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Abstract

The optimal alignment or the weighted minimum edit dis-

tance between two DNA or amino acid sequences for a given

set of weights is computed by classical dynamic program-

ming techniques, and is widely used in Molecular Biology.

However, in DNA and amino acid sequences there is con-

siderable disagreement about how to weight matches, mis-

matches, insertions/deletions (indels) and gaps. Parametric

Sequence Alignment is the problem of computing the opti-

mal valued alignment between two sequences as a function of

variable weights for matches, mismatches, spaces and gaps.

The goal is to partition the parameter space into regions

(which are necessarily convex) such that in each region one

alignment is optimaJ throughout and such that the regions

are maximal for this property. In this paper we are primarily

concerned with the structure of this convex decomposition,

and secondarily with the complexity of computing the de-

composition. The most striking results are the following:

For the special case where only matches, mismatches and

spaces are counted, and where spaces are counted through-

out the alignment, we show that the decomposition is sur-

prisingly simple: all regions are infinite; there are at most
~2/3 region5; the line5 thatbound the regions are ~ of ‘he

form ~ = c + (C+ 0.5)ci; and the entire decomposition can

be found in O(knrn) time, where k is the actual number of

regions, and n < m are the lengths of the two strings. These

results were found while implementing a large software pack-

age to do parametric sequence analysis, and in turn have led

to faster algorithms for those tasks.

1 Introduction

Finding the minimum cost edit distance, or the best

alignment, of two DNA, RNA or amino acid sequences

has become almost the standard technique for sequence

comparison in molecular biology. They are used to

determine whether and where two sequences are simi-

lar (homologous), to determine evolutionary history be-
t ween species, to find consensus sequences and other

significant functions. There are literally hundreds of

papers written on this topic and its applications to bi-

ology. For an introduction and small reflection of this
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CCR-9103937 from the National Science Foundation.

literature see [Dl] [D2] [FS] [GO] [GD] [PL] [SK] [vH]

[w].
However, in all present methods for opti-

mal sequence alignment, specific substitution, inser-

tion/deletion (indel) and gap penalties must be spec-

ified, and the (biological) significance of the alignment

depends heavily upon the “right” choice of the weights.

There is considerable disagreement among molecular bi-

ologists about the correct choice, and it is probably

the case that there is no unique choice for the parame-

ters (as pointed out by [AV] with respect to gap penal-

ties). The significance of an alignment is based either

on biological grounds, or on its sensitivity to the choice

of parameters. Instead of repeatedly varying the pa-

rameter weights and solving for the optimal alignment,

other parametric methods ought to be employed. As

an example, J. Kruskal and D. Sankoff [SK, pp. 290–

293] demonstrate the difficulties in finding the relative

weights for gaps/substitutions and other operations by a

specific example: the comparison of human and E. Coli

5S RNA (two sequences of 120 characters each over a

4-letter alphabet). Their solution involves varying one

parameter, the number of indels, until its appropriate

value is found. Similarly, the paper by Fitch and Smith

[FS] demonstrate how the biologically accepted align-

ment may easily be missed if inappropriate weights are

used.

There are two ways around the problem of choos-

ing a “correct” choice of parameters. The first is to

compute, for a given set of initial guesses for parameter

values, the optimal alignment A at that point and, in

addition, a maximal region P such that d is optimal
throughout P. The other, more global, approach is to

find the entire decomposition of the parameter space

into such maximal regions. During the process of devel-

oping and analyzing a computer program which is based

on these approaches, we were able, in several cases, to

characterize this decomposition, and this considerably

simplified the algorithm for finding it.

We formally define the Parametric Alignment prob-

lem in Section 1.1 and summarize our results in Section

1.2. In Sections 2 and 3 we consider the 2-parameter

case, where only substitution and indel weights can vary,

Two different variants, the global and the local align-

ment, are studied. Sect ion 4 deals with the 3-parameter
tcomputer science,university of California, Davis
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case. Finally, inaection 5 we discuss a richer

the problem, where independent weights for

of mismatch are specified.

ALIGNMENT

variant of

each type

1.1 DefinitionsThe edit distance between two se-

quences is the minimum weighted sequence of edit op-

erations (insertion, deletion and substitution of single

characters) that must be performed to transform one

sequence into another. This has found widespread use

as a measure of sequence similarity. It is often more

important to know what the actual edit operations are

rather than just the tot al cost or value. These opera-

tions can be represented as an alignment, and it is often

the alignment that is searched for.

An alignment of two sequences S1 and S2 of lengths

n and m (~ n) respectively is obtained by introduc-

ing spaces into the two sequences such that the lengths

of the two resulting sequences are identical, and plac-

ing these two resultant sequences one upon the other

subject to the constraint that no column contains two

spaces. Any column that contains two identical charac-

ters is called a match. Any column that contains two

dissimilar characters is called a mismatch and any col-

umn that contains a space will be referred to as a space

or indel. The correspondence between them and the

edit operations is straightforward: a mismatch repre-

sents a substitution, a space is either an insertion or

a deletion, depending whether it is introduced in the

source string or the target string, and a match is an un-

touched character. A series of one or more contiguous

space characters in the same sequence will be referred

to as gap.

An alignment A may therefore be characterized by

the number of matches, mismatches, spaces and gaps.

We denote these quantities by WA, 2A, yA, .ZA respec-

tively (or w, x, y, z when referring to an unspecified

alignment ). Note however that this representation is

many-to-one: different alignments could have the same

4-tuple (w, Z, y, z). If aO is the mismatch penalty, /30

is the space (indel) penalty and Y. is the gap penalty,

then the value of an alignment is defined to be

v=w —a@- flov – ‘YOz

The region of interest is the region where a, /3,7 are all

positive. We ignore the case where the weight of the

matches is also a parameter since we can divide all the

parameters by this value and reduce it to the above case

without changing the relative order of the value of the

alignments. For fixed weights, the value of the optimal

(maximum value) alignment of two strings can be found

by dynamic programming in O(rzrn) time [SK], a fact

that was discovered many times independently.

A given choice of parameter values ao, /?O and 70
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defines an optimal alignment (not necessarily unique).

Since an alignment is essentially a discreet object

any alignment that is optimal for some fixed values

(cro, Po, YO) is optimal in a certain region in the (a, /3, y)

space. Hence, the 3-parameter space is decomposed into

regions which we call optimal regions such that in every

region one alignment is optimal throughout and the re-

gions are maximal for this property. This decomposition

is completely defined by the two sequences.

The value of an alignment is always a linear function

of the parameters; hence it can be easily observed that

the regions, which are bounded by the intersection of

hyperplanes, are all convex polygons.

We consider two variants on the alignment problem:

the global and the local alignment. By global, we refer to

the case when all spaces are counted towards the total

number of spaces regardless of where they occur. The

local case is when we ignore any (contiguous) spaces

that overhang at the extreme ends of the alignment,

i.e. we are permitted to delete one sufllx and one

prefix (perhaps of the same sequence) without incurring

any cost or losing any value. Global alignments are
used when searching for a global homology between

two sequences, that is, when the whole sequences are

expected to be homologous. This is true more often

of proteins than in the study of DNA. However global

alignment problems also arise aa subtasks of more

complex alignment problems. LocaJ alignments are used

when searching for local homology, that is, when the

sequences are expected to consist of a homologous region

which should be aligned, and non-homologous suffixes

or prefixes which need not participate in an alignment.

1.2 Summnry of ResultsIn this paper we are con-

cerned with the characteristics of the parametric space

decomposition, and its algorithmic implications. We are

also interested in questions of the type: given an arbi-

trary line in the parametric space, how many different

regions can it go through. The latter was motivated

by our computer program PARAL which is based on a

primitive operation that, when given a line in the space,

finds all the regions it crosses in time O(krarn), where k

is the actual number of regions it goes through (using

the algorithm of Eisner-Severance [ES]),

We first consider a case of particular interest, the 2-

dimensional case where gaps are ignored (that is 7 = O).

Here, the optimal alignment is the one that maximizes

w—az — /3y. We show that when global alignments

are considered, the decomposition of the a, ~ space is

surprisingly structured. We prove that the number of

(convex) polygons in the decomposition is bounded by

n213. We show further that every polygon is infinite and

is bounded by two rays, each of which runs along a line
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of the form @ = c + (c + 0.5)a for some constant c. As

a consequence, we show that the entire decomposition

can be found in O(knm) time, where k is the number

of actual polygons in the decomposition. Hence, the

amortized cost for finding a single region is O(nm)

time, which is also the time to find a single optimal
alignment within that region. For local alignments,

the decomposition becomes more complex; some of its

regions can be bounded (finite), but their number is

bounded by n2. Any arbitrary line in the 2-dimensional

space can therefore go through at most n2 regions. As

a consequence, the algorithm implemented in PARAL

finds all the regions in time (n3m) per region, and

an alternative method of Gusfield [G], which is an

adaptation of Meggido’s method [M], can find all regions

in time 0(nm2 log n) per region. These algorithms are

not described in this abstract.

If gaps are allowed, then we obtain similar results

for the decomposition of the 3-dimensional space if

global alignments are considered. All regions, which are

convex polyhedra, are unbounded cones, bordered by

rays of the form @ = c + (c + 0.5)cY, y = d + da. An

arbitrary line in the 3-dimensional space can go through

at most n2 regions if global alignments are computed,

and through at most n3 regions for local alignments.

A much more complex case arises when different

weights are assigned to every possible mismatch (for

example, in Amino Acid sequences, where the alphabet

size is 20, there are 190 possible mismatch weights). In

this most general setting, we show a sub-exponential

bound on the number of regions that any straight line

can intersect.

2 Two Parameter Global Alignment

In this section we consider the global alignment problem
where only two parameters a and ~ are given. We ignore

the number of gaps, so -y = O. The objective function,

therefore, is to maximize w – ax – /3y, where w, x and

y are the numbers of matches, mismatches and indels

respectively. We are interested in bounding the number

of regions in the (first quadrant of) the a, /? plane. We

establish the following lemmas and observations for this

purpose.

LEMMA 2.1. For any alignment A with correspond-

ing tuple (w, z, y): 2w+ 2x+ y = N, where N = n + m

is the sum of the sequence lengths.

Proof : Any character can be part of exactly

one match, mismatch or indel. A match or a mismatch

involves two characters. Thus the total number of

characters that form part of a match is 2w. Similarly

the total number of characters involved in mismatches

is 2z. A indel involves only one character from the

input sequences and since we do not ignore any indels in

counting their total number it follows that the number

characters involved in indels is y. The lemma follows.

Recall that m > n.

LEMMA 2.2. For any alignment A, w + x s n

Proofi A match or mismatch involves one charac-

ter from each sequence. Hence their total cannot exceed

the number of characters in the shorter sequence.

COROLLARY 2.1. For any alignment, A, m – n s

y<m+n

COROLLARY 2.2. In all alignments of two se-

quences, y is always odd or always even depending on

whether m + n is odd or even. There are therefore only

n + 1 distinct values for y.

THEOREM 2.1. Any line forming a boundary be-

tween two regions is of the form ~ = c + (c + ~)a,

for some c > –1/2.

Proof : At a given point (a, ~) an alignment has

the value v = w – crz – /3y. The left hand side of lemma

2.1, which can be rewritten as w + z + y/2 = (n+ m)/2,

is also a linear combination of w, x and y, with a = – 1

and ~ = – 1/2. This suggests that this point is of some

significance. Therefore consider the point (–1, –1/2)

on the a, /3 plane. At this point all alignments have

the same value: v = w + z + y/2 = (n + m)/2 (from

lemma 2.1). In other words, all the value planes must

meet at CY= –1,8 = –1/2, v = (n + m)/2. It follows

then that any intersection between two such planes must

also pass through that point. Now, let ~ = c + c1a (for

some c1 and c) be a boundary (intersection) line. Since

(-1, -1/2) is a point on that line, -1/2= c-cl. Hence

c1 = c+ 1/2. In other words, /3 = c +(c+!j)a, for some

c. Since we are only interested in the quadrant where

~ and a are positive, it follows that any line passing

through that quadrant and the point (– 1, – 1/2) must

have a positive slope. Hence c > –1/2.

COROLLARY 2.3. All the regions of optimality are

semi-infinite regions bounded by lines of the form ~ =

c + (c+ ~)a or by the co-ordinate axes.

An example (using two made up sequences) of the

decomposition of the parameter space into regions of

optimality, displaying the above property, is shown in

Figure 1.

2.1 The number of regionsWe now examine the

number of regions possible in any decomposition. A

breakpoint along any given line is the point where the

line moves between two adjacent regions.

LEMMA 2.3. Along any horhontal line we never

encounter break points in the region a > 2P.

Proof : Consider an alignment which contains
at least one mismatch. A single mismatch may always
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be replaced by two indels, one in each sequence, so

alignment containing mismatches can be changed into

one with no mismatches without affecting the number

of matches. Thus if the cost of a mismatch, a, is greater

than twice that of an indel, ~, it follows that any optimal

alignment for those parameters will have no mismat ches.

Consider now a horizontal line in the region a > 2/3.

Any alignment that is optimal at a point in this region

can have no mismatches, Thus the value of such an

optimal alignment remains constant through this region

on any horizontal line (where ~ is constant). Hence

there are no breakpoints on a horizontal line in this

region.

LEMMA 2.4. There are at most n + 1 regions.

Proofi Lemma 2.3, with@= O, shows that we will

encounter no break points along the a axis and that

therefore all the region boundaries must intersect the

positive /3 axis. In other words the ~ axis intersects all

the regions. Let the alignments encountered, in order

of increasing /3, be Al, A2, ..., dk+l. Since u = O

the value of an alignment (along this line) is simply

vi(@ = Wi – /3yi. Since our objective function aims
to maximize the alignments value, it can be seen that

Yi+I < Yi for all Ai (i < k). By corollary 2.2, the Vi can
attain only n + 1 distinct values and the lemma follows.

Let wi – ~xi – flyi and wj – ~xj – /3yj be the

planes corresponding to the values of two alignments

Ai and Aj respectively, The equation of the line (or

line segment) forming the boundary between the two

regions with alignments Ai and Aj is:

~= ;::+-.

We will call this the ratio form of the boundary

linel. The ratio form of the boundary line suggests an

added constraint on the number of mismatches z, and

this constraint can be used to further refine lemma 2.4.

THEOREM 2.2, The numbev of regions is bounded

by O(n~) .

Proof:We have seen that the boundaries between

regions are of the form /3 = c + (c + ~)cr. Thus

we may specify a boundary simply be specifying the

slope m = c + 1/2. Consider the /3 axis which,
as we have seen, intersects all the regions. Let the
alignments encountered, in order of increasing ~, be

1Writing the intersection of the two planes in this way rdso
gives an interesting interpretation of the boundary between two
region.. The slope of the boundary ia the rate at which mis-

mat chesare exchanged for indels in the two adj scent alignments,
and the intercept of the boundary line is the rate at which matches
are exehanged for indels.

A1, A2,..., dk+l. Let them be separated by boundary

lines with slopes ml, ?nz,.,., mk respectively. We have

seen that yi+l < vi for all Ai (i < k). The slopes mi

are positive since we are interested only in the quadrant

where a and /3 are positive, and any line from the

point (– 1, –1/2) that intersects that quadrant must

have a non-zero (and non-infinite) positive slope. Let

Axi = ~i+l – ~i and A~i = vi – ~i+l. Since yi+l < yi,

Ayi is positive. From the ratio form of the boundary

line, m = Axi/A~i therefore, Axi is positive. Thus

a boundary slope can be identified by a pair of values
(Axi, A~i), and there can be no more boundaries than

there are distinct (A~i, A~i) pairs.

NOW, ~i A~i s n and ~i A~i ~ (m+ n) – (m –

n) = 2n. Therefore

k

For all t consider the number of boundaries such that

(A~i + A~i) = t. Since the pairs have to be distinct

there can be only t– 1 such pairs. Intuitively the way to

maximize the number of (A~i, Ayi) pairs is to generate

as many as possible which sum to two, then three and so

on as long as the constraint on the total is maintained.

Let s be the largest value such that

3n ~ ~t(t–1)

t=2

= ;(s–1)s(s + 1)

Therefore s = O(n~ ). The number of regions is

therefore

= 0(s2) = O(n~)

A closer analysis baaed on the same observation and

using Euler’s function O(i), the number of integers less

than and relatively prime to i, can be used to show that

k ~ 0.88n2/3.

THEOREM 2.3. All regions in the decomposition

can be found in O(nm) time per region, i.e. the time

per region is no more than the time to compute a single

alignment at a fixed CY,/3 point.

Proof : The Eisner-Severance method [ES]

finds all the breakpoints (intersections between regions)

along any single line or direction in O(ram) time per
breakpoint We have seen that a single line, the /3 axis,

intersects all the regions. Hence all the regions can be

found in O(knm) time by the Eisner-Severance method
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where k is the number of regions. This actually gives us there can be only as many regions as there are distinct

the intercepts along the /3 axis but this information is pairs w, z. This proves the lemma.

enough to determine the boundary lines since each line

must pass through (– 1,- 1/2). 4 Three Parameter Alignment

COROLLARY 2.4. The entire decomposition can be

found in 0(n5/3m) time.

3 Two Parameter Local Alignment

In this section we consider the regions of optimality gen-

erated by looking at local instead of global alignments.

In this case certain spaces occurring at the very end of

the alignment may be disregarded. This renders lemma

2.1 invalid. However we note that lemma 2.2 remains

valid. We may also make the following weaker observa-

tion.

LEMMA 3.1. FOT any local alignment,

2w+2x+y5N

We now consider the case where gap penalties can also

vary as a parameter ~, hence the parameter space is

now 3-dimensional. The consideration of gap penalties

is very important in the context of DNA or Protein

sequences since in many cases the alignments accepted

as “standard’) or best by biologists cannot be obtained

by the dynamic programming approach unless a specific

non-zero penalty is added for each gap. For an example

of this see [FS]. As in the 2-dimensional case, we can

prove a simpler decomposition when global alignments

are considered. Recall that z is the number of gaps

in the alignment. The following observation holds in

general:

LEMMA 4.1. z ~ 2n – 1

where N = n + m is the sum of the sequence lengths. Proof: Any space that is introduced in the long

However, we note that any “extreme” spaces will sequence must be opposite to a character in the short

not be counted (since any additional space will always sequence, hence the number of spaces, and therefore the

decrement the value). Thus if space is “counted”, number of gaps, in the long sequence is bounded by n.

it must be the case that there is at least one Likewise, any gap in the short string must be bracketed

match/mismatch on either side of it, else it would have by characters at both ends, hence the number of gaps in

therefore, if y > 0 then we must have at least two the short string is bounded by n – 1. The claim follows.

matches/mismatches consuming 4 characters. Hence,

LEMMA 3.2. For any alignment,

y~m+n–4

The weakening of these conditions leads one to

suspect that the picture of all the optimal regions may

be more complicated and not show the structure that we

observed in the global alignment case. This has indeed

been observed to be the case. The example in Figure 2,

using the same sequences as in Figure 1 illustrates this

increased complexity.

We further note that lemmas 2.3 remains valid in

the local alignment case since it did not require any of

the abovementioned conditions for its proof.

LEMMA 3.3. There are at most 0(n2) optimal re-

gions.

Proofi Consider two alignments Al and A2 which

have tuples (w, c, yl) and (w, z, YZ), i.e., they differ
only in the number of indels. Let us assume that

they are both optimal in some region. Without loss of

generality, assume that Y1 < YZ. since we are interested

in the region where the mismatch and indel penalties
are always positive, it follows that Al will always have a

larger value than AZ, which contradicts our assumption

that there was some region where Az was optimal.

In other words, it is not possible for two different

alignments to have the same value of w and x. Thus

4.1 Global Alignments with GapsWe first note

that lemmas 2.1 and 2.2 and corollaries 2.2 and 2.1 from

section 2 are still valid in this three parameter global

alignment casee, for exact 1y the same reasons, since we

are not changing the way we count indels, mismatches

or spaces.

Let us describe a line in 3-dimensions a, /3 and 7
as a function of one parameter, a, by two equations

P=co+cla andy=c2+c@.

THEOREM 4.1. Any line forming a boundary be-

tween three or more regions is of the form /? = c +

(C++) cr, y=d+da.

Proof: Consider the point (–1, –1/2, O) on the

a, P, 7 plane. At this point all the alignments have the
same value: v = w + Z + y/2 = (n + m)/2 (from lemma

2.1). In other words all the value hyperplanes must

meet at a = –l, ~ = –1/2,7 = O,v = (n + m)/2.

By the same reasoning as in theorem 2.1 it follows that

the intersection between two such hyperplanes is a plane

containing this point and the intersection between three

or more hyperplanes must be a line passing through this

point. Again using the same reasoning it can be seen
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that the family of these boundary lines passing through

the point a = –1, @ = –1/2, y = O is described by the

conditions /3 =C +(c++)a, y=d+dct.

COROLLARY 4.1. All optimal regions are semi-
injinite ‘conic” regions bounded by lines of the form

p=c+(c++)a, ~=d+da.

This implies that just aa the two parameter global

alignment essentially had only one degree of freedom

(in the sense that alignments that are optimal at some

point must also be optimal at some point on the a or

/3 axis) so also the three parameter global alignment

essentially has only two degrees of freedom since any

alignment that is optimal at some interior point must

also be optimal on one of the three c~ordinate planes

where one of the three parameters is zero. In other

words, if we compute the decomposition for the three

co-ordinate planes we have all the information required

to describe the entire decomposition.

THEOREM 4.2. There are at most 0(n2) di~erent

alignments that are optimal somewhere in the a, /3, ~

parameter space.

Proof : We know, from Theorem 2.2 that there

can be only 0(n2/3) regions on the ~ = O plane. Using

the same arguments as in lemma 3.3, we can see that on

the P = O plane there can be atmost aa many regions as

there are distinct (w, z) pairs and on the a = O plane

there can be atmost as many regions aa there are distinct

(w, y) pairs. Both of these are n2.

By similar arguments, and using the fact that

Wi + Xi + (Cl – Co)Yi + (C3 – C2)Zi > Wi+l +Zi+l + (Cl –

co)y~+l + (C3 — c2)%i+1, it is easy to show that in the

case of Local alignments with gaps (1) an arbitrary

line can go through at most n3 regions, and that (2) the

number of regions is at most n3,

5 The Case of Richer Weights and Penalties

In the previous results, the total penalty for mismatches

was just the product of the mismatch penalty a and the

number of mismatches. While this is sufficient in many

biological applications, many other applications use a

richer set of weights and penalties. In detail, for each

pair (a, b) of unequal characters in the alphabet, there
is a number w(a, b) which is the base penalty for align-

ing these mismatching characters. One may also specify

a character-dependent penalty for aligning a particular

character with a space, and also a positive weight for

aligning two matching characters which depends on the

particular pair of characters. There are several com-

monly used pair-dependent weight and penalty schemes

in the biological literature. The most widely referred to

is called the Dayhoff matrix [SD].

With such pair-dependent weights and penalties,

the value of an alignment A is computed aa M(A) –

MS(A) – S(A) where M(A) is the sum of all the (pair-

dependent) weights contributed by matching pairs of

characters in A, MS(A) is the sum of all the (pair-

dependent) penalties contributed by mismatching pairs

of characters, and S(A) is the sum of all the (pair-
dependent) penalties contributed by characters opposite

spaces.

One might want to parametricly study the effect of
changing these pair-dependent weights, but this seems

too unwieldly. A simpler question that is still of im-

portance is how to balance the influence of the term

contributed by matches verses the terms contributed by

mismatches and spaces. So for a given alignment A,

its parametric value is M(A) – aLIS(A) – /3S(A). As

before, the a,@ space decomposes into maximal convex

regions where a particular alignment is optimal through-

out. The results in the previous sections depend on

M(A), MS(A) and S(A) being the number of matches,

mismatches and spaces in A respectively, and break-

down under this richer weight/penalty structure. We

don’t know non-trivial bounds on the number of regions

in the parametric decomposition, but we can prove that

along any line, the number is sub-exponential.

THEOREM 5.1. With pair-dependent weights and

penalties, the number of breakpoints encountered along

any line L in the parametm”c decomposition is at most

(2*)log, n,

Proofi Along a line L in a, P space, the value

of /3 is linearly dependent on a, so by adjusting the

base penalties for spaces, we have a one parameter

problem, In that problem, the parametric value of an

alignment A can be assumed to be M(A) – CY[MS(A) +

S(A)]. Consider the dynamic programming table used

to find the optimal alignment, once a fixed value of a

is specified, An optimal alignment is specified by a

path in that table from cell (1,1) to cell (n, m). We

associate a single optimal alignment in each region of

the decomposition, and hence a single optimal path in

each region. Thus as we move along L (with changing

a) through changing regions, the corresponding path

changes. Let S be the set of paths which correspond to

the regions encountered along L. Let T(n, m) denote

the maximum possible size of S’ in any n by m table.

Each path in S goes through row n/2. Consider a

fixed cell (n/2, k). The number of paths in S which

go through cell (n/2, k) is bounded by T(n/2, k) +

T(n/2, m – k) ~ 2T(n/2, m). The reason for the

plus (rather than a product) is that changes in the

optimal path before row n/2 occur as a is changing
and are totally independent with changes in the optimal

path that occur after row n/2. Hence T(n, m) ~

2mT(n/2, m) which implies that T(n, m) < (2m)’Ogz’.
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6 Program Description

We have developed a program, PARAL, which allows

the user to specify two sequences, a range for a and /3,

and the desired type of alignment (global or local) with

or without gaps. Then, when a specific choice for a and

@is given, the program computes an optimal alignment

d for that choice and then determines and displays the

region P in the a, /3 space that A is optimal for. The

user may explore the interesting part of the space by

repeatedly specifying values for a and /3 which have not

been placed yet in a region. It can also generate all

the regions in the entire decomposition systematically

without having to choose any specific points.

The implementation is based on the following prim-

itive: given a point p and a direction 1, find the first

point p) along 1 in which 1 crosses to a different region,

and also find the new alignment at p’. This primitive

can be implemented in O(knrn) time, where k is the ac-

tual number of regions that 1 goes through, by using the

method of [ES] that finds all breakpoints along a line.

It can also be implemented in 0(rarn2 log n) time, inde-

pendent of k, were each successive breakpoint is found

by Gusfield’s [G] adaptation of Megiddo’s method [M].

We have adopted the first approach in PARAL.

Given a point p, its optimal region P is ideally found

as follows: first, an arbitrary direction 1 is chosen and

the next point p’ is computed. Given the alignment

at p’, one boundary of P can now be determined

by intersecting both alignments. The procedure is

repeated, say, clockwise, along the new boundary, until

all boundaries of P are found. The idealized method

needs more detail to handle degeneracies that can occur

if more than three regions meet at a point. We omit the

details here.

Alignments with parametrized gap penalties (the

3-dimensional case) are also handled, however without

a 3-D display; instead, a display of the projected

decomposition on any plane is given. A more complete

paper on the program is in progress [GBBMN].
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PARAMETRIC OPTIMIZATION OF SEQUENCE ALIGNMENT

I

A
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STRINGS ARE:

dcaabaccaabaacaa

baabbcbcaabccaac

ALIGNMENT OF REGION A:

dcaabaccaabaacaa

I I 1111 I
baabbcbcaabccaac

V(cl, p) = 7- 9cY- op.

ALIGNMENT OF RKC;lON 1):

dcaabac.caabaacaa-

111 I 1111 Ill
b-aabbcbcaab-ccaac

v(d, /3)= 11-3@ -4/?.

E

/

d

23456789 10 11 12 !.3 14 15 16 !.7 18 19 2

hl~ht of tils”~t~ (04)

lJ(a, /3)= 11 -occ-Iog3

STRINGS ARE:

dcaabaccaabaacaa
baabbcbcaabccaac

WEIGHT FUNCTIONS:

Alignments optimal in regions A,B,...,I
have the following weight functions:

Region A: v(cz,~) = 11 – 3a -29
Region B: u(a)~) =11 -la -4P

Region C: v(a, ~) = 11- Oa – 66

Region D: V(C2,@) = 2 – la - 0/3

Region E v(a, ~) = O– Oa -08

Region F v(cc,~) = 6 – 4a - 0(3

Region G: v(a,/3) = 8 – 7c2– O@

Region H: v(a, ~) = 8- 2a - 1/3

Region 1 v(cc,P) = 8 – OCY- 3P

The actual alignments are not shown


