 3 that g4 has the same value
as a,, a,, and a; although no equality among them is implied by =p. O

We may easily see that the notions of graph colorings and valid assignments
for a path are related. It is therefore a restatement of definitions to prove:

LEMMA 3. A decision tree solves the (m, s)-string identification problem if and only
if for each path P, Gp is uniquely s-colorable.

The Longest Common Subsequence Problem 7

The following two lemmas are from [2].

LEMMA 4. In a k-coloring of a uniquely k-colorable graph, the subgraph induced by
the union of any two color classes is connected.
LEMMA 5. Every umquely k-colorable graph with p vertices has at least

k—1)(p ——’2(-) edges.
PROOF Let €, be the number of vertices of color / 1n a unique k-coloring of

the graph. Then Zc, = p. For each /1 < j there are at least ¢, + ¢, — 1 edges
1=1

connecting vertices of these two colors by Lemma 4. No edge surely connects two

vertices of the same color, so t0 each edge we may assign a unique pair of states /

and j such that the edge is counted among the ¢, + ¢, — 1 edges connecting the

vertices of colors and j. Thus the number of edges is at least 3, ¢, + ¢ — L

1 <
Now 31 = k(k — 1)/2. For each m the term c,, appears exactlsjf k—1 times

1 <
among all the expressions ¢, + ¢ for 1 < ;. Thus

k
Yo +e = (k——l)z;,lcm = (k—1)p.

1 <y

Hence, 3 ¢, + ¢, —1 = (k—=1)p—k(k—1)/2 = (k-—l)(p—%). a

1<y
THEOREM 3. I(m, s) = (s-—l)(m——;—)for alll € s< m.

PROOF From Lemma 2 we have I(m, s) < (s—1) (m ——g—). Suppose we have

a decision tree D for the string identification problem and consider that path Pin D
for which all outcomes are ‘““not equal.” The graph Gp has m vertices and must be
uniquely s-colorable by Lemma 3. Thus by Lemma 5 Gp has at least

(s—=1)(m —%) edges, so P must be of at least that length. We have thus bounded
from below the complexity of an arbitrary decision tree D for the string
identification problem. Hence I(m, s) 2 (s—1) (m —%). O

5. Lower Bounds for the LCS Problem

We cannot show Theorems 1 and 2 to be exact bounds on T(n, s), principally be-
cause we do not have an analog of Lemma 3 relating vahd assignments to s-
colorings. We can show the lower bound of Figure 2, and do so with a series of
lemmas. The general strategy behind the proof is to exhibit a path P, in any deci-
sion tree such that either lots of comparisons between positions of the two strings
are made, or a lot of comparisons between positions of the same string are made to
group positions into large equivalence classes under = P, -

A fundamental assignment is an assignment of values to the positions of strings
A and B such that there are at most s/2 different values per string and there are no
values common to strings 4 and B. Thus, a fundamental assignment has an LCS of
length 0.

A side comparison is a comparison between positions of the same string.

A cross comparison is a comparison between positions of different strings.

A valid assignment (for a particular sequence of comparisons) 1S an assignment
of values to positions that is consistent with the results of all comparisons

We now define an “oracle’ or decision rule by which a path is distinguished 1n
each decision tree for the LCS probiem.

8 A V AHO, D. S. HIRSCHBERG, AND J D ULLMAN

Decision Rule (x): Return “unequal” whenever there exists a valid fundamen-
tal assignment consistent with that outcome. Otherwise, return “equal”

Let us fix on an arbitrary decision tree D for the (n, s)-LCS problem. Let P,
be the path from the root of D to a leaf such that every comparison has the outcome
dictated by rule (). Let P"), i > 0, be the prefix of length i of P,, and let C" be
a (not necessarily unique) fundamental assignment presumed valid for P*(’) by rule
(x).

Define a group of positions (with respect to P*(’)) to be an equivalence class

under EP " Note that a group may have size 1, and that all groups are contained
*®

within one string or the other, since by rule (), all cross comparisons have outcome
“unequal.” If all members of a group have each been involved in at least s/2 side
comparisons, call the group a clan.

Let us call the two strings being compared 4 and B. Let g, and ¢, be the
number of groups and clans, respectively, in 4 with respect to path P,. Since every
clan is a group, g, 2 c4. Let gg and cg be defined analogously for string B.

It is easy to get a lower bound on the number of cross comparisons in P,.

LEMMA 6. P, makes at least g '18p Cross comparisons.

PROOF If not, then there are two groups, G| in 4 and G, in B, such that none
of their positions have been compared. We know there is a valid fundamental as-
signment C, for P,, in which the LCS is necessarily of length 0. We can find
another assignment C valid for P, by changing the value of the G; positions in C,
to be equal to that of the G, positions.

To see that Cis valid for P,, consider any comparison p; :p, on that path. If
neither p; nor p, is in Gy, their values are the same in Cas in C,. Thus the values
assigned to positions p; and p, by C agree with the outcome of comparison p, :p,
along P,. If both p; and p, are in G, then they must have the same value in C,,
so the outcome of p,'p, was “equal”. Since p; and p, were defined to have the
same value in C, the outcome “‘equal” for comparison p, .p, is consistent with C.

If only one of p; and p,, say p, is in Gj, then the outcome of p; :p, must be
“unequal,” and p; and p, have different values in C,. They must have different
values in C as well, unless p, is in G,. But by hypothesis, no member of G, was
compared with a member of G,, so we can rule out this possibility. We conclude
that Cis valid for P,.

Since C has an LCS of length equal to the smaller of G| and G,, which is not
zero, we conclude that the decision tree D of which P, was a path does not solve
the LCS problem. O

We now develop a lower bound on side comparisons by showing that in order
for there to be any ‘“‘equal” side comparisons, there must be many side comparisons
with outcome ‘“unequal.” If there are few ‘“‘equal” side comparisons, then Lemma 6
is sufficient to show P, to be long. If there are many “equal” side comparisons,
then we can use the number of ‘“unequal” side comparisons to bound from below
the length of P, .

LEMMA 7. Every group of size greater than one is a clan (i.e. all its members are
involved in at least s/2 side comparisons).

PROOF Suppose not. Then there must be some side comparison p,:p, on P,
with outcome “equal” along P,, such that p; was previously in a group by itself and

had been involved in at most -is— — 2 side comparisons, all of them with outcome
“unequal.” Let comparison p;:p, be the sth in P, and consider a fundamental as-
signment C,,(' “D Since py has been compared with at most % — 2 other positions

in its string, there is some value reserved for positions in that string possessed in
C*(’ - by none of the positions with which p; has been compared in P*(’).

The Longest Common Subsequence Problem 9

Therefore, we can construct a valid fundamental assignment C from C, (=1
by gtving p; that value. By an argument snmllar to that of Lemma 6, we can argue
that C is valid for the path consisting of P =1 followed by the “‘unequal” branch
after comparison p;:p, Thus P, should not follow the *“‘equal” branch at that com-
parison, as supposed. [

LEMMA 8. If there are any “equal” side comparisons in string A along P,, then
there are at least s/2 clans in string A, and similarly for B.

PROOF Suppose the rth comparison along P,, say p,:p,, has the outcome

¢) . s
“‘equal.” Suppose 1n contradiction that after this comparison there are at most — —1

clans in 4. But then we can construct a fundamental assignment C valid for P*’—l)
and the “unequal” outcome for p;:p, as follows. C assigns to members of string B
the same values assigned to them under C*(’_”. After the p; p, comparison, p;

and p, are together in a clan according to Lemma 7. Consider the other -;--2 clans

in A after this comparison. To each of these clans we assign a distinct value. This
leaves free at least two distinct values which we can assign to p; and p, before the
comparison. Nonclans are assigned values distinct from that of any position with
which they have been compared. O

LEMMA 9. Ifg, < n, thenc, 2 s/2, and similarly for B.

PrROOF If g, < n, then there has been a side comparison involving positions
of 4 with outcome “‘equal.”” The result then follows from Lemma 8. O

2
LEMMA 10. If g4 < n, then there have been at least (n — g,)7:- + —SS— side

comparisons along P, , and similarly for B.

PROOF Let h, be the number of positions in 4 that are not 1n clans By
Lemma 7, all such positions are in single groups so hy =g, — ¢4 Then the
number of positions in clans is » — hy, =n — g, + c,. Each position in a clan is
involved in at least s/2 side comparisons and each side comparison involves at most
two members of clans. Thus the number of side comparisons within 4 in P, is at

sc
least (—:12-) (%) n—gy +cy) = (n—gy)% + TA' By Lemma 9, ¢, > /2, so
the present result follows. [

THEOREM 4.
T(n s) = -;—(n + %), fors< n

T(n, s) = 3ns/4, forn < s < 4n/3, and
T(n, s) > n?, for4n/3 < s< 2n

PROOF We consider the length of P,, obtaining lower bounds in the cases
when zero, one, or two of g, and gg are less than n. We then claim that T(n, s)
must exceed the smallest of these three. The three inequalities in the statement of
the theorem reflect the analysis regarding which one of these cases yields the smal-
lest lower bound on the length of P, for varying values of s

Case0. g, = gp = n. The length of P, 1s at least n2 by Lemma 6.

Case 1. Let g4 < nand gg = n. Then there are at least ng, cross compari-

sons by Lemma 6 and at least (n — g,)—Z— + 18— side comparisons by Lemma 10.

The length of P, is at least (n — g,)¢ + % + ng,. Since g4 > c, is obvious,
2
we have g, > s/2 by Lemma 9. Letg, = s/2 + + Then (n —)7:- + ST+ngA

= 3ns/f4 + t(n — —) Since we assume s < 2n, 3ns/4 1s a lower bound on the

10 A V AHO, D S. HIRSCHBERG, AND J D. ULLMAN

length of P, in this case.
Case 2. g4 < nand gg < n. By Lemmas 6 and 10, the length of P, 1s at
least

S S2

Since we know g, and gp are at least 5/2, we have

1 1 1 1 1
8488 = 58485 + 58488 2 784 (2) + 585 (5/2) = os(gy + gp).

s2 ns | s?

s s s
— — =2 > 22 2 -2 =2
Tshus (2r; 84 g,_;,)4 + 3 + 8488 > 5 + 4 2(n + 2). We see that
5—(" + —2-) 1s a lower bound on the length of P, in this case.
We may conclude that P, is at least as long as the smallest of nz, 3ns/4 and
%(n + %) The theorem then follows by comparing these three functions as s

ranges from 1 to 2n. O

It should be noted that the lower bound of Theorem 4 applies even if we only
wish to find the length of an LCS.

If we compare two strings of lengths n; and n,, respecuvely, where n; > n,,
then we can obtain the following lower bounds on T(n,, n,, s), the number of com-
parisons needed to determine a longest common subsequence (or even its length):

T(ny, ny, s) 2 %(nl +ny +5) for0 < s < ny,

T(ny, ny, s) > i(2n2 +n) forn, <5< ——'—-4”1”2 , and
4 2”2 +n1
4ny ny
T(ny, ny, s) 2 nyny for T <s<n+n.

For the special case s = 2, we can obtain exact upper and lower bounds on
the LCS problem

THEOREM 5. T(n,2) = 2n—1.

PROOF By Theorem 2 we need only show that T(n, 2) 2 2n—1. Given any
decision tree for the (1,2)-LCS problem, consider the path P along which all cross
comparisons have outcome ‘“‘unequal” and all side comparisons have outcome
“equal.” Suppose Gp has m vertices. Then there are exactly 2rn —m side comparisons
in P We can find one assignment ¢} vahd for P, in which all positions in one
string are given one value, say 0, and all positions in the other have the other value,
say 1. The LCS in Cj is clearly of length 0. If Gp is not connected, then we could
reverse the values defined by C; in one connected component to obtain valid as-
signment C, with LCS of length greater than 0. Thus Gp is connected, so there are
at least m—1 cross comparisons in P, for a total of 2n—m + (m—1) = 2n—1 com-
parisons. [

6 Algorithms That Use Only Cross Comparisons

Various algorithms such as those of [7, 15] rely on cross comparisons only. It turns
out that it is easy to get exact bounds on algorithms of this type, and the bounds are
significantly higher for many values of s than for the unrestricted case.

The Longest Common Subsequence Problem 11

THEOREM 6. For s = 2, 2n—1 cross comparisons and no side comparisons are
sufficient to solve the LCS problem, and they are necessary even to determine the length of
the LCS if side comparisons are forbidden.

PROOF Necessity follows from Theorem 5. For sufficiency, we use an algo-
rithm similar to that of Lemma 2. Compare the first position of each string with all
positions of the other string, a total of 2n—1 comparisons. Then the positions p,
and p, in the same string have the same value if and only if they had the same out-
come when compared with the first symbol of the other string. (Note that s = 215
essential here.)

If p; and p, are in different strings, let @; and b, be the first positions of the
strings containing p; and p,, respectively. Then positions p; and p, hold the same
value if and only if an odd number of the outcomes of the following three compari-
sons are “equal”: (1) p; : b, (2) py:ay, (3) a;:b;. (Agains = 2is essential) O

THEOREM 7. For s > 3, n? cross comparisons are sufficient for the LCS problem
and necessary even to find the length of an LCS if side comparisons are prohibited.

ProOF Sufficiency 1s obvious Consider the path Pin a decision tree D, which
makes cross comparisons only, such that all outcomes are “unequal.” If positions p;
in string 4 and p, 1n string B are not compared along P, then we may find two as-
signments C; and C, valid for P as follows. C; maps all positions in 4 to 0 and all
positions in Bto 1. It clearly has an empty LCS. C, maps all positions in 4 except

py to 0 and all positions in B except p, to 1. p, and p, are given value 2. Clearly
the LCS of G, has length 1, and D does not solve the LCS problem. We conclude
that all2 n’ possible cross comparisons are present in P, so the complexity of D is at
least n O

7. Conclusions

We have demonstrated that any algorithm using “‘equal-unequal” comparisons for
the LCS problem must, in the worst case, either be quadratic or must assume a fixed
alphabet size. Even for a fixed alphabet of size greater than two, side comparisons
must play an essential part if the algorithm is to run in less than quadratic time.
There are, of course, many opportunities to use techniques that cannot be modeled
by our decision trees. Indexing into arrays, as in [12], 1s one; sorting and hashing
are other 1deas which might be useful in constructing less than quadratic algorithms.

An obvious next step 1S to investigate the expected time complexity of the
LCS problem. The primary difficulty here is defining a meaningful probability distri-
bution on pairs of input strings. Chvatal and Sankoff [4] have computed bounds on
the expected length of a longest common subsequence of two random sequences of
the same length. However, in some applications random sequences may not be en-
countered. For example, in data processing applications where two files are being
compared 1t is not reasonable to treat the two files as random pairs of strings.

The straightforward dynamic programming algorithm for the LCS problem has
the disadvantage that it takes the same quadratic amount of time on all inputs. In
practice we would prefer an algorithm which is more efficient on typical inputs and
which may be less efficient on infrequent inputs. For example, Hunt and
Szymanski’s algorithm [9], which is based on an approach suggested by H. S. Stone,
has the desirable property that it can be easily implemented to work in O(nlogn)
time on many nputs which occur in data processing applications, although 1its worst
case time complexity 1s O(n?logn). More investigation of algorithms of this nature
seems profitable.

12 A. V AHO, D S HIRSCHBERG, AND J D ULLMAN

ACKNOWLEDGMENTS The authors would like to thank Shen Lin and Doug Mcllroy
for their helpful comments. This paper was typeset using EQN on UNIX [10]. The
cheerful assistance of Mike Lesk in the final preparation of this paper was sincerely
appreciated.

REFERENCES

1 AHO, A V, HopcrorT,] E, AND ULLMAN, J D The Design and Analysis of Computer Algorithms.
Addison-Wesley, Reading, Mass , 1974

2 CARTWRIGHT, D, AND HARARY, F On colorings of signed graphs Elemente der Mathematk 23
(1968), 85-89

3 CHvATAL, V, KLARNER, D A, AND KNutH, D E Selected combinatorial research problems
STAN-CS-72-292, Stanford U, Stanford, Calif, 1972, p 26

4 CHVATAL, V, AND SANKOFF, D Longest common subsequences of two random sequences STAN-
CS-75-477, Stanford U, Stanford, Calf, Jan 1975

S FiscHErR, M J, aAND PatersoN, M S String matching and other products MAC Technical
Memorandum 41, M1 T, Cambndge, Mass, 1974

6 FrRepMAN, M L On compuung the length of longest increasing subsequences Discrete Mathemat-
ics 11, 1 (January 1975) 29-36

7 HIRSCHBERG, D S A hnear space algorithm for computing maximal common subsequences Comm
ACM 18, 6 (June 1975) 341-343

8 HIRSCHBERG, D S On finding maximal common subsequences TR-156, Computer Sciences La-
boratory, Princeton U, Princeton, N J, 1974

9 HuUNT,J W, aAND SzYMANSKIL, T G A fast algorithm for computing longest common subsequences
Unpublished memorandum, Princeton Umversity, September 1975

10 KERNIGHAN, B W, aAND CHERRY, L L A system for typesetung mathematics Comm ACM 18, 3
{March 1975), 151-157

11 NEEDLEMAN, S B, AND WUNscH, C D A general method applicable to the search for similarities in
the amino acid sequence of two proteins J Mol Biol 48 (1970), 443-453

12 PaTERSON, M S Unpubhshed manuscript University of Warwick, England, 1974

13 ReiNGoLp, E M On the opumality of some set algorsthms J ACM 19, 4 (October 1972), 649-659

14 SANKOFF, D Matching sequences under deletion/insertion constraints Proc. Nat. Acad Sci. USA 69,
1 (Jan, 1972), 4-6

15 vaN EMDE Boas, P Preserving order in a forest n less than logarithmic ume Sixteenth Annual
IEEE Symposium on Foundations of Computer Science, October 1975

16 WAGNER, R A, AND FiSCHER, M] The string-to-string correction problem J ACM 21,1 (Jan,
1974), 168-173

17 WOoNG, C K, AND CHANDRA, A K Bounds for the string editing problem IBM Research Center,
Yorktown Heights, New York, 1974

18 Ya0, A C, AND Ya0, F F On computing the rank function for a set of veciors UIUCDCS-R-75-
699, Dept of Computer Science, U of Ilinois, Urbana, 1, Feb, 1975

RECEIVED DECEMBER 1974, REVISED MAY 1975

Journal of the Association for Computing Machmnery, Vol 23, No 1, January 1976

