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Abstract

We present a very simple algorithm for the Least Common Ancestor problem. We thus dispel the fre-
quently held notion that an optimal LCA computation is unwieldy and unimplementable. Interestingly,
this algorithm is a sequentialization of a previously known PRAM algorithm of Berkman, Breslauer,
Galil, Schieber, and Vishkin [1].
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1 Introduction

One of the most fundamental algorithmic problems on trees is how to find the Least Common Ancestor
(LCA) of a pair of nodes. The LCA of nodes and in a tree is the shared ancestor of and that is located
farthest from the root. More formally, the LCA Problem is stated as follows: Given a rooted tree , how
can be preprocessed to answer LCA queries quickly for any pair of nodes. Thus, one must optimize both
the preprocessing time and the query time.

The LCA problem has been studied intensively both because it is inherently beautiful algorithmically
and because fast algorithms for the LCA problem can be used to solve other algorithmic problems. In [2],
Harel and Tarjan showed the surprising result that LCA queries can be answered in constant time after only
linear preprocessing of the tree . This classic paper is often cited because linear preprocessing is necessary
to achieve optimal algorithms in many applications. However, it is well understood that the actual algorithm

Department of Computer Science, State University of New York at Stony Brook, Stony Brook, NY 11794-4400, USA.
Email: bender@cs.sunysb.edu. Supported in part by ISX Corporation and Hughes Research Laboratories.

Department of Computer Science, Rutgers University, Piscataway, NJ 08855,USA. Email: farach@cs.rutgers.edu.
Supported in part by NSF Career Development Award CCR-9501942, NATO Grant CRG 960215, NSF/NIH Grant BIR 94-12594-
03-CONF.

1



presented is far too complicated to implement effectively. In [3], Schieber and Vishkin introduced a new
LCA algorithm. Although their algorithm is vastly simpler than Harel and Tarjan’s—indeed, this was the
point of this new algorithm—it is far from simple and still not particularly implementable.

The folk wisdom of algorithm designers holds that the LCA problem still has no implementable optimal
solution. Thus, according to hearsay, it is better to have a solution to a problem that does not rely on LCA
precomputation if possible. We argue in this paper that this folk wisdom is wrong.

In this paper, we present not only a simplified LCA algorithm, we present a simple LCA algorithm! We
devise this algorithm by reëngineering an existing complicated LCA algorithm: Berkman, Breslauer, Galil,
Schieber, and Vishkin [1]. presented a PRAM algorithm that preprocesses and answers queries in
time and preprocesses in linear work. Although at first glance, this algorithm is not a promising candidate
for implementation, it turns out that almost all of the complications are PRAM induced: when the PRAM
complications are excised from this algorithm so that it is lean, mean, and sequential, we are left with an
extremely simple algorithm.

In this paper, we present this reëngineered algorithm. Our point is not to present a new algorithm.
Indeed, we have already noted that this algorithm has appeared as a PRAM algorithm before. The point is to
change the folk wisdom so that researchers are free to use the full power and elegance of LCA computation
when it is appropriate.

The remainder of the paper is organized as follows. In Section 2, we provide some definitions and initial
lemmas. In Section 3, we present a relatively slow algorithm for LCA preprocessing. In Section 4, we show
how to speed up the algorithm so that it runs within the desired time bounds. Finally, in Section 5, we
answer some algorithmic questions that arise in the paper but that are not directly related to solving the LCA
problem.

2 Definitions

We begin by defining the Least Common Ancestor (LCA) Problem formally.

Problem 1 The Least Common Ancestor (LCA) problem:

Structure to Preprocess: A rooted tree having nodes.

Query: For nodes and of tree , query LCA returns the least common ancestor of and in ,
that is, it returns the node furthest from the root that is an ancestor of both and . (When the context
is clear, we drop the subscript on the LCA.)

The Range Minimum Query (RMQ) Problem, which seems quite different from the LCA problem, is, in
fact, intimately linked.
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Problem 2 The Range Minimum Query (RMQ) problem:

Structure to Preprocess: A length array of numbers.

Query: For indices and between and , query RMQ returns the index of the smallest element
in the subarray . (When the context is clear, we drop the subscript on the RMQ.)

In order to simplify the description of algorithms that have both preprocessing and query complexity,
we introduce the following notation. If an algorithm has preprocessing time and query time , we
will say that the algorithm has complexity .

Our solutions to the LCA problem are derived from solutions to the RMQ problem. Thus, before pro-
ceeding, we reduce the LCA problem to the RMQ problem. The following simple lemma establishes this
reduction.

Lemma 3 If there is an -time solution for RMQ, then there is an
-time solution for LCA.

As we will see, the term in the preprocessing comes from the time needed to create the soon-to-be-
presented length array, and the term in the query comes from the time needed to convert the
RMQ answer on this array to an LCA answer in the tree.

Proof: Let be the input tree. The reduction relies on one key observation:

Observation 4 The LCA of nodes and is the shallowest node encountered between the visits to and to
during a depth first search traversal of .

Therefore, the reduction proceeds as follows.

1. Let array store the nodes visited in an Euler Tour of the tree . 1 That is, is the
label of the th node visited in the Euler tour of .

2. Let the level of a node be its distance from the root. Compute the Level Array , where
is the level of node of the Euler Tour.

3. Let the representative of a node in an Euler tour be the index of first occurrence of the node in the
tour2; formally, the representative of is . Compute the Representative Array

, where is the index of the representative of node .
1The Euler Tour of is the sequence of nodes we obtain if we write down the label of each node each time it is visited during

a DFS. The array of the Euler tour has length because we start at the root and subsequently output a node each time we
traverse an edge. We traverse each of the edges twice, once in each direction.

2In fact, any occurrence of will suffice to make the algorithm work, but we consider the first occurrence for the sake of
concreteness.
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Each of these three steps takes time, yielding total time. To compute LCA , we note
the following:

The nodes in the Euler Tour between the first visits to and to are (or
).

The shallowest node in this subtour is at index RMQ , since stores the level of the
node at , and the RMQ will thus report the position of the node with minimum level. (Recall
Observation 4.)

The node at this position is RMQ , which is thus the output of LCA .

Thus, we can complete our reduction by preprocessing Level Array for RMQ. As promised, is an array
of size , and building it takes time . Thus, the total preprocessing is . To
calculate the query time observe that an LCA query in this reduction uses one RMQ query in and three
array references at time each. The query thus takes time , and we have completed
the proof of the reduction.

From now on, we focus only on RMQ solutions. We consider solutions to the general RMQ problem
as well as to an important restricted case suggested by the array . In array from the above reduction
adjacent elements differ by or . We obtain this restriction because, for any two adjacent elements
in an Euler tour, one is always the parent of the other, and so their levels differ by exactly one. Thus, we
consider the -RMQ problem as a special case.

2.1 A Naı̈ve Solution for RMQ

We first observe that RMQ has a solution with complexity : build a table storing answers to
all of the possible queries. To achieve preprocessing rather than the naive preprocessing,
we apply a trivial dynamic program. Notice that answering an RMQ query now requires just one array
lookup.

3 A Faster RMQ Algorithm

We will improve the -time brute-force table algorithm for (general) RMQ. The idea is to
precompute each query whose length is a power of two. That is, for every between and and every
between 1 and , we find the minimum element in the block starting at and having length , that is,
we compute . Table therefore has size , and we fill it in
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time by using dynamic programming. Specifically, we find the minimum in a block of size by
comparing the two minima of its two constituent blocks of size . More formally,
if and otherwise.

How do we use these blocks to compute an arbitrary RMQ ? We select two overlapping blocks that
entirely cover the subrange: let be the size of the largest block that fits into the range from to , that
is let . Then RMQ can be computed by comparing the minima of the following two
blocks: to ( ) and to ( ). These values have already been
computed, so we can find the RMQ in constant time.

This gives the Sparse Table (ST) algorithm for RMQ, with complexity . Notice that
the total computation to answer an RMQ query is three additions, 4 array reference and a minimum, in
addition to two other operations: a log and a floor. These can be seen together as the problem of finding the
most significant bit of a word. Notice that we must have one such operation in our algorithm, since Harel
and Tarjan [2] showed that LCA computation has a lower bound of on a pointer machine.
Furthermore, the most-significant-bit operation has a very fast table lookup solution.

Below, we will use the ST algorithm to build an even faster algorithm for the RMQ problem.

4 An -Time Algorithm for RMQ

Suppose we have an array with the restriction. We will use a table-lookup technique to precompute
answers on small subarrays, thus removing the log factor from the preprocessing. To this end, partition
into blocks of size . Define an array , where is the minimum element in the
th block of . Define an equal size array , where is a position in the th block in which value
occurs. Recall that RMQ queries return the position of the minimum and that the LCA to RMQ reduction
uses the position of the minimum, rather than the minimum itself. Thus we will use array to keep track
of where the minima in came from.

The ST algorithm runs on array in time . Having preprocessed for RMQ, consider
how we answer any query RMQ in . The indices and might be in the same block, so we have to
preprocess each block to answer RMQ queries. If are in different blocks, the we can answer the query
RMQ as follows. First compute the values:

1. The minimum from forward to the end of its block.

2. The minimum of all the blocks in between between ’s block and ’s block.

3. The minimum from the beginning of ’s block to .
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The query will return the position of the minimum of the three values computed. The second minimum is
found in constant time by an RMQ on , which has been preprocessed using the ST algorithm. But, we
need to know how to answer range minimum queries inside blocks to compute the first and third minima,
and thus to finish off the algorithm. Thus, the in-block queries are needed whether and are in the same
block or not.

Therefore, we focus now only on in-block RMQs. If we simply performed RMQ preprocessing on each
block, we would spend too much time in preprocessing. If two block were identical, then we could share
their preprocessing. However, it is too much to hope for that blocks would be so repeated. The following
observation establishes a much stronger shared-preprocessing property.

Observation 5 If two arrays and differ by some fixed value at each position, that
is, there is a such that for every , then all RMQ answers will be the same for and .
In this case, we can use the same preprocessing for both arrays.

Thus, we can normalize a block by subtracting its initial offset from every element. We now use the
property to show that there are very few kinds of normalized blocks.

Lemma 6 There are kinds of normalized blocks.

Proof: Adjacent elements in normalized blocks differ by or . Thus, normalized blocks are specified
by a vector of length . There are such vectors.

We are now basically done. We create tables, one for each possible normalized block. In each
table, we put all answers to all in-block queries. This gives a total of
total preprocessing of normalized block tables, and query time. Finally, compute, for each block in ,
which normalized block table it should use for its RMQ queries. Thus, each in-block RMQ query takes a
single table lookup.

Overall, the total space and preprocessing used for normalized block tables and tables is and
the total query time is .

4.1 Wrapping Up

We started out by showing a reduction from the LCA problem to the RMQ problem, but with the key
observation that the reduction actually leads to a RMQ problem.

We gave a trivial -time table-lookup algorithm for RMQ, and show how to sparsify the
table to get a -time table-lookup algorithm. We used this latter algorithm on a smaller
summary array and needed only to process small blocks to finish the algorithm. Finally, we notice that
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most of these blocks are the same, from the point of view of the RMQ problem, by using the assumption
given by the original reduction.

5 A Fast Algorithm for RMQ

We have a RMQ. Nowwe show that the general RMQ can be solved in the same complex-
ity. We do this by reducing the RMQ problem to the LCA problem! Thus, to solve a general RMQ problem,
one would convert it to an LCA problem and then back to a RMQ problem.

The following lemma establishes the reduction from RMQ to LCA.

Lemma 7 If there is a solution for LCA, then there is a solution for RMQ.

We will show that the term in the preprocessing comes from the time needed to build the Cartesian
Tree of and the term in the query comes from the time needed to covert the LCA answer on this tree
to an RMQ answer on .

Proof: Let be the input array.
The Cartesian Tree of an array is defined as follows. The root of a Cartesian Tree is the minimum element

of the array, and the root is labeled with the position of this minimum. Removing the root element splits the
array into two pieces. The left and right children of the root are the recursively constructed Cartesian trees
of the left and right subarrays, respectively.

A Cartesian Tree can be built in linear time as follows. Suppose is the Cartesian tree of .
To build , we notice that node will belong to the rightmost path of , so we climb up the
rightmost path of until finding the position where belongs. Each comparison either adds an element
to the rightmost path or removes one, and each node can only join the rightmost path and leave it once. Thus
the total time to build is .

The reduction is as follows.

Let be the Cartesian Tree of . Recall that we associate with each node in the corresponding
corresponding to with the index .

Claim 7A RMQ LCA .

Proof: Consider the least common ancestor, , of and in the Cartesian Tree . In the recursive
description of a Cartesian tree, is the first node that separates and . Thus, in the array , element
is between elements and . Furthermore, must be the smallest such element in the subarray

since otherwise, there would be an smaller element in that would be an ancestor
of in , and and would already have been separated by .
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More concisely, since is the first element to split and , it is between them because it splits them, and
it is minimal because it is the first element to do so. Thus it is the RMQ.

We see that we can complete our reduction by preprocessing the Cartesian Tree for LCA. Tree
takes time to build, and because is an node tree, LCA preprocessing takes time, for a total
of time. The query then takes , and we have completed the proof of the reduction.
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