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ABSTRACT

The class of (n,k)-star graphs and their unidi-
rectional version were introduced as generalizations
of star graphs and unidirectional star graphs respec-
tively. In this paper, we substantially improved pre-
viously known bound for the the diameter of unidi-
rectional (n, k)-star graphs. The previous bound was
10k—5 for small k and 5k+5|(n—1)/2] for large k; the
new bound is 7(k— 3) 4+ 18. In addition, a distributing
routing algorithm is presented, analyzed theoretically
for worst-case behaviour and exercised experimentally
for average case behaviour.
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INTRODUCTION

Many applications require unidirectional intercon-
nection networks. Some recent papers include [2-8,
11-13]. In particular [8,11] provide specific proposals
and applications in which unidirectional graph topolo-
gies are appropriate as architectural models.

The star graph proposed by [1] has many advan-
tages over the hypercube, such as lower degree and a
smaller diameter. One of the main criteria of a good
interconnection network topology is that it is max-
imally edge-connected. So the ideal situation is for
an unidirectional graph topology to have the highest
possible arc-connectivity. This has been verified for
the unidirectional hypercube [11,13] and the unidirec-
tional star graph [3,12]. An orientation of the star
graph was proposed in [12], and they gave an efficient
near-optimal distributed routing algorithm for it.

The main drawback of the star graphs is related
to its number of vertices: n! for an n-dimensional
star graph. For example, the smallest star graph with
at least 6000 vertices is a graph with 40320 vertices.
The (n, k)-star graphs, which include the star graphs,
were introduced in [9,10] to address this issue. In [7],
it is shown that (n,k)-star graphs also have the de-
sired property that they can be oriented to achieve the
highest possible arc-connectivity with small diameter.
However [7] concentrates on the connectivity issue and
treats the routing issue (and the diameter issue) as a
by-product. It seems that finding the diameter of uni-
directional (n, k)-star graph is more difficult than the
undirected version as even the diameter of of the uni-

directional star graph remains an open question. In
this paper, we

1. give a distributed heuristic routing algorithm for
unidirectional (n, k)-star graphs. It is obtained
by modifying and extending the algorithm given
in [12] for the unidirectional star graphs and by
utilizing some basic results given in [7],

2. obtain a theoretical bound for the diameter of
unidirectional (n, k)-star graphs that is 30% bet-
ter than the one in [7], and

3. fine tune the heuristic to obtain a better practi-
cal results.

(n,k)-STARS

Basic terminology in graph theory can be found
in [14]. An (n,k)-star graph S, with 1 < k < n
is governed by the two parameters n and k. The
vertex-set of S, ; consists of all the permutations of
k elements chosen from the ground set {1,2,...,n}.
Two vertices [a1,as, ..., ax] and [by,be, ..., bg] are ad-
jacent if one of the two conditions holds: (1) There
exists r, 2 < r < k such that a; = b,, a,, = b and
a; = b; for i € {1,2,...;k} \ {1,7}. (2) a; = b;
for i € {2,...,k}, a1 # b1. Every vertex has k — 1
neighbours via adjacency rule (1) and n — k neigh-
bours via adjacency rule (2). Adjacency rule (1) is
precisely the rule for the k-dimensional star graph;
an edge produced this way is a star-edge, it will be
called an i-edge if the exchange is between position
1 and position i where i € {2,3,...,k}. A residual-
edge is an edge produced by adjacency rule (2). The
figure below illustrates Si2. (We note that for con-
venience, we write the (n, k)-permutation [z, j] as 4j.)
Note that given an edge in S, with the labelings
of its two end-vertices, one can immediately deter-

mine whether it is a star-edge or a residual-edge.
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The family of S, i, generalizes the star graph since
Sp.n—1 is isomorphic to the star graph S, (an (n—1)-
permutation on an n-set is really a permutation on n
elements). For S, ,_1, that is, the star graph S, the
unique residual-edge for each vertex is its n-edge. The
(n, k)-star graph S, , has nl/(n — k)! vertices and is
an (n — 1)-regular graph. Other properties of (n, k)-
star graphs can be found in [7,9,10]. S, x has two
important classes of subgraphs.

1. Let {z1,29,...,2zx} C {1,2,...,n} with k& >
3. Let G be the subgraph of S, ; induced
by vertices whose labelings are permutations of
T1,%2,...,Tk. Then G is isomorphic to Si. It
is called a fundamental star and S, i has (Z)
fundamental stars.

2. Let {xo,x3,...,2r} C {1,2,...,n}. Let G
be the subgraph of S, induced by vertices
of the form [y1,22,23,...,2;5] where y; €
{1,2,...,n} \ {x2,25,...,2x}. Then G is iso-
morphic to K,_g4+1, the complete graph on
n — k + 1 vertices. It is called a fundamental
cligue and Sy 1 has (,",)(k — 1)! = (n+'+1),
fundamental cliques.

DIRECTED (n,k)-STARS

In this section, we give the orientation proposed by
[7]. Given an (n, k)-star graph Sy, x, we map each ver-
tex to a unique full permutation of {1,2,...,n}. Sup-
pose a vertex in Sy i has the labeling [a1, a2, -, ag].
Then the unique permutation on {1,2,...,n} associ-
ated with it is [a1,a9, -, ak, X1, 22, -+, Tp_p] where
{z1,22, .., Tn-k} =1{1,2,...,n}\{a1,a2...,a;} and
T < Tog < -+ < xp_k. We call a vertex odd if
its associated permutation is odd and ewven if its as-
sociated permutation is even. We note that under
this definition, a a star-edge is still between an odd
vertex and an even vertex. This definition is consis-
tent with the basic properties and terminology of star
graphs. The idea used in [7] was to orient the edges in
the fundamental stars and fundamental cliques semi-
independently but carefully combine the choices to
maximize arc-connectivity. Algorithm 1 gives the ori-
entation rule. (For the boolean functions even(-) and
odd(+), they use the usual rule if the argument is an in-
teger. If it is a vertex of the (n, k)-star graph, it uses
the above definition. The parity(-) function, whose
input are vertices of (n, k)-star graph, uses the above
definition.)

We will denote this orientation of S, by Sp k.
If K = n — 1, this reduces to the unidirectional star

graph given in [12]. One can check that m is a di-
rected graph with odd (even) vertices having in-degree
[221] (|25 | )and out-degree | 251 | ([251]). Results
on arc-connectivity are given in [7] (and [3] for the case

k=n-—1).

Algorithm 1 Orienting edge e = {m,, m}

if e is a star-edge: i-edge even(m,) A odd(m) then
if (even(i)) then
T, — T, else m — m,
end if (Day- Tripathi rule)

else
{e is a residual-edge, 7, = |7, as,...,ax]}
{mp = [y,aa,...,ax]: Assume x < y}

{z=min({1,2,...,n}\ {ag,...,ar})}
{m, =[2,a9,...,ax|}
if even(n — k) V (odd(n — k) A (even(n — 1)
A odd(my)) V (odd(n — 1) A even(r,))) then
if parity(m,) # parity(m,) then
Ta — T
else
Ty — Ta
end if
else
if parity(m,) = parity(m,) then
o — T
else
Tp — Tq
end if
end if
end if

If kK # n — 1, [7] showed that every residual-arc
is on a small directed cycle (length 3 or 4) and such
a cycle can be found easily. Suppose 7, and 7, are
ends of a residual-arc and we want to route from m,
to my. If the arc is my — 7, then it is easy (one
step); otherwise, we can route around this small cycle
in two or three steps. This fact will be useful in the
next section. We denote a path obtained this way by
CycleMove(my, 7). If n — k is even, then CycleMove
produces a path of length at most two; otherwise, at
most three. Details of the CycleMove routine can be
found in [7].

ROUTING

Since the unidirectional (n, k)-star graphs reduce
to the undirectional star graphs if k = n — 1, it is nat-
ural to develop an algorithm that coincides with the
algorithm given by [12] if k = n — 1. From now on we
will assume k > 3 as certain structural properties will
not hold otherwise. (See [7].)

The general structure of the Algorithm 2 is to
sweep from position & down to position 3. The last
3 positions are dealt with separately at the end. A
vertex is called i-good if the unique i-edge is directed
away from this vertex where ¢ > 2. If 7 is i-good,
then we may move from 7 = [a1,a9,...,a;...,a;] to
[ai,a2,...,a1,...,ak]. This is a StarMove(i,n). It is
easy to see that if a vertex is not i-good, then it is
(i — 1)-good with ¢ > 3; moreover, the resulting ver-
tex is i-good after an (i — 1)-move. It is also easy to



see that if a vertex is i-good with i > 4, then it is
(i — 2)-good.

Algorithm 2 Mainline
Routing 7, = [a1,a9,...,ax] to mp = [b1,ba, ..., by]

if (7, is not k-good) then
(e:=StarMove(k — 1, 7,))
else
Te = Tq
end if
for (i=Fk;i>3;i=i—1)do
{At stage 4, current vertex is w. =
[Cl, Coy...,Cq, bi+1, ey bk]}
if b; € {¢1,c¢2,...,¢;} then
{Assume b; == ¢;}
7 p:=StarManeuver(m, 1, j)
else
7 ¢:=ResidualManeuver (e, b;, %, j)
end if
end for
Lastthree(my, m)

To ensure that Algorithm 2 is at a k-good vertex at
the beginning of stage k, it applies StarMove(k—1, 7,)
if m, is not k-good. The algorithm enters stage i
at m. = [e1,¢2,...,Ci, bit1,...,b]. We consider two
cases, b; € {c1,co,...,¢c;} and b; & {c1,¢a,...,¢i}.
They correspond, respectively to StarManeuver and
ResidualManeuver.

Algorithm 3 A StarManeuver(r.,1,j) [12]

if i == j then
me:=StarMove(i — 2, )

else
if j ==1 then
me:=StarMove(i, 7.,
end if

if 1+ j is odd then
me:=StarMove(i, 7.);
me:=StarMove(j, m¢);me:=StarMove(i, 7.);
else
me:=StarMove(j, 7. );me:=StarMove(i — 1, 7..);
me:=StarMove(i, 7.);
me:=StarMove(i — 1, 7. );me:=StarMove(i, 7.);
end if
end if

return 7.

Suppose c¢; = b;. Then all the moves at this stage
are within a fundamental star (StarManeuver). Note
that the StarMove(i — 2,7.) for the case j = i is to
ensure that the vertex at the end of this stage is (i—1)-
good. Hence a maximum of 5 steps in such a stage.
In the second case, b; € m, (ResidualManeuver), the
first step is to route m. to [bi,ca,...,¢i,biv1, ..., bi].
If this cannot be done in one step (the arc is oriented
in the opposite way), then we route around a small
cycle using CycleMove in a fundamental clique. Now

a series of StarMoves are used to put b; in the ith po-
sition. Hence a maximum of 6 steps if n — k is even
and 7 steps if n — k is odd. Readers may wonder what
happen if K = n — 1. In this case, the ResidualManeu-
ver will not work as the validity of CycleMove is based
on k # n — 1. However, one can view a residual-edge
in this case as a star-edge (n-edge). So there will be
no ResidualManeuvers. Of course, in this case, this
reduces to the algorithm given in [12].

Algorithm 4 ResidualManeuver(m,, ,1, j)

Tz = [@, Y2, ..., Yk]; CycleMove(my, ;)
{Assume 7y = [y1,y2, ..., yk]}
if (7, is i-good) then
7e:=StarMove(s, 7,;)
else
me:=StarMove(i — 1, 7, );m.:=StarMove(i, 7.);
me:=StarMove(i — 1, 7. );m.:=StarMove(i, 7.);
end if

return .

After stages k,...,4, the algorithm arrives at a
vertex of the form [—,—, —,by,...,b;]. Now the al-
—
gorithm will route in S),_p43,3 or S3. This is called
Lastthree(my, mp) in Algorithm 2. It is easy to route in
S3 and its diameter is 5. Proposition 1 gives a bound
. —_—
of the diameter of S, _x43.3.

Proposition 1 Let g > 4. Then the diameter of STB)
s at most 14 if q is odd and is at most 17 if q is even.

Proof: Suppose we want to route from 7. to mg in
Sq,3. Let the three symbols of 74 be a1, az,as. Then
we only have to look at 8 cases to route 7. to a vertex
with symbols a1, as, as which in turn can route to mq4
in at most 5 steps. We will use the term CycleMove
to indicate routing through a cycle if necessary in a
fundamental clique. In the following list, we use + to
mean the element belongs to A = {a1,a2,a3} and —
otherwise.

1. m = [+, 4, +]. We are done.

2. m. = [-,+,+]. Apply CycleMove to move the
other symbol of A to the 1st position.

3. 7w = [+,—,4]. If it is 2-good, apply the se-
quence 2-move, a suitable CycleMove; otherwise
(it is 3-good), apply the sequence 3-move, 2-
move, a suitable CycleMove.

4. 7. = [+, 4+, —]. Symmetric to the above case.

5. . = [—, —, +]. Apply a suitable CycleMove and
we are back to case 3.

6. 7. = [—,+, —]. Apply a suitable CycleMove and
we are back to case 4.



7. e = [+,—,—]. It is either 2-good or 3-good.
Hence in one step, we are back to one of the
above two cases.

8. m. = [—,—,—]. Apply a suitable CycleMove and
we are back to the above case.

Since a CycleMove is at most 3 steps if ¢ — 3 is even
and at most 2 steps if ¢ — 3 is odd, the result follows.

Lastthree(m¢, m,) can easily be constructed from
the proof of Proposition 1, so we omit the details.
Hence we have a distributed routing algorithm and
the following result.

Theorem 2 Suppose k > 3. If the routing from w, to
T N Sﬂ) by the algorithm uses a residual-maneuvers
then the number of steps is at most 5(k —3) + a + 15
if n—k is even and at most 5(k—3)+2a+ 18 if n—k
1s odd. In particular, the diameter of 57; s at most
6(k—3)+15 if n—k is even and at most 7(k —3)+ 18
ifn—k is odd.

This result is much better than the one given in [7]:
10k =5 if 1 < k < |n/2] and 5k + 5[(n — 1)/2] for
[n/2] <k <n—1. We also observe that a may not
be the number of symbols in 7, that are not in .
During ResidualManeuvers, some of the symbols that
are common to m, and 7, may be moved out of the
labelings of the current vertex. That does not affect
the worst-case analysis given above, but in practice
such cases could be recognized and handled more effi-
ciently.

HEURISTICS

First, we note that the ordering of the stages in
the algorithm given in above is unimportant. Next we
note that if a vertex is not i-good, then it is j-good
if 7 and j have different parity and that 1 & {i,j}.
Since we are not following the decreasing order, we
no longer need to ensure a vertex is (i — 1)-good at
the end of stage i. Recall that our destination vertex
is [b1,b2,...,bg]. Suppose the current vertex is m =
[c1,¢2,. .., ck]. Let Br = {i:i> 2 ¢; # b;}. Position
1 in By is called I-eligible if ¢c; = b; and 7 is i-good. It
is called 2s-eligible if thereis a j € {2,...,k} such that
cj = b;, v and j are of different parity and 7 is j-good.
It is called 2r-eligible if b; & {c1,ca,...,c}, the arc is
directed from 7 to [b;, ¢, ..., cx] and [b;, ca,. ..,k is
i-good. We note that we can move b; into the ith posi-
tion in 1 or 2 moves in these situations. If i € B, and
it does not belong to one of the above cases, then 7 is
regular-eligible. 'We note that such a position can be
corrected using the original algorithm with the con-
vention that a StarMove(i — 1,7.) is replaced by a
StarMove(j, 7.) where j € B, with 4,j having differ-
ent parity and 7. is the current vertex. These obser-
vations give the following heuristic: While B, has at

least two even elements or at least two odd elements,
we look for a position with the preference order being
1-eligible, 2s-eligible, 2r-eligible and regular-eligible.
When this fails, we note that B, has at most one odd
element and at most one even element. We can now
route in S, 3 or S3. After some experimentations, we
tweaked it to include the following: the algorithm per-
forms 1 or 2 StarMoves moves within a fundamental
star so that the 1st position is not an element of the
destination before a residual-maneuver.

Table 1 gives the comparison between the path
length given by the heuristics and the true diame-
ter. To compute the latter, we computed the all-pairs
shortest paths. We note that unlike the unidirectional
star graphs, the unidirectional (n,k)-star graphs are
far from symmetric making the computations rather
tedious. For k = n — 1, where the S, ,_1 graph is

isomorphic to the S_n) graph studied by Day and Tri-
pathi [12], our algorithm is almost identical to theirs
except for the preferred ordering of the main while
loop. The results are therefore not surprisingly al-
most identical (a worst bound on the diameter but
better average distance), as reported in Table 1 on
the diagonal.

The code to reproduce all experiments is available
at personalwebs.oakland.edu/~kruk/research for
download.

CONCLUSIONS

Unidirectional interconnection networks are appli-
cable in many settings. In the note, we use two known
ingredients, namely, a heuristic for the unidirectional
star graphs and the fact that a properly directed fun-
damental clique has a small cycle for every arc, to ob-
tain a routing algorithm for the unidirectional (n, k)-
star graphs that is roughly 30% better than the pre-
viously published algorithms.

In [7], the definition of Sﬂ actually allows sev-
eral variations of the orientation and their results are
independent of the variations. Algorithm 1 gives one
such variation. In our theoretical analysis of Algo-
rithm 2, the only fact that we require from the di-
rected fundamental clique is that it contains a small
directed cycle (to allow CycleMove). Since this fact is
common among all variations, Theorem 2 is true for
every variation. It will be interesting to see whether
one variation is more convenient than another under
other properties.
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