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ABSTRACT

The class of (n, k)-star graphs and their unidi-
rectional version were introduced as generalizations
of star graphs and unidirectional star graphs respec-
tively. In this paper, we substantially improved pre-
viously known bound for the the diameter of unidi-
rectional (n, k)-star graphs. The previous bound was
10k−5 for small k and 5k+5b(n−1)/2c for large k; the
new bound is 7(k−3)+18. In addition, a distributing
routing algorithm is presented, analyzed theoretically
for worst-case behaviour and exercised experimentally
for average case behaviour.

Keywords: Interconnection networks, unidirec-
tional (n, k)-star graphs, distributed routing.

INTRODUCTION

Many applications require unidirectional intercon-
nection networks. Some recent papers include [2–8,
11–13]. In particular [8, 11] provide specific proposals
and applications in which unidirectional graph topolo-
gies are appropriate as architectural models.

The star graph proposed by [1] has many advan-
tages over the hypercube, such as lower degree and a
smaller diameter. One of the main criteria of a good
interconnection network topology is that it is max-
imally edge-connected. So the ideal situation is for
an unidirectional graph topology to have the highest
possible arc-connectivity. This has been verified for
the unidirectional hypercube [11,13] and the unidirec-
tional star graph [3, 12]. An orientation of the star
graph was proposed in [12], and they gave an efficient
near-optimal distributed routing algorithm for it.

The main drawback of the star graphs is related
to its number of vertices: n! for an n-dimensional
star graph. For example, the smallest star graph with
at least 6000 vertices is a graph with 40320 vertices.
The (n, k)-star graphs, which include the star graphs,
were introduced in [9,10] to address this issue. In [7],
it is shown that (n, k)-star graphs also have the de-
sired property that they can be oriented to achieve the
highest possible arc-connectivity with small diameter.
However [7] concentrates on the connectivity issue and
treats the routing issue (and the diameter issue) as a
by-product. It seems that finding the diameter of uni-
directional (n, k)-star graph is more difficult than the
undirected version as even the diameter of of the uni-

directional star graph remains an open question. In
this paper, we

1. give a distributed heuristic routing algorithm for
unidirectional (n, k)-star graphs. It is obtained
by modifying and extending the algorithm given
in [12] for the unidirectional star graphs and by
utilizing some basic results given in [7],

2. obtain a theoretical bound for the diameter of
unidirectional (n, k)-star graphs that is 30% bet-
ter than the one in [7], and

3. fine tune the heuristic to obtain a better practi-
cal results.

(n, k)-STARS

Basic terminology in graph theory can be found
in [14]. An (n, k)-star graph Sn,k with 1 ≤ k < n
is governed by the two parameters n and k. The
vertex-set of Sn,k consists of all the permutations of
k elements chosen from the ground set {1, 2, . . . , n}.
Two vertices [a1, a2, . . . , ak] and [b1, b2, . . . , bk] are ad-
jacent if one of the two conditions holds: (1) There
exists r, 2 ≤ r ≤ k such that a1 = br, ar = b1 and
ai = bi for i ∈ {1, 2, . . . , k} \ {1, r}. (2) ai = bi

for i ∈ {2, . . . , k}, a1 6= b1. Every vertex has k − 1
neighbours via adjacency rule (1) and n − k neigh-
bours via adjacency rule (2). Adjacency rule (1) is
precisely the rule for the k-dimensional star graph;
an edge produced this way is a star-edge, it will be
called an i-edge if the exchange is between position
1 and position i where i ∈ {2, 3, . . . , k}. A residual-
edge is an edge produced by adjacency rule (2). The
figure below illustrates S4,2. (We note that for con-
venience, we write the (n, k)-permutation [i, j] as ij.)
Note that given an edge in Sn,k with the labelings
of its two end-vertices, one can immediately deter-
mine whether it is a star-edge or a residual-edge.
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The family of Sn,k generalizes the star graph since
Sn,n−1 is isomorphic to the star graph Sn (an (n−1)-
permutation on an n-set is really a permutation on n
elements). For Sn,n−1, that is, the star graph Sn, the
unique residual-edge for each vertex is its n-edge. The
(n, k)-star graph Sn,k has n!/(n − k)! vertices and is
an (n − 1)-regular graph. Other properties of (n, k)-
star graphs can be found in [7, 9, 10]. Sn,k has two
important classes of subgraphs.

1. Let {x1, x2, . . . , xk} ⊆ {1, 2, . . . , n} with k ≥
3. Let G be the subgraph of Sn,k induced
by vertices whose labelings are permutations of
x1, x2, . . . , xk. Then G is isomorphic to Sk. It
is called a fundamental star and Sn,k has

(

n
k

)

fundamental stars.

2. Let {x2, x3, . . . , xk} ⊆ {1, 2, . . . , n}. Let G
be the subgraph of Sn,k induced by vertices
of the form [y1, x2, x3, . . . , xk] where y1 ∈
{1, 2, . . . , n} \ {x2, x3, . . . , xk}. Then G is iso-
morphic to Kn−k+1, the complete graph on
n − k + 1 vertices. It is called a fundamental
clique and Sn,k has

(

n
k−1

)

(k − 1)! = n!
(n−k+1)!

fundamental cliques.

DIRECTED (n, k)-STARS

In this section, we give the orientation proposed by
[7]. Given an (n, k)-star graph Sn,k, we map each ver-
tex to a unique full permutation of {1, 2, . . . , n}. Sup-
pose a vertex in Sn,k has the labeling [a1, a2, · · · , ak].
Then the unique permutation on {1, 2, . . . , n} associ-
ated with it is [a1, a2, · · · , ak, x1, x2, · · · , xn−k ] where
{x1, x2, . . . , xn−k} = {1, 2, . . . , n}\{a1, a2 . . . , ak} and
x1 < x2 < · · · < xn−k . We call a vertex odd if
its associated permutation is odd and even if its as-
sociated permutation is even. We note that under
this definition, a a star-edge is still between an odd
vertex and an even vertex. This definition is consis-
tent with the basic properties and terminology of star
graphs. The idea used in [7] was to orient the edges in
the fundamental stars and fundamental cliques semi-
independently but carefully combine the choices to
maximize arc-connectivity. Algorithm 1 gives the ori-
entation rule. (For the boolean functions even(·) and
odd(·), they use the usual rule if the argument is an in-
teger. If it is a vertex of the (n, k)-star graph, it uses
the above definition. The parity(·) function, whose
input are vertices of (n, k)-star graph, uses the above
definition.)

We will denote this orientation of Sn,k by
−−→
Sn,k.

If k = n − 1, this reduces to the unidirectional star

graph given in [12]. One can check that
−−→
Sn,k is a di-

rected graph with odd (even) vertices having in-degree
⌈

n−1
2

⌉

(
⌊

n−1
2

⌋

)and out-degree
⌊

n−1
2

⌋

(
⌈

n−1
2

⌉

). Results
on arc-connectivity are given in [7] (and [3] for the case
k = n − 1).

Algorithm 1 Orienting edge e = {πa, πb}

if e is a star-edge: i-edge even(πa) ∧ odd(πb) then

if (even(i)) then

πa → πb else πb → πa

end if(Day-Tripathi rule)
else

{e is a residual-edge, πa = [x, a2, . . . , ak]}
{πb = [y, a2, . . . , ak]: Assume x < y}
{z = min({1, 2, . . . , n} \ {a2, . . . , ak})}
{πz = [z, a2, . . . , ak]}
if even(n − k) ∨ (odd(n − k) ∧ (even(n − 1)
∧ odd(πz)) ∨ (odd(n − 1) ∧ even(πz))) then

if parity(πa) 6= parity(πb) then

πa → πb

else

πb → πa

end if

else

if parity(πa) = parity(πb) then

πa → πb

else

πb → πa

end if

end if

end if

If k 6= n − 1, [7] showed that every residual-arc
is on a small directed cycle (length 3 or 4) and such
a cycle can be found easily. Suppose πy and πx are
ends of a residual-arc and we want to route from πy

to πx. If the arc is πy → πx, then it is easy (one
step); otherwise, we can route around this small cycle
in two or three steps. This fact will be useful in the
next section. We denote a path obtained this way by
CycleMove(πy, πx). If n − k is even, then CycleMove
produces a path of length at most two; otherwise, at
most three. Details of the CycleMove routine can be
found in [7].

ROUTING

Since the unidirectional (n, k)-star graphs reduce
to the undirectional star graphs if k = n− 1, it is nat-
ural to develop an algorithm that coincides with the
algorithm given by [12] if k = n− 1. From now on we
will assume k ≥ 3 as certain structural properties will
not hold otherwise. (See [7].)

The general structure of the Algorithm 2 is to
sweep from position k down to position 3. The last
3 positions are dealt with separately at the end. A
vertex is called i-good if the unique i-edge is directed
away from this vertex where i ≥ 2. If π is i-good,
then we may move from π = [a1, a2, . . . , ai . . . , ak] to
[ai, a2, . . . , a1, . . . , ak]. This is a StarMove(i, π). It is
easy to see that if a vertex is not i-good, then it is
(i − 1)-good with i ≥ 3; moreover, the resulting ver-
tex is i-good after an (i − 1)-move. It is also easy to



see that if a vertex is i-good with i ≥ 4, then it is
(i − 2)-good.

Algorithm 2 Mainline
Routing πa = [a1, a2, . . . , ak] to πb = [b1, b2, . . . , bk]

if (πa is not k-good) then

(πc:=StarMove(k − 1, πa))
else

πc := πa

end if

for (i = k; i > 3; i = i − 1) do

{At stage i, current vertex is πc :=
[c1, c2, . . . , ci, bi+1, . . . , bk]}
if bi ∈ {c1, c2, . . . , ci} then

{Assume bi == cj}
πf :=StarManeuver(πc, i, j)

else

πf :=ResidualManeuver(πc, bi, i, j)
end if

end for

Lastthree(πf , πb)

To ensure that Algorithm 2 is at a k-good vertex at
the beginning of stage k, it applies StarMove(k−1, πa)
if πa is not k-good. The algorithm enters stage i
at πc = [c1, c2, . . . , ci, bi+1, . . . , bk]. We consider two
cases, bi ∈ {c1, c2, . . . , ci} and bi 6∈ {c1, c2, . . . , ci}.
They correspond, respectively to StarManeuver and
ResidualManeuver.

Algorithm 3 A StarManeuver(πc, i, j) [12]

if i == j then

πc:=StarMove(i− 2, πc)
else

if j == 1 then

πc:=StarMove(i, πc)
end if

if i + j is odd then

πc:=StarMove(i, πc);
πc:=StarMove(j, πc);πc:=StarMove(i, πc);

else

πc:=StarMove(j, πc);πc:=StarMove(i− 1, πc);
πc:=StarMove(i, πc);
πc:=StarMove(i− 1, πc);πc:=StarMove(i, πc);

end if

end if

return πc

Suppose cj = bi. Then all the moves at this stage
are within a fundamental star (StarManeuver). Note
that the StarMove(i − 2, πc) for the case j = i is to
ensure that the vertex at the end of this stage is (i−1)-
good. Hence a maximum of 5 steps in such a stage.
In the second case, bi 6∈ πb (ResidualManeuver), the
first step is to route πc to [bi, c2, . . . , ci, bi+1, . . . , bk].
If this cannot be done in one step (the arc is oriented
in the opposite way), then we route around a small
cycle using CycleMove in a fundamental clique. Now

a series of StarMoves are used to put bi in the ith po-
sition. Hence a maximum of 6 steps if n − k is even
and 7 steps if n−k is odd. Readers may wonder what
happen if k = n−1. In this case, the ResidualManeu-
ver will not work as the validity of CycleMove is based
on k 6= n − 1. However, one can view a residual-edge
in this case as a star-edge (n-edge). So there will be
no ResidualManeuvers. Of course, in this case, this
reduces to the algorithm given in [12].

Algorithm 4 ResidualManeuver(πy, x, i, j)

πx := [x, y2, . . . , yk]; CycleMove(πy, πx)
{Assume πy = [y1, y2, . . . , yk]}
if (πx is i-good) then

πc:=StarMove(i, πx)
else

πc:=StarMove(i− 1, πx);πc:=StarMove(i, πc);
πc:=StarMove(i− 1, πc);πc:=StarMove(i, πc);

end if

return πc

After stages k, . . . , 4, the algorithm arrives at a
vertex of the form [−,−,−, b4, . . . , bk]. Now the al-

gorithm will route in
−−−−−−→
Sn−k+3,3 or

−→
S3. This is called

Lastthree(πf , πb) in Algorithm 2. It is easy to route in
−→
S3 and its diameter is 5. Proposition 1 gives a bound

of the diameter of
−−−−−−→
Sn−k+3,3.

Proposition 1 Let q ≥ 4. Then the diameter of
−−→
Sq,3

is at most 14 if q is odd and is at most 17 if q is even.

Proof: Suppose we want to route from πc to πd in
−−→
Sq,3. Let the three symbols of πd be a1, a2, a3. Then
we only have to look at 8 cases to route πc to a vertex
with symbols a1, a2, a3 which in turn can route to πd

in at most 5 steps. We will use the term CycleMove
to indicate routing through a cycle if necessary in a
fundamental clique. In the following list, we use + to
mean the element belongs to A = {a1, a2, a3} and −
otherwise.

1. πc = [+, +, +]. We are done.

2. πc = [−, +, +]. Apply CycleMove to move the
other symbol of A to the 1st position.

3. πc = [+,−, +]. If it is 2-good, apply the se-
quence 2-move, a suitable CycleMove; otherwise
(it is 3-good), apply the sequence 3-move, 2-
move, a suitable CycleMove.

4. πc = [+, +,−]. Symmetric to the above case.

5. πc = [−,−, +]. Apply a suitable CycleMove and
we are back to case 3.

6. πc = [−, +,−]. Apply a suitable CycleMove and
we are back to case 4.



7. πc = [+,−,−]. It is either 2-good or 3-good.
Hence in one step, we are back to one of the
above two cases.

8. πc = [−,−,−]. Apply a suitable CycleMove and
we are back to the above case.

Since a CycleMove is at most 3 steps if q − 3 is even
and at most 2 steps if q − 3 is odd, the result follows.

Lastthree(πf , πb) can easily be constructed from
the proof of Proposition 1, so we omit the details.
Hence we have a distributed routing algorithm and
the following result.

Theorem 2 Suppose k ≥ 3. If the routing from πa to

πb in
−−→
Sn,k by the algorithm uses α residual-maneuvers

then the number of steps is at most 5(k − 3) + α + 15
if n−k is even and at most 5(k−3)+2α+18 if n−k

is odd. In particular, the diameter of
−−→
Sn,k is at most

6(k−3)+15 if n−k is even and at most 7(k−3)+18
if n − k is odd.

This result is much better than the one given in [7]:
10k − 5 if 1 ≤ k ≤ bn/2c and 5k + 5b(n − 1)/2c for
bn/2c ≤ k ≤ n − 1. We also observe that α may not
be the number of symbols in πb that are not in πa.
During ResidualManeuvers, some of the symbols that
are common to πa and πb may be moved out of the
labelings of the current vertex. That does not affect
the worst-case analysis given above, but in practice
such cases could be recognized and handled more effi-
ciently.

HEURISTICS

First, we note that the ordering of the stages in
the algorithm given in above is unimportant. Next we
note that if a vertex is not i-good, then it is j-good
if i and j have different parity and that 1 6∈ {i, j}.
Since we are not following the decreasing order, we
no longer need to ensure a vertex is (i − 1)-good at
the end of stage i. Recall that our destination vertex
is [b1, b2, . . . , bk]. Suppose the current vertex is π =
[c1, c2, . . . , ck]. Let Bπ = {i : i ≥ 2, ci 6= bi}. Position
i in Bπ is called 1-eligible if c1 = bi and π is i-good. It
is called 2s-eligible if there is a j ∈ {2, . . . , k} such that
cj = bi, i and j are of different parity and π is j-good.
It is called 2r-eligible if bi 6∈ {c1, c2, . . . , ck}, the arc is
directed from π to [bi, c2, . . . , ck] and [bi, c2, . . . , ck] is
i-good. We note that we can move bi into the ith posi-
tion in 1 or 2 moves in these situations. If i ∈ Bπ and
it does not belong to one of the above cases, then i is
regular-eligible. We note that such a position can be
corrected using the original algorithm with the con-
vention that a StarMove(i − 1, πc) is replaced by a
StarMove(j, πc) where j ∈ Bπ with i, j having differ-
ent parity and πc is the current vertex. These obser-
vations give the following heuristic: While Bπ has at

least two even elements or at least two odd elements,
we look for a position with the preference order being
1-eligible, 2s-eligible, 2r-eligible and regular-eligible.
When this fails, we note that Bπ has at most one odd
element and at most one even element. We can now
route in

−−→
Sq,3 or

−→
S3. After some experimentations, we

tweaked it to include the following: the algorithm per-
forms 1 or 2 StarMoves moves within a fundamental
star so that the 1st position is not an element of the
destination before a residual-maneuver.

Table 1 gives the comparison between the path
length given by the heuristics and the true diame-
ter. To compute the latter, we computed the all-pairs
shortest paths. We note that unlike the unidirectional
star graphs, the unidirectional (n, k)-star graphs are
far from symmetric making the computations rather

tedious. For k = n − 1, where the
−−−−→
Sn,n−1 graph is

isomorphic to the
−→
Sn graph studied by Day and Tri-

pathi [12], our algorithm is almost identical to theirs
except for the preferred ordering of the main while
loop. The results are therefore not surprisingly al-
most identical (a worst bound on the diameter but
better average distance), as reported in Table 1 on
the diagonal.

The code to reproduce all experiments is available
at personalwebs.oakland.edu/∼kruk/research for
download.

CONCLUSIONS

Unidirectional interconnection networks are appli-
cable in many settings. In the note, we use two known
ingredients, namely, a heuristic for the unidirectional
star graphs and the fact that a properly directed fun-
damental clique has a small cycle for every arc, to ob-
tain a routing algorithm for the unidirectional (n, k)-
star graphs that is roughly 30% better than the pre-
viously published algorithms.

In [7], the definition of
−−→
Sn,k actually allows sev-

eral variations of the orientation and their results are
independent of the variations. Algorithm 1 gives one
such variation. In our theoretical analysis of Algo-
rithm 2, the only fact that we require from the di-
rected fundamental clique is that it contains a small
directed cycle (to allow CycleMove). Since this fact is
common among all variations, Theorem 2 is true for
every variation. It will be interesting to see whether
one variation is more convenient than another under
other properties.
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k =3 4 5 6 7 8

4
4.79/4.46/5.33

10/9/11

5
5.34/4.61

12/8
6.19/5.33/6.2

15/10/12

6
6.06/4.97

15/8
7.90/6.33

18/12
8.27/7.14/8.66

20/11/16

7
6.51/5.21

14/9
8.65/6.36

20/11
9.61/7.44

24/13
9.76/8.27/9.85

25/14/19

8
6.92/5.38

15/9
9.12/6.88

20/12
10.70/7.88

26/13
11.72/8.97

29/15
11.68/9.76/11.97

30/16/24

9
7.22/5.61

14/9
9.50/6.87

21/11
11.05/8.26

25/14
12.62/9.25

30/15
13.34/10.24

34/17
13.21/11.85/13.68

35/18/27

Table 1: Average algorithm routing distance / Average distance / Average case from [12]
Worst-case algorithm routing distance / Diameter/ Worst-case from [12]


