
Information Processing Letters 77 (2001) 23–26

Shortest zookeeper’s routes in simple polygons

Xuehou Tan
School of High-Technology for Human Welfare, Tokai University, 317 Nishino, Numazu 410-0321, Japan

Received 1 September 1999; received in revised form 11 July 2000
Communicated by F.Y.L. Chin

Abstract

Let P be a simple polygon, and letP be a set of disjoint convex polygons insideP , each sharing one edge withP . The
zookeeper’s route problemasks for a shortest route insideP that visits (but does not enter) each polygon inP . We present
an O(n2) time algorithm for computing a shortest zookeeper’s route, on which no starting point is specified. 2001 Elsevier
Science B.V. All rights reserved.

Keywords:Computational geometry; Zookeeper’s routes; Unfolding; Adjustments

1. Introduction

Shortest paths are of fundamental importance in ro-
botics and computational geometry. Thezookeeper’s
route problem, introduced by Chin and Ntafos [3], is
defined as follows: Given a simple polygonP (the
zoo) with a setP of disjoint convex polygons (the
cages) inside it, each sharing one edge with polygon
P , find a shortest route insideP that visits (without
entering) each polygon inP . One may consider it as
minimizing the route for a zookeeper to feed animals.
In some sense, the zookeeper’s route problem looks
like the well-knownTraveling Salesperson problemif
we consider cages as cities. But, we actually know that
the shortest zookeeper route has to visit cages in the or-
der they appear in the boundary ofP , since otherwise
it would cross itself and could be shortened [3].

Letn denote the total number of edges of polygonP

and polygons inP . With the unfolding and adjusting
techniques, Chin and Ntafos gave an O(n2) time
algorithm for computing the shortestfixedzookeeper’s

E-mail address:tan@wing.ncc.u-tokai.ac.jp (X. Tan).

route, i.e., the route is forced to pass through a starting
point s on the boundary ofP [3]. This result was
later improved to O(n log2n) by Hershberger and
Snoeyink [7], using a complicated data structure for
shortest-path queries in a simple polygon [5,6]. In
this note, we present an O(n2) time algorithm for
computing a shortest zookeeper’s route, on which no
starting point is specified. In some cases, the shortest
zookeeper’s route without any restrictions can be
much shorter than the restricted one.

2. The main result

Let us first give a brief review of Chin and Ntafos’
algorithm for computing the shortest fixed zookeeper’s
route [3]. Suppose that we have a setE of edges, one
per cage. The locally optimal zookeeper’s route, which
makes contacts with the edges ofE, can be computed
by triangulating the interior ofP − P (Fig. 1(a)),
unfolding the triangulation using edges inE as mirrors
and finding the shortest path betweens and its image
s′ in the unfolded polygon (Fig. 1(b)), and finally

0020-0190/01/$ – see front matter 2001 Elsevier Science B.V. All rights reserved.
PII: S0020-0190(00)00144-7



24 X. Tan / Information Processing Letters 77 (2001) 23–26

Fig. 1. Construction of a zookeeper’s route.

folding back the shortest path to get the zookeeper’s
route (Fig. 1(c)). See Fig. 1 for an example, where the
edges inE are drawn in bold lines. This process takes
linear time, since a simple polygon can be triangulated
in linear time [1] and the shortest path between two
points in a triangulated polygon can be found in linear
time [4]. Specially, we call the edges ofE, active
edges.

Chin and Ntafos’ algorithm first selects an initial
set E0 of edges, one per cage, and computes the
initial zookeeper routeR0 using the unfolding method.
The shortest fixed zookeeper’s routeR is then found
by repeatedly adjusting the current routeRi until it
becomes the shortest one. Letex and ey denote two
adjacent edges of a cagePj , and letpx,y denote the
common point ofex and ey . RouteRi is adjustable
on the active edgeex if the contact ofRi with ex
is only the pointpx,y and the incoming (outgoing)
angle formed byRi with the line containing edgeey
is smaller than the outgoing (incoming) angle formed
by Ri with the line containing edgeey . Fig. 2 shows
two different cases in which an adjustment occurs. An
adjustment involves a change in the set of active edges
(i.e., ey is substituted forex in the new setEi+1) and
thus calls the unfolding procedure once to compute the
new and shorter zookeeper’s route. In the adjusting
process, the length of the current route decreases
monotonically. When routeRi cannot be adjusted
any more, it gives the shortest fixed zookeeper route.
The initial edge setE0 is so selected that if one
unfolds bothR0 and the shortest fixed zookeeper’s
routeR, thenR0 lies in the same side ofR throughout
its extent. Thus, the current routeRi moves along
the boundary of any cagePk in a single direction,
i.e., the contact points of the computed routes are

Fig. 2. Definition of adjustments.

well ordered on the boundary ofPk in the adjusting
direction. Since at mostn adjustments are performed,
Chin and Ntafos’ algorithm simply runs in O(n2)

time [3]. (Later, Hershberger and Snoeyink showed
that an adjustment can be done in O(log2n) time,
which leads to an O(n log2n) time algorithm [7].)

In the following, we give a method to remove the
starting point constraint. First, we place the points at
the leftmost vertex of some cagePi , and then move
s along the boundary ofPi . The general zookeeper’s
route problem (without giving any starting point) is
solved if we can find the shortest zookeeper’s route
forced to pass through each point of the boundary of
Pi . Although there is an infinite number of such routes,
we show that only a linear number of points (event
points) on the boundary ofPi needs to be considered
and each event can be dealt with in linear time. (It is
somewhat similar to the work of Chen and Daescu for
maintaining the visibility of a moving point in a simple
polygon [2].)

Let Rs denote the shortest fixed zookeeper’s route
passing throughs. We are interested in topological
changes occurred toRs when the points is slid
from the leftmost ofPi to the rightmost. SinceRs
is the shortest zookeeper’s route passing throughs,
the unfolded version of the routeRs is the shortest



X. Tan / Information Processing Letters 77 (2001) 23–26 25

path betweens and its images′. Thus, it makes turns
only at the vertices of the unfolded polygon. Since
the sliding effect is blocked by the first and last turn
points, only the lengths of the first and last segments
of the unfolded routeRs change in the sliding process.
Hence, topological changes to the route happen if one
of the followings occurs.
(1) The first (last) segment of the unfolded routeRs

has to be split into two. It occurs when the end
vertex of an active edge or a vertex of polygonP
is encountered.

(2) The first (last) two segments of the unfolded route
Rs become collinear. It occurs at the starting
vertex of an active edge or a vertex of polygonP .

(3) The points reaches the end vertex of the active
edge ofPi .

(4) The first segment and the last segment of the
unfolded routeRs have the same angle to the edge
of Pi containings. This event leads to a locally
optimal route, which is likely the shortest of all
zookeeper’s routes.

We call the points ofs on the boundary ofPi where
topological changes to the route happen theevent
pointsof the sliding process. Four types of event points
are shown in Fig. 3. Note that if the number of cages is
odd, the arrows on the top and bottom in Fig. 3 should
have different directions.

Lemma 1. There areO(n) event points in the sliding
process.

Proof. Since the direction of contact points slid on
any active edge need never be changed (Fig. 3), the
number of Type 1 and Type 2 event points is bounded
by the number of vertices of polygonP and polygons
in P . Note that a vertex of a polygon inP may act

Fig. 3. Four types of event points.

as two event points (a Type 1 event and a Type 2
event). Clearly, the number of Type 3 event points
is bounded by the number of vertices ofPi . There
may be an infinite number of Type 4 event points in
an edge ofPi . But, their fixed zookeeper’s routes are
of the same length. So we need to select only one
representative point, or an event point as we called.
Thus, the number of Type 4 event points is bounded
by the size ofPi . 2

When an event point is encountered on the boundary
of Pi , what kind of changes should be made to the
route Rs and what is the time taken to maintain
the shortest zookeeper’s route passing through the
new event point? We answer these questions in the
following lemma.

Lemma 2. The shortest fixed zookeeper’s routeRs
can be maintained in linear time when a new event
point is encountered in the sliding process.

Proof. Note first that for any event points, we need
to record the length of the shortest fixed zookeeper’s
routeRs . For a Type 1 event point, if it corresponds to
a vertex of polygonP , there are no changes in the set
of active edges. If it corresponds to the end vertex of an
active edge, this edge is deleted from the set of active
edges and the next edge (if it exists) is inserted into
the set, and then we compute the new routeRs (i.e.,
the shortest zookeeper’s route passing through the new
event point) by the unfolding method. Analogously, a
Type 2, Type 3 or Type 4 event point can be dealt with.

Consider now how to find the nearest event point.
We will describe a method to compute four potential
event points in the edge containings, one for each
type of events. The nearest event point can then be
computed from these (at most) four candidates. For
the next Type 1 event point, we first consider the
case where the unfolded routeRs is a straight line
segment. If the points and its images′ have opposite
sliding directions in the unfolded polygon (i.e., the
number of cage is odd), we take the middle point of
the unfolded routeRs as the center and rotateRs in
the sliding direction. Otherwise, the whole routeRs is
translated in the sliding direction. When a vertex of the
unfolded polygon is first encountered by this rotation
or translation, the next Type 1 event point occurs. If the
unfolded routeRs makes turns at some vertices of the



26 X. Tan / Information Processing Letters 77 (2001) 23–26

unfolded polygon, the computation can be similarly
done by rotating the first and last segments of route
Rs , fixing centers at the vertices whereRs makes the
first and last turns, respectively.

To find the next Type 2 event point, we rotate the
first and last segments of the unfolded routeRs in the
sliding direction and report the place ofs where the
first or last two segments ofRs become collinear. It is
trivial to find the next Type 3 event point, as it is the
end vertex of the edge containings.

For the next Type 4 event point, we first note that
there may be an infinite number of Type 4 event
points in a continuous interval of an edge ofPi and
we need to pick up only one representative point. If
the unfolded routeRs is a straight line segment, the
position ofs that minimizes the distance between the
edge(e1, e2) and its unfolded image(e′1, e′2) gives the
potential Type 4 event point, wheree1 ande2 are two
endpoints of the edge containings. (Given (e1, e2)

and (e′1, e′2), the position ofs minimizing the edge-
distance can be computed in constant time. This is
because the unfolded polygon needn’t be considered
in the computation.) If the unfolded routeRs is not
a straight line segment, we put together two unfolded
polygons: one is used to compute the routeRs which
visits all cages in the clockwise order and placed to
the left of the edge containings, and the other is
used to compute the routeRs which visits all cages
in the counterclockwise order and placed to the right
of the edge containings. Then draw a line segment
to connect two first turn points in different unfolded
polygons. If it wholly lies in the union of two unfolded
polygons, the intersection of the line segment with the
edge containings gives the next Type 4 event point.
Otherwise, no Type 4 event points exist.

Since any type of next event point can be found in
linear time, the lemma is proved.2
Theorem 1. The general shortest zookeeper’s route in
a simple polygon(without giving any starting point)
can be found inO(n2) time.

Proof. First, the initial shortest fixed zookeeper’s
route can be computed in O(n log2n) time [7]. In the

sliding process, we maintain the length of the shortest
zookeeper’s route passing through each event point.
Since the length of a route is either monotonically
decreasing or increasing between two consecutive
event points, the shortest one has to pass through one
of the event points. The shortest zookeeper’s route
is then the shortest of the routes passing through
the event points. Since there are O(n) event points
(Lemma 1) in the sliding process and each event takes
O(n) time (Lemma 2), the time complexity of our
algorithm is O(n2). 2

3. Conclusions

We have given an O(n2) time algorithm for comput-
ing a shortest zookeeper’s route, on which no starting
point is specified. The time bound of our algorithm
might be further reduced (say, to O(n log2n)). Note
that the data structure of Hershberger and Snoeyink [7]
can be used to compute the shortest zookeeper’s route
at an event point. Whether or not the next event point
can be found in sublinear time is left as an interesting
open problem.

References

[1] B. Chazelle, Triangulating a simple polygon in linear time, in:
Proc. 31th Annual IEEE Symp. Foundations of Comput. Sci.,
1990, pp. 220–229.

[2] D.Z. Chen, O. Daescu, Maintaining visibility of a polygon with
a moving point of view, Inform. Process. Lett. 65 (1998) 269–
275.

[3] W.P. Chin, S. Ntafos, The zookeeper route problem, Inform.
Sci. 63 (1992) 245–259.

[4] L. Guibas, J. Hershberger, D. Leven, M. Sharir, R. Tarjan,
Linear time algorithms for visibility and shortest path problems
inside simple triangulated polygons, Algorithmica 2 (1987)
209–233.

[5] L. Guibas, J. Hershberger, Optimal shortest path queries in a
simple polygons, J. Comput. System Sci. 39 (1989) 231–235.

[6] J. Hershberger, A new data structure for shortest path queries in
a simple polygon, Inform. Process. Lett. 38 (1991) 231–235.

[7] J. Hershberger, J. Snoeyink, An efficient solution to the
zookeeper’s problem, in: Proc. 6th Canadian Conf. on Compu-
tational Geometry, 1994, pp. 104–109.


