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Via Priority Scheduling and Dynamic Pruning
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Abstract—In this paper, a new exemplar-based framework
is presented, which treats image completion, texture synthesis,
and image inpainting in a unified manner. In order to be able to
avoid the occurrence of visually inconsistent results, we pose all
of the above image-editing tasks in the form of a discrete global
optimization problem. The objective function of this problem is
always well-defined, and corresponds to the energy of a discrete
Markov random field (MRF). For efficiently optimizing this MRF,
a novel optimization scheme, called priority belief propagation
(BP), is then proposed, which carries two very important exten-
sions over the standard BP algorithm: “priority-based message
scheduling” and “dynamic label pruning.” These two extensions
work in cooperation to deal with the intolerable computational
cost of BP, which is caused by the huge number of labels associated
with our MRF. Moreover, both of our extensions are generic, since
they do not rely on the use of domain-specific prior knowledge.
They can, therefore, be applied to any MRF, i.e., to a very wide
class of problems in image processing and computer vision, thus
managing to resolve what is currently considered as one major
limitation of the BP algorithm: its inefficiency in handling MRFs
with very large discrete state spaces. Experimental results on a
wide variety of input images are presented, which demonstrate
the effectiveness of our image-completion framework for tasks
such as object removal, texture synthesis, text removal, and image
inpainting.

Index Terms—Belief propagation (BP), image completion,
Markov random fields (MRFs), optimization, texture synthesis.

I. INTRODUCTION

THE problem of image completion can be loosely defined
as follows: given an image which is incomplete, i.e., it has

missing regions (e.g., see Fig. 1), try to fill its missing parts
in such a way that a visually plausible outcome is obtained at
the end. Although stating the image completion problem is very
simple, the task of actually trying to successfully solve it, is far
from being a trivial thing to achieve. Ideally, any algorithm that
is designed to solve the image completion problem should have
the following characteristics:

• it should be able to successfully complete complex natural
images;
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Fig. 1. Object removal is just one of the many cases where image completion
needs to be applied. In the specific example shown, the user wants to remove a
person from the input image on the left. He, therefore, simply marks a region
around that person and that region must then be filled automatically so that a
visually plausible outcome is obtained.

Fig. 2. (a) Texture synthesis problem. (b) The three main approaches to image
completion.

• it should also be able to handle incomplete images with
(possibly) large missing parts;

• all these should take place in a fully automatic manner, i.e.,
without intervention from the user.

Also, ideally, we would like any image completion algorithm
to be able to handle the related problem of texture synthesis, as
well. According to that problem, given a small texture as input,
we are then asked to generate an arbitrarily large output texture,
which maintains the visual characteristics of the input [e.g., see
Fig. 2(a)]. It is exactly due to all of the above requirements that
image completion is, in general, a very challenging problem.
Nevertheless, it can be very useful in many areas, e.g., it can
be important for computer graphics applications, image editing,
film postproduction, image restoration, etc.

It has, thus, attracted a considerable amount of research over
the last years. Roughly speaking, there have been three main ap-
proaches so far, for dealing with the image completion problem
[see Fig. 2(b)]:

• statistical-based methods;
• PDE-based methods;
• exemplar-based methods.

In order to briefly explain the main limitations of current
state-of-the-art methods for image completion, next, we pro-
vide a short review of related work for each one of the three
classes mentioned above.

1) Statistical-Based Methods: These methods are mainly
used for the case of texture synthesis. Typically, what these
methods do is that, given an input texture, they try to describe
it by extracting some statistics through the use of compact
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parametric statistical models, e.g., Portilla and Simoncelli [1]
use joint statistics of wavelet coefficients for that purpose, while
Heeger and Bergen [2] make use of color histograms at multiple
resolutions for the analysis of the textures. Then, in order to
synthesize a new texture, these methods typically start with an
output image containing pure noise, and keep perturbing that
image until its statistics match the estimated statistics of the
input texture. Besides the synthesis of still images, parametric
statistical models have been also proposed for the case of image
sequences, e.g., Soatto et al. [3] have proposed the so-called
dynamic texture model, while a similar idea has been also
described by Fitzgibbon in [4]. A parametric representation for
image sequences had been previously presented by Szummer
and Picard [5], as well. These parametric models for video
have been mainly used for modeling and synthesizing dynamic
stochastic processes, such as smoke, fire or water.

However, the main drawback of all methods that are based on
parametric statistical models is that, as already mentioned, they
are applicable only to the problem of texture synthesis, and not
to the general problem of image completion. However, even in
the restricted case of texture synthesis, they can synthesize only
textures which are highly stochastic, and usually fail to do so
for textures containing structure, as well. Nevertheless, in cases
where parametric models are applicable, they allow greater flex-
ibility with respect to the modification of texture properties, e.g.,
Doretto and Soatto [6] can edit the speed, as well as other prop-
erties of a video texture, by modifying the parameters of the sta-
tistical model they are using (which is a linear dynamical system
in their case). Furthermore, these methods can be very useful for
the process which is reverse to texture synthesis, i.e., the anal-
ysis of textures.

2) PDE-Based Methods: These methods, on the other hand,
try to fill the missing region of an image through a diffu-
sion process, by smoothly propagating information from the
boundary towards the interior of the missing region. According
to these techniques, the diffusion process is simulated by
solving a partial differential equation (PDE), which is typically
nonlinear and of high order. This class of methods has been
first introduced by Bertalmio et al. in [7], in which case the
authors were trying to fill a hole in an image by propagating
image Laplacians in the isophote direction. Their algorithm
was trying to mimic the behavior of professional restorators in
image restoration. In another case, the partial differential equa-
tions, that have been employed for the image filling process,
were related to the Navier–Stokes equations in fluid dynamics
[8], while Ballester et al. [9] have derived their own partial
differential equations by formulating the image completion
problem in a variational framework. Furthermore, recently,
Bertalmio et al. [10] have proposed to decompose an image into
two components. The first component is representing structure
and is filled by using a PDE based method, while the second
component represents texture and is filled by use of a texture
synthesis method. Finally, Chan and Shen [11] have used an
elastica based variational model for filling the missing part of
an image.

However, the main disadvantage of almost all PDE based
methods is that they are mostly suitable for image inpainting sit-
uations. This term usually refers to the case where the missing

Fig. 3. Image inpainting methods, when applied to large or textured missing
regions, very often oversmooth the image and introduce blurring artifacts.
(a) Original image. (b) Image with missing region. (c) Completion using image
inpainting.

Fig. 4. Exemplar-based methods synthesize textures simply by copying
patches from the observed part to the missing part of the image.

part of the image consists of thin, elongated regions. Further-
more, PDE-based methods implicitly assume that the content of
the missing resion is smooth and nontextured. For this reason,
when these methods are applied to images where the missing re-
gions are large and textured, they usually oversmooth the image
and introduce blurring artifacts (e.g., see Fig. 3). On the con-
trary, we would like our method to be able to handle images
that contain possibly large missing parts. In addition to that, we
would also like our method to be able to fill arbitrarily complex
natural images, i.e., images containing texture, structure or even
a combination of both.

3) Exemplar-Based Methods: Finally, the last class of
methods consists of the so-called exemplar-based techniques,
which actually have been the most successful techniques up
to now. These methods try to fill the unknown region simply
by copying content from the observed part of the image.
Starting with the seminal work of Efros and Leung in [12],
these methods have been mainly used for the purpose of texture
synthesis. All exemplar-based techniques for texture synthesis
that have appeared until now, were either pixel-based [13],
[14] or patch-based [15]–[17], meaning that the final texture
was synthesized one pixel, or one patch at a time (by simply
copying pixels or patches from the observed image, respec-
tively). Somewhere in between is the method of Ashikhmin
[18], where a pixel-based technique, that favors the copy of co-
herent patches, has been used in this case. Usually, patch-based
methods achieve results of higher quality, since they manage to
implicitly maintain higher order statistics of the input texture.
Among patch-based methods, one should mention the work of
Kwatra et al. [15], who managed to synthesize a variety of tex-
tures by making use of computer vision graph-cut techniques.
Another interesting work is that of Hertzmann et al. [19],
where the authors try to automatically learn painting styles
from training data that consist of input-output image pairs. The
painting styles, once learnt, can then be applied to new input
images. Also, Efros and Freeman [20] use an exemplar-based
method to perform texture transfer, i.e., rendering an object
with a texture that has been taken from a different object.
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Exemplar-based methods for texture synthesis have been also
used for the case of video, e.g., Schodl et al. [21] are able
to synthesize new video textures simply by rearranging the
recorded frames of an input video, while the texture synthesis
method of Kwatra et al. [15], that has been mentioned above,
applies to image sequences, as well.

As already explained in the previous paragraph, exemplar-
based methods have been mainly used for the purpose of tex-
ture synthesis up to now. Recently, however, there have been a
few authors who have tried to extend these methods to image
completion, as well. However, in this case, a major drawback of
related approaches stems from their greedy way of filling the
image, which can often lead to visual inconsistencies. Some
techniques try to alleviate this problem by asking assistance
from the user instead, e.g., Sun et al. [22] require the user to
specify the curves on which the most salient missing structures
reside (thus obtaining a segmentation of the missing region, as
well), while Drori et al. [23] use what they call “points of in-
terest.” Also, some other methods [24] rely on already having
a segmentation of the input image. However, it is a well-known
fact that natural images segmentation is an extremely difficult
task and, despite extensive research, no general method for reli-
ably solving it currently exists. Some other methods [25], [26]
are preferring to take a more global approach and formulate
the problem in a way that a deterministic EM-like optimization
scheme has to be used for image completion. It is well known,
however, that expectation-maximization schemes are particu-
larly sensitive to the initialization and may get easily trapped
to poor local minima (thus violating the spirit of a global ap-
proach). For fixing this problem, one must resort to the use of
multiscale image completion. Although this might help in some
cases, it is still not always safe, e.g., any errors that may occur
during the image completion process at the coarse scale, will
probably carry through at finer scales, as well. Finally, recent
exemplar-based methods also place emphasis on the order by
which the image synthesis proceeds, usually using a confidence
map for this purpose [23], [27]. However, two are the main hand-
icaps of related existing techniques. First, the confidence map is
computed based on heuristics and ad hoc principles, that may
not apply in the general case, and second, once an observed
patch has been assigned to a missing block of pixels, that block
cannot change its assigned patch thereafter. This last fact reveals
the greediness of these techniques, which may again lead to vi-
sual inconsistencies.

In order to overcome all the limitations of the above men-
tioned methods, a new exemplar-based approach for image com-
pletion is proposed, which makes the following contributions.

1) Contrary to greedy synthesis methods, we pose image com-
pletion as a discrete global optimization problem with a
well defined objective function. In this manner, we are able
to avoid the occurrence of visual inconsistencies during the
image completion process, and manage to produce visually
plausible results.

2) No user intervention is required by our method, which
manages to avoid greedy patch assignments by maintaining
(throughout its execution) many candidate source patches
for each block of missing pixels. In this way, each missing
block of pixels is allowed to change its assigned patch

many times throughout the execution of the algorithm, and
is not enforced to remain tied to the first label that has
been assigned to it during the early stages of the comple-
tion process.

3) Our formulation applies not only to image completion, but
also to texture synthesis, as well as to image inpainting,
thus providing a unified framework for all of these tasks.

4) To this end, a novel optimization scheme is proposed, the
“priority-belief propagation (BP)” algorithm, which car-
ries 2 major improvements over standard BP: “dynamic
label pruning” and “priority-based message scheduling.”
Together, they bring a dramatic reduction in the overall
computational cost of BP, which would otherwise be in-
tolerable due to the huge number of existing labels. We
should finally note that both extensions are generic and can
be used for the optimization of any Markov random field
(i.e., they are applicable to a very wide class of problems in
image processing and computer vision). Priority-BP can,
thus, be viewed as a generic way for efficiently applying
belief-propagation to MRFs with very large discrete state-
spaces, thus dealing, for the first time, with what was con-
sidered as one of the main limitations of BP up to now. At
this point, we should also note that priority-BP, as any other
version of BP, is only an approximate global optimizer (we
recall that loopy BP can obtain the global optimum only for
tree-structured MRFs). However, approximation schemes
based on loopy BP have been found to produce excellent
empirical results in many applications and also to be insen-
sitive to initialization.

Before proceeding, we should also mention that a much less
detailed description of this work has appeared in CVPR 2006
[28].

II. IMAGE COMPLETION AS A DISCRETE GLOBAL

OPTIMIZATION PROBLEM

Given an input image , as well as a target region and a
source region (where is always a subset of ), the
goal of image completion is to fill in a visually plausible way
simply by copying patches from . We propose to turn this into
a discrete optimization problem with a well defined objective
function. To this end, we propose the use of the following dis-
crete MRF.

The labels of the MRF will consist of all patches from
the source region 1 [see Fig. 5(a)]. For defining the nodes of the
MRF, an image lattice will be used with a horizontal and vertical
spacing of and pixels, respectively. The MRF nodes

will be all lattice points whose neighborhood intersects
the target region, while the edges of the MRF will make up a
4-neighborhood system on that lattice [see Fig. 5(b)].

In this context, assigning a label (i.e., a patch) to a node will
amount to copying that patch over the node’s position in the
image space. Based on this fact, we will next define the energy
of our MRF, so that only patches that are consistent with each
other, as well as with the observed region, are allowed to be
copied into the missing region. To this end, the single node po-
tential (called label cost hereafter), for placing patch

1Hereafter, each label (i.e., patch) will be represented by its center pixel
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Fig. 5. (a) Labels associated with the image completion problem are chosen to
be allw�h patches of the source region S . (b) In this figure, we show the nodes
(black dots) and edges (red segments) of the MRF that will be used during image
completion. For this particular example, the w, h parameters were set equal to
w = 2gap , h = 2gap .

Fig. 6. Illustration of how the MRF potential functions are computed: For the
boundary node r, its label cost V (x ) will be an SSD over the red region, while
for nodes p, q their potential V (x ; x ) will be an SSD over the green region.
Node s is an interior node and so its label cost V (x ) will always be zero.

over node , will encode how well that patch agrees with the
source region around , and will equal the following sum of
squared differences (SSD)

(1)

In the above formula, denotes a binary mask, which is
non zero only inside region (due to this fact, i.e., due to
being zero outside , the label costs of interior nodes, i.e., nodes
whose neighborhood does not intersect , will obvi-
ously be all zero). In a similar fashion, the pairwise potential

, due to placing patches , over neighbors , ,
will measure how well these patches agree at the resulting re-
gion of overlap, and will again be given by the SSD over that
region (see Fig. 6). Note that and are set so that such
a region of overlap always exists.

Based on this formulation, our goal will then be to assign a
label to each node so that the total energy of the
MRF is minimized, where

(2)

Intuitively, any algorithm optimizing this energy is, roughly
speaking, trying to assemble a huge jigsaw puzzle, where the
source patches correspond to the puzzle pieces, while region
represents the puzzle itself.

One important advantage of our formulation is that it also
provides a unified framework for texture synthesis and image
inpainting, e.g., to handle texture synthesis (where one wants to
extend an input texture to a larger region ), one suffices to
set and . Put otherwise, the input texture

is simply placed at any location inside the larger region
and then the image completion algorithm fills the remaining part
of region . Moreover, thanks to the fact that we reduce image
completion to an energy optimization problem, our framework

allows the use of (what we call) “completion by energy refine-
ment” techniques, one example of which we will see later.

III. PRIORITY-BP

Furthermore, an additional advantage is that we now can
hopefully apply BP (i.e., a state-of-the-art optimization method)
to our energy function. Unfortunately, however, this is not the
case. The reason is the intolerable computational cost of BP,
caused by the huge number of existing labels. Motivated by this
fact, one other major contribution of this work is the proposal
of a novel MRF optimization scheme, called priority-BP, that
can deal exactly with this type of problems, and carries two
significant extensions over standard BP: one of them, called
dynamic label pruning, is based on the key idea of drastically
reducing the number of labels. However, instead of this hap-
pening beforehand (which will almost surely lead to throwing
away useful labels), pruning takes place on the fly (i.e., while
BP is running), with a (possibly) different number of labels
kept for each node. The important thing to note is that only
the beliefs calculated by BP are used for that purpose. This is
exactly what makes the algorithm generic and applicable to any
MRF. Furthermore, the second extension, called priority-based
message scheduling, makes use of label pruning and allows
us to always send cheap messages between the nodes of the
graphical model. Moreover, it considerably improves BP’s
convergence, thus accelerating completion even further.

The significance of our contribution also grows due to the fact
that (as we shall see) priority-BP is a generic algorithm, appli-
cable to any MRF energy function. This is unlike any prior use of
BP [29], and, therefore, our method resolves, for the first time,
what is currently considered as one of the main limitations of
BP: its inefficiency to handle problems with a huge number of
labels. In fact, this issue has been a highly active research topic
over the last years. For example, to accelerate BP, the authors in
[30] make use of an efficient distance transform. However, this
method can be applied only to a restricted class of MRFs. Also,
Sudderth et al. [31] and Isard [32] have independently proposed
a nonparametric BP algorithm. Their technique is based on an
efficient sampling procedure, but it can be used mainly for ex-
tending BP to nondiscrete distributions. Before proceeding, we
should also note that another advantage of our priority-based
message scheduling scheme is that it can be used (independently
of label pruning) as a general method for accelerating the con-
vergence of BP.

A. Loopy Belief-Propagation

In order to explain the reason why belief-propagation has an
intolerable computational cost in our case, we will first briefly
describe in this section how that algorithm works. BP has been
first introduced in [33], and is an iterative algorithm that tries to
find a MAP estimate by iteratively solving a finite set of equa-
tions until a fixed point is obtained. However, before one is able
to understand how this set of equations comes up, he must first
get acquainted with the notion of “messages,” which is another
central concept in BP. In fact, BP does nothing more than con-
tinuously propagating local messages between the nodes of an
MRF graph. At every iteration, each node sends messages to all
of its neighboring nodes, while it also accepts messages from
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Fig. 7. (a) If a node pwants to send a messagem (x ) to a neighboring node
q, then it must make use of the messagesm (x ),m (x ),m (x ) coming
from the rest of its neighbors. (b) If a node p wants to calculate its belief b (x )
about any of the labels x 2 L, it must then collect the messages m (x ),
m (x ), m (x ), m (x ) coming from all of its neighboring nodes.

these nodes. This process repeats until all the messages have
stabilized, i.e., they do not change any more. Therefore, the set
of equations, whose fixed point one tries to find, actually cor-
responds to the equations governing how messages are updated
during each iteration.

The set of messages sent from a node to a neighboring node
will be denoted by . Therefore, the number of

such messages is always (i.e., there exists one message per
label in ). Intuitively, message expresses the opinion
of node about assigning label to node . Furthermore,
whenever we say that node sends a message to node
, what we practically mean is that the following recursive up-

date of the message is taking place

(3)

The interpretation of the above equation is that, if node wants
to send the message to node (i.e., if node wants to
tell its opinion about label ), then node must first traverse
each one of its own labels , and then decide which one
of them provides the greatest support for assigning label to
node . The support of label with respect to the assignment
of to node is determined based on two factors:

• the compatibility between labels and [measured by
the term in (3)];

• the likelihood of assigning label to node , as well.
Obviously, on one hand, this likelihood will depend on the
observed data at node [see term in (3)]. On the
other hand, node must also ask for the opinion of its
other neighbors about label [this is measured by the sum

in (3)].
Therefore, before a node sends a message to another node

, he must first consult the rest of its neighbors by receiving
messages from them [see Fig. 7(a)]. Put otherwise, during BP,
all MRF nodes work in cooperation in order to make a decision
about the labels that they should finally choose. This coopera-
tion between nodes is reflected by the exchange of opinions, i.e.,
messages, which is taking place during the algorithm.

The updating of messages according to (3) continues until all
messages finally converge, i.e., until all nodes agree with each
other about which labels are appropriate for them. Then, after

convergence, a set of so-called beliefs is com-
puted for every node in the MRF. These beliefs are estimated
using the following equation:

(4)

Intuitively, the belief expresses the probability of
assigning label to , and for estimating it, node must
first gather all messages (i.e., all opinions) coming from
its neighboring nodes [which is accounted by the sum

in (4); see also Fig. 7(b)]. Based on
the aforementioned observations, once all beliefs have been
computed, each node is then assigned the label having the
maximum belief

(5)

Strictly speaking, beliefs actually approximate the so-called
max-marginals,2 i.e., each belief approximates the
maximum conditional probability that can be obtained, given
the fact that node has already been assigned the label .

It can be proved that, in the case of a tree structured graph,
BP is exact, i.e., the exact global optimum of the MRF energy is
computed. Not only that, but it can be actually shown that this
global optimum may be computed in just one iteration. How-
ever, if the MRF graph contains cycles, then no such guarantee
can be provided. Moreover, many iterations are then needed for
the algorithm to converge (this also explains why the algorithm
has been given the name loopy BP in this case). Experimen-
tally, however, it has been proved that BP typically produces
strong local minima (i.e., solutions that are close to the op-
timum) for a wide variety of tasks in computer vision. In fact,
recently, some variants of BP have been proposed, which differ
slightly in the message update equations. These are the so-called
tree reweighted message passing methods [34], [35], which, in
certain cases, have even been shown to generate solutions with
guaranteed optimality properties [36].

At this point, it is also important to note that, for the BP algo-
rithm to work properly, one must ensure that all the messages get
transmitted during any of the algorithm’s iterations. This practi-
cally means that, for each edge in , one must ensure that
all the messages from to , as well as all the messages from
to (i.e., all the messages in both directions) are transmitted at
each iteration.

Finally, we should note that there are actually two versions
of the BP method: the “max-product” and the “sum-product”
algorithm. The difference is that “sum-product” computes the
marginal posterior of each node, while “max-product” maxi-
mizes the posterior of each node, i.e., it computes the max-
marginals. The algorithm that has been presented above corre-
sponds to the “max-product” version, but, due to the fact that
we are using negative log probabilities, we are left with the task
of minimizing sums of terms, instead of maximizing products
of terms (as normally done in the “max-product” algorithm).

2Actually, as we are working in the � log domain, beliefs approximate the
min-marginals, e.g., b (x ) approximates the minimum energy that can be ob-
tained given that node p has already been assigned label x .
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B. Priority-Based Message Scheduling

In the form presented above, however, BP is impractical for
problems with a large number of labels like ours. In particular,
if is the total number of labels (which, in our case, can be
many many thousands) then just the basic operation of updating
the messages from one node to another node takes
time. In fact, the situation is much more worse for us. The huge
number of labels also implies that for any pair of adjacent nodes

, their matrix of pairwise potentials is so large that
cannot fit into memory and, therefore, cannot be precomputed.
That matrix, therefore, must be reestimated every time node
sends its messages to node , meaning that SSD calcula-
tions (between image patches) are needed for each such update.

To deal with this issue we will try to reduce the number of
labels by exploiting the beliefs calculated by BP. However, not
all nodes have beliefs which are adequate for this purpose in
our case. To see that, it suffices to observe that the label costs
at all interior nodes are all equal to zero. This in turn implies
that the beliefs at an interior node will initially be all equal, as
well, meaning that the node is “unconfident” about which labels
to prefer. No label pruning may, therefore, take place and so
any message originating from that node will be very expensive
to calculate, i.e., it will take time. On the contrary, if
we had a node whose labels could be pruned (and assuming
that the maximum number of labels after pruning is with

then any message from that node would take only
time.

Based on this observation we, therefore, propose to use a spe-
cific message scheduling scheme, whose goal will be twofold.
On one hand, it will make label pruning possible and favor the
circulation of cheap messages. On the other hand, it will speed
up BP’s convergence. This issue of BP message scheduling, al-
though known to be crucial for the success of BP, it has been
largely overlooked until now. Also, to the best of the authors’
knowledge it is the first time that message scheduling is used
in this manner for general graphical models. Roughly, our mes-
sage scheduling scheme will be based on the notion of priorities
that are assigned to the nodes of the MRF. Any such priority
will represent a node’s confidence about which labels to prefer
and will be dynamically updated throughout the algorithm’s ex-
ecution. Our message scheduling will then obey the following
simple principle.

Message-Scheduling Principle.: The node most confident
about its labels should be the first one (i.e., it has the highest
priority) to transmit outgoing messages to its neighbors.

The above way of scheduling messages during BP is good for
the following reasons.

• The first reason is that the more confident a node is, the
more label pruning it can tolerate (before sending its out-
going messages) and, therefore, the cheaper these mes-
sages will be. We recall here that the cost of an outgoing
message from a node will be proportional to the number
of available labels for that node (see Fig. 8).

• The second reason is that, in this way, we also help other
nodes become more amenable to pruning. Intuitively, this
happens because the more confident a node is, the more in-
formative its messages are going to be, meaning that these

messages can help the neighbors of that node to increase
their own confidence, and, thus, these nodes will become
more tolerable to pruning, as well.

• Furthermore, by first propagating the most informative
messages around the graphical model, we also help BP to
converge much faster. This has been verified experimen-
tally, as well, e.g., priority-BP never needed more than a
small fixed number of iterations to converge for all of our
image completion examples.

A pseudocode description of priority-BP is contained in algo-
rithm 1. Each iteration of priority-BP is divided into a forward
and a backward pass. The actual message scheduling mecha-
nism, as well as label pruning takes place during the forward
pass. This is also where one half of the messages gets trans-
mitted (i.e., each MRF edge is traversed in only one of the two
directions). To this end, all nodes are visited in order of pri-
ority. Each time we visit a node, say , we mark it as “com-
mitted” meaning that we must not visit him again during the
current forward pass. We also prune its labels and then allow
him to transmit its “cheap” (due to pruning) messages to all of its
neighbors apart from the committed ones (as these have already
sent a message to during the current pass). The priorities of
all neighbors that received a new message are then updated and
the process continues with the next uncommitted (i.e., unvisited)
node of highest priority until no more uncommitted nodes exist.

The role of the backward pass is then just to ensure that the
other half of the messages gets transmitted, as well. To this end,
we do not make use of priorities but simply visit the nodes in
reverse order (with respect to the order of the forward pass) just
transmitting the remaining unsent messages from each node. For
this reason, no label pruning takes place during this pass. We do
update node priorities, though, so that they are available during
the next forward pass.

Algorithm 1 Priority-BP

assign priorities to nodes and declare them uncommitted
for to do { is the number of iterations}

execute ForwardPass and then BackwardPass
assign to each node its label that maximizes

ForwardPass:
for time to do

“uncommitted” node of highest priority
apply “label pruning” to node

; ;
for any “uncommitted” neighbor of node do

send all messages from node to node
update beliefs , as well as priority of node

BackwardPass:
for time to 1 do

; ;
for any “committed” neighbor of node do

send all messages from node to node

update beliefs , as well as priority of node
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Fig. 8. If node p wants to send a message to node q about label x , he must
then examine each one of its own labels and see which one provides the best
support for label x . Hence, the cost of any outgoing message from p will be
O(n), where n is the number of available labels at p.

Fig. 9. Message scheduling during the forward pass: Currently, only red nodes
have been committed and only messages on red edges have been transmitted.
Among uncommitted nodes (i.e., blue nodes) the one with the highest priority
(i.e., node p) will be committed next and will also send messages only along
the green edges (i.e., only to its uncommitted neighbors q, r). Messages along
dashed edges will be transmitted during the backward pass. Priorities are indi-
cated by the numbers inside uncommitted nodes.

Also, as we shall see, a node’s priority depends only on the
current beliefs at that node. One big advantage out of this is
that keeping the node priorities up-to-date can be done very ef-
ficiently in this case, since only priorities for nodes with newly
received messages need to be updated. The message scheduling
mechanism is further illustrated in Fig. 9.

C. Assigning Priorities to Nodes

It is obvious that our definition of priority will play a
very crucial role for the success of the algorithm. As already
mentioned, priority must relate to how confident a node is
about the labels that should be assigned to him, with the
more confident nodes having higher priority. An important
thing to note in our case is that the confidence of a node
will depend solely on information that will be extracted by
the BP algorithm itself. This makes our algorithm generic
(i.e., applicable to any MRF energy function) and, therefore,
appropriate for a very wide class of problems.

In particular, our definition of confidence (and, therefore, pri-
ority, as well) for node will depend only on the current set
of beliefs that have been estimated by the BP
algorithm for that node. Based on the observation that belief

is roughly related to how likely label is for node
, one way to measure the confidence of this node is simply

by counting the number of likely labels, e.g., those whose be-
lief exceed a certain threshold . The intuition for this is
that the greater this number, the more labels with high proba-
bility exist for that node and, therefore, the less confident that
node turns out to be about which specific label to choose, and
vice versa, if this number is small then node needs to choose
its label only among a small set of likely labels. Of course,
only relative beliefs (where

) matter in this case, and so by defining the
set (which we will call
the confusion set of node hereafter), the priority of is then

inversely related to the cardinality of that set

(6)

This definition of priority also justifies why during either the
forward or the backward pass we were allowed to update prior-
ities only for nodes that had just received new incoming mes-
sages: the reason is that the beliefs (and, therefore, the priority)
of a node may change only if at least one incoming message to
that node changes, as well (this is true due to the way beliefs
are defined, i.e., ). Al-
though we tested other definitions of priority, as well (e.g., by
using an entropy-like measure on beliefs), the above criterion
for quantifying confidence gave the best results in practice by
far.

D. Applying Priority-BP to Image Completion

We pause here for a moment (postponing the description of
label pruning to the Section IV) in order to stress the advan-
tages of applying our algorithm to image completion, while also
showing related results.

First, we should mention that, although confidence has al-
ready been used for guiding image completion in other works,
as well [23], [27], our use of confidence differs (with respect
to these approaches) in that we use confidence in order to de-
cide upon the order of BP message passing and not for greedily
deciding which patch to fill next. These are two completely dif-
ferent things: the former is part of a principled global optimiza-
tion procedure, while the latter just results in patches that cannot
change their appearance after they have been filled.

Three examples of applying priority-BP to image completion
are shown in Fig. 10. As can be seen, the algorithm has man-
aged to fill the missing regions in a visually plausible way. The
third column in that figure shows the visiting order of the nodes
during the first forward pass (based on our definition of pri-
ority). The darker a patch is in these images, the earlier the cor-
responding node was visited. Notice how the algorithm learns
by itself how to propagate first the messages of the nodes con-
taining salient structure, where the notion of saliency depends
on each specific case, e.g., the nodes that are considered salient
for the first example of Fig. 10 are those lying along the horizon
boundary. On the contrary, for the second example of that figure
the algorithm prefers to propagate information along the MRF
edges at the interior of the wooden trunk first. The remarkable
thing is that in both cases such information was not explicitly
encoded but was, instead, inferred by the algorithm.

This is in contrast to the state-of-the-art method in [27], where
the authors had to hardwire isophote-related information into
the definition of priority (i.e., a measure which is not always
reliably extracted or even appropriate, e.g., in images with tex-
ture). The corresponding results produced by that method are
shown in the last column of Fig. 10. In these cases, only one
label (i.e., patch) is greedily assigned to each missing block of
pixels and so any errors made early cannot be later backtracked,
thus leading to the observed visual inconsistencies. On the con-
trary, due to our global optimization approach, any errors that
are made during the very first iterations can be very well cor-
rected later, since our algorithm always maintain not one but
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Fig. 10. In column (c), darker patches correspond to nodes that are visited earlier during message scheduling at the first forward pass. (a) Original image. (b) Masked
image. (c) Visiting order during first forward pass. (d) Priority-BP result. (e) Result of [27].

Fig. 11. Plots in (a)–(c) show the sorted relative beliefs for the MRF nodes a, b and c in figure (d) at the start of priority-BP. Relative beliefs plotted in red
correspond to labels in the confusion set. This set determines the priority of the corresponding node. (a) Node a has minimum priority, (b) node b has low priority,
(c) node c has high priority, and (d) the MRF nodes a, b, and c.

many possible labels for each MRF node. A characteristic case
for this is the third example in Fig. 10, where unless one em-
ploys a global optimization scheme it is not easy to infer the
missing structure.

Also, the plots in Fig. 11(a)–(c) illustrate our definition of
priority in (6). They display the largest 20 000 relative beliefs
(sorted in ascending order) that are observed at the very be-
ginning of the algorithm for each of the MRF nodes , , in
Fig. 11(d), respectively. Relative beliefs plotted in red corre-
spond to labels in the confusion set. Node , being an interior
node, has initially all the labels in its confusion set (since their
relative beliefs are all zero) and is, therefore, of lowest priority.
Node still has too many labels in its confusion set due to the
uniform appearance of the source region around that node. On
the contrary, node is one of the nodes to be visited early during
the first forward pass, since only very few labels belong to its
confusion set. Indeed, even at the very beginning, we can easily
exclude (i.e., prune) many source patches from being labels of
that node, without the risk of throwing away useful labels. This
is why priority-BP prefers to visit him early.

This is also clearly illustrated in Fig. 12(b) and (c), where
we visualize the beliefs that have been estimated at the start of
priority-BP for all the labels of nodes and respectively. In
these figures, the whiter a pixel appears, the higher the belief for
the corresponding label is (we recall that the label corresponding
to a pixel is the patch having that pixel as its center).

Fig. 12. (a) Nodes b and c of the MRF. (b) Visualization of the beliefs (as
estimated at the start of priority-BP) for all the labels of node b. (c) Visualization
of the beliefs for all the labels of node c. In these visualizations, the whiter a
pixel, the higher the belief of the corresponding label. We recall that the label
corresponding to a pixel is the patch having that pixel as its center.

E. Label Pruning

The main idea of “label pruning” is that, as we are visiting
the nodes of the MRF during the forward pass (in the order in-
duced by their priorities), we dynamically reduce the number of
possible labels for each node by discarding labels that are un-
likely to be assigned to that node. In particular, after committing
a node, say , all labels having a very low relative belief at ,
say less than , are not considered as candidate labels for

thereafter. The remaining labels are called the “active labels”
for that node. An additional advantage we gain in this way is that
after all MRF nodes have pruned their labels at least once (e.g.,
at the end of the first forward pass) then we can precompute the
reduced matrices of pairwise potentials (which can now fit into
memory) and, thus, greatly enhance the speed of our algorithm.
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Fig. 13. (a) Although the red, green, and blue patches correspond to distinct labels, they are very similar, and so only one of them has to be used as an active label
for an MRF node. (b) Map with the number of active labels per node (for the second example of Fig. 10). Darker patches correspond to nodes with fewer labels.
As can be seen, interior nodes often require more labels. (c) The corresponding histogram showing the percentage of nodes that use a certain number (in the range
from L = 3 to L = 20) of active labels. (d) The active labels for node a in (a).

The important thing to note is that “label pruning” relies only
on information carried by the priority-BP algorithm itself, as
well. This keeps our method generic and, therefore, applicable
to any energy function. A key observation, however, relates to
the fact that label pruning is a technique not meant to be used
on its own. Its use is allowed only in conjunction with our pri-
ority-based message scheduling scheme of visiting most confi-
dent nodes first (i.e., nodes for which label pruning is safe and
does not throw away useful labels). This is exactly the reason
why label pruning does not take place during the backward pass.

In practice, we apply label pruning only to nodes whose
number of active labels exceeds a user specified number .
To this end, when we are about to commit a node, we traverse
its labels in order of belief (from high to low) and each such
label is declared active until either no more labels with relative
belief greater than exist or the maximum number of
active labels has been reached. In the case of image
completion, however, it turns out that we also have to apply
an additional filtering procedure as part of label pruning. The
problem is that otherwise we may end up having too many
active labels which are similar to each other, thus wasting part
of the labels we are allowed to use. This issue is further
illustrated in Fig. 13(a). To this end, as we traverse the sorted
labels, we declare a label as active only if it is not similar to
any of the already active labels (where similarity is measured
by calculating the SSD between image patches), otherwise we
skip that label and go to the next one. Alternatively, we apply
a clustering procedure to the patches of all labels beforehand
(e.g., cluster them into textons) and then never use more than
one label from each cluster while traversing the sorted labels.
Finally, we should note that for all nodes a (user-specified)
minimum number of active labels is always kept. In this
manner, if it happens that the pruning thresholds are set too
high, we avoid having nodes with as few as, e.g., one active
label, a case which would possibly make the algorithm more
greedy and, thus, less effective.

The net result of label pruning is, thus, to obtain a com-
pact and diverse set of active labels for each MRF node (all of
them having reasonably good beliefs), e.g., Fig. 13(b) displays
the number of active labels used by each of the nodes in the
second example of Fig. 10. The darker a patch is in that figure,
the fewer are the active labels of the corresponding node. As it
was expected, interior nodes often require more active labels to
use. The corresponding histogram, showing the percentage of
nodes that use a certain number of active labels, is displayed

in Fig. 13(c). Notice that more than half of the MRF nodes
do not use the maximum number of active labels (which was

in this case). Also, Fig. 13(d) displays the active
labels that have been selected by the algorithm for node a in
Fig. 13(a).

IV. EXTENSIONS AND FURTHER RESULTS

1) Completion Via Energy Refinement: One advantage of
posing image completion as an optimization problem is that one
can now refine completion simply by refining the energy func-
tion (i.e., adding more terms to it), e.g., to favor spatial coher-
ence during image completion (i.e., fill the target region with
large chunks of the source region) one simply needs to add the
following “incoherence penalty terms” to our energy func-
tion: if , while in all other
cases, . These terms simply penalize (with a
weight ) the assignment of nonadjacent patches (with centers

) to adjacent nodes , and have proved useful in texture
synthesis problems (e.g., see Fig. 19). Thanks to the ability of
priority-BP to handle effectively any energy function, we intend
to explore the utility (with respect to image completion) of many
other refinement terms in the future. We believe that this will
also be an easy and effective way of applying prior knowledge
or imposing user specified constraints on the image completion
process.

2) Pyramid-Based Image Completion: Another advantage of
our method is that it can also be used in multiscale image com-
pletion, where a Gaussian pyramid of images
is provided as input. In this case, we begin by applying pri-
ority-BP to the image at the coarsest scale . The output of
this procedure is then up-sampled and the result, say , is used
for guiding the completion of the image at the next finer
scale. To this end, the only part of our algorithm that needs to
be modified is that of how label costs are computed. In partic-
ular, instead of using (1), the following formula will be applied
for computing the label costs at level of the completion
process:

(7)

Put another way, the up-sampled image from level is being
used as an additional constraint for the completion at level .
The rest of the algorithm remains the same and this process
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Fig. 14. Result of a multiscale image completion for a very high resolution input image of size 2816� 2112. In this example, we wanted to remove the price tags
from the original image (shown on the left). In this case, a four-level image pyramid has been used during the completion process. (a) Original high-resolution
image. (b) Image with the price tags removed. (c) The result of completion.

Fig. 15. Image completion results. From left to right: Original images, masked images, visiting order at first forward pass, priority-BP results.

is repeated until we reach the image at the finest scale . An
advantage we, thus, gain is that features at multiple scales are
captured during completion. On the other hand, a disadvantage
is that if an error occurs at a coarse scale, this may carry through
the finer levels of the completion process. Fig. 14 shows a result
produced by our method for a multiscale completion of a very
high resolution input image.

3) More Experimental Results: Figs. 15 and 16 contain fur-
ther results on image completion. These results along with those
in Fig. 10 demonstrate the effectiveness of our method, which
was tested on a wide variety of input images. As can be seen
from the presented examples, priority-BP was able to handle the
completion of smooth regions, textured areas, areas with struc-
ture, as well as any combinations of the above. Also, Fig. 17 con-
tains some examples on texture synthesis. These were again pro-
duced by utilizing our exemplar-based framework. For each of
these examples, we placed the small input texture into the upper
left corner of a large empty area that should contain the output

texture, and then let the algorithm fill the rest of that area, thus
synthesizing a larger texture. In addition, Fig. 18 demonstrates
some other possible applications of priority-BP. In this case, it
has been used for accomplishing the task of removing text from
images, as well as for restoring a destroyed digital photograph
using inpainting. Our method had no problem of handling these
tasks, as well. At this point, it is important to emphasize the fact
that, in all of the above cases, exactly the same algorithm has
been used.

In Fig. 19, we demonstrate an example of using the “incoher-
ence penalty terms” in texture synthesis. As one can observe,
the output texture does contain large chunks of the input texture
as desired. We should also note that, for all of the presented
examples (whether they are about image completion, texture
synthesis or image inpainting), the visiting order of the nodes
during the first forward pass is shown, as well. This contributes
to illustrating how the algorithm initially chooses to propagate
information (i.e., messages) for each one of the input images.
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Fig. 16. Some more results on image completion.

Fig. 17. Texture synthesis results. For each result we show original image, vis-
iting order at first forward pass and output image.

Fig. 18. Example of (top) text removal and (bottom) image inpainting. Original
image, visiting order at first forward pass and output image are shown in both
cases.

In our tests the patch size ranged between 7 7 and 27 27.
The running time on a 2.4-GHz CPU varied from a few seconds
up to 2 min for 256 170 images, while the maximum number
of labels was set between 10 and 50 (depending on the
input’s difficulty). For all of the examples, the belief thresholds
were set equal to and ,
where represents a predefined mediocre SSD score be-
tween patches. =m

4) Composition of Final Patches: After the priority-BP algo-
rithm has converged and the final labels (i.e., patches) have been
selected for each MRF node, we then need to compose them to
produce the final result. This can be achieved in many ways.
One simple solution is the following: We visit again the nodes

Fig. 19. Texture synthesis using the “incoherence penalty terms.” Notice that,
in this case, the output texture has been synthesized by copying large chunks
from the input texture.

Fig. 20. Only region R � T has been filled so far by the composition of
the final patches. We want to extendR by seamlessly pasting the next selected
patch x onto the neighborhood of node p. One way for this is by finding a
curve C along which there is a seamless transition between the patch x and
the regionR. In addition, one may apply a smooth correction to the patch x so
that it matches seamlessly with the regionR. This can be achieved by solving a
poisson equation over the neighborhood of node p, i.e., over the blue rectangle.

of the MRF in the same order as they were visited during the last
iteration of priority-BP. Then, as we are traversing the nodes,
we compose the corresponding final patches by simply blending
them with weights which are proportional to the nodes’ confi-
dence (as estimated by the priority-BP algorithm). This simple
technique has proved effective in practice and gave good results
in most cases.

Another, more elaborate, way for performing the composi-
tion is to use an image blending technique (as in [37]), or to
apply a composition method similar to the one described in [15],
[20]. Both of these methods have been tested, as well, and in
both cases, it was again important that the order by which the
final patches were composed coincided with the visiting order
of the nodes during the last iteration of priority-BP. Let us, for
instance, assume that we want to seamlessly compose the patch

(i.e., the final patch for node ) onto the region , which is
the region that has been constructed so far by the composition
of patches from all previously visited nodes (see Fig. 20). One
way to achieve this is by finding an optimal boundary inside
the region , so that the transition from to along
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that boundary is as seamless as possible. Depending on whether
is an open or closed curve, this problem can be formulated

either as a problem of dynamic programming [20], or as a min-
imum-cut problem [15] respectively. Alternatively, another way
for compositing with is to apply a smooth correction to
patch so that a new patch is obtained, which seamlessly
matches with region . The image blending technique in [37]
can be used for this purpose, in which case the corrected patch

is obtained merely by solving a Poisson differential equation
over the neighborhood region of node . Other techniques, such
as multiresolution splining [38], have been tried, as well, and
have also given good results.

5) Computing the MRF Potential Functions in the Frequency
Domain: Finally, another point that is worth mentioning (as it
brings a great reduction in the computational time), is the use
of the fast Fourier transform [39] for performing all the SSD
calculations that are needed by the algorithm. More specifically,
the estimation of all label costs, as well as all pairwise potentials
requires many SSD computations, e.g., as indicated by (1), for
estimating the label costs for a node we need to calculate the
SSD between a local neighborhood around , say ,
and every other source patch, say , with the result
being multiplied by a mask , i.e.,

(8)

By defining, however, the following identities:

and substituting them into (8), that equation reduces to

which can be also written as an expression involving just corre-
lations between functions, i.e.,

In the above expression, the symbol denotes the correlation
operation, defined as

Furthermore, the first term (i.e., is indepen-
dent of , which means that it can be precomputed, and so we
can estimate all values of the function by using just two
correlation operations. However, the advantage we gain in this
manner is that these correlations can now be computed very effi-
ciently, simply by moving to the frequency domain and using the
fast Fourier transform (FFT) therein [40], [41]. This way of per-
forming the computations greatly accelerates the whole process
and is applied for estimating the pairwise potentials , as
well.

V. CONCLUSION

A novel approach unifying image completion, texture syn-
thesis and image inpainting has been presented in this paper. In
order to prohibit visually inconsistent results, we try to avoid
greedy patch assignments, and instead pose all of these tasks as
a discrete labeling problem with a well defined global objective
function. To solve this problem, a novel optimization scheme,
priority-BP, has been proposed, that carries two very important
extensions over standard BP: priority-based message scheduling
and dynamic label pruning. This optimization scheme does not
rely on any image-specific prior knowledge and can, thus, be
applied to all kinds of images. Furthermore, it is generic (i.e.,
applicable to any MRF energy) and, thus, copes with one of the
main limitations of BP: its inefficiency to handle problems with
a huge number of labels. Experimental results on a wide variety
of images have verified the effectiveness of our method.

One interesting avenue of future work would be to extend
our framework so that it can be used for other types of comple-
tion problems, as well, e.g., it would be interesting to test our
framework on problems such as video completion or geometric
completion. Also, in the future, we plan to allow the inclusion
of more “refinement terms” into our energy function. We be-
lieve that this will be a very elegant and easy-to-apply way for
allowing the user to impose either high-level or low-level con-
straints onto the completion process. In this manner, the user
could gain a finer control over the final result. Furthermore, this
would make our method suitable for problems such as, e.g., con-
strained texture synthesis. Finally, besides image completion,
we also plan to test our priority-BP algorithm, which is a generic
MRF optimization scheme, to other labeling problems, as well,
for which the large cardinality of their state-space causes them
to have a very high computational cost.
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