Journal of Interconnection Networks Vol. 3, Nos. 1 & 2 (2002) 19-34
© World Scientific Publishing Company

UNIDIRECTIONAL (n, k)-STAR GRAPHS

EDDIE CHENG and MARC J. LIPMAN

Department of Mathematics and Statistics
Qakland University, Rochester, MI 48309, USA

Received 1 December 2000
Revised 23 December 2001

Arrangement graphs '* and (n, k)-star graphs’’ were introduced as generalizations of star
graphs'. They were introduced to provide a wider set of choices for the order of topo-
logically attractive interconnection networks. Unidirectional interconnection networks are
more appropriate in many applications. Cheng and Lipman®, and Day and Tripathi®”
studied the unidirectional star graphs, and Cheng and Lipman’ studied orientation of ar-
rangement graphs. In this paper, we show that every (n, k)-star graph can be oriented to a
maximally arc-connected graph when the regularity of the graph is even. If the regularity
is odd, then the resulting directed graph can be augmented to a maximally arc-connected
directed graph by adding a directed matching. In either case, the diameter of the re-
sulting directed graph is small. Moreover, there exists a simple and near-optimal routing
algorithm.
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1. Introduction

Directed interconnection networks are important. This area has generated many
research papers®®10:1317.20  Tny particular, Chou and Du'® proposed to use the uni-
directional hypercubes as the basis for high speed networking. For a more general
model, we refer the reader to '° for an architectural model for the studies of unidirec-
tional graph topologies and a specific application, which also includes a comparison
of the diameters among some unidirectional interconnection networks.

The star graph, proposed by Akers, Harel and Krishnamurthy', has many ad-
vantages over the hypercube, such as lower degree and a smaller diameter. An
orientation of the star graph was proposed by Day and Tripathi!?, and they gave an
efficient near-optimal distributed routing algorithm for it. One of the main criteria of
a good interconnection network topology is that it is maximally edge-connected. So
the ideal situation is for a unidirectional graph topology to have the highest possible
arc-connectivity. Indeed Jwo and Tuan®® showed that the unidirectional hypercube
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proposed by Chou and Du'? has this important property. Since the star graph was
introduced as a competitive alternative to the hypercube, it is necessary that an
orientation for the star graph has that same property for it to remain competitive
with the hypercube. Indeed, Cheng and Lipman® showed that the orientation for
the star graphs given by Day and Tripathi'” has this property.

The main drawback of the star graphs is related to its number of vertices: n!
for an n-dimensional star graph. For example, the smallest star graph with at
least 6000 vertices is a graph with 40320 vertices. Two classes of “nice” graphs were
proposed to solve this problem. The first class is the arrangement graphs introduced
by Day and Tripathi'*, and the second class is the (n, k)-star graphs introduced in
Chiang and Chen'!. Both are families of undirected graphs that include the star
graphs. The “older” arrangement graphs have gained some attention?!214:15,16,18,19
in the area of interconnection networks, while the “newer” (n, k)-star graphs have
not. In particular, Cheng and Lipman” showed that the arrangement graphs can
also be oriented so that the resulting directed graphs have the highest possible
arc-connectivity; this reinforces the possibility of using arrangement graphs as a
replacement for star graphs. Chiang and Chen'! showed that, with respect to the
cost (cost equals diameter x degree of a vertex), the (n, k)-star graph is better than
the arrangement graph A, ;. We believe that the arrangement graphs Ap i and the
(n, k)-star graphs Sy, x are not in competition but complement each other in building
a large class of good interconnection networks. For example, the diameter of An g
depends on k only but the degree depends on both n and k, whereas the degree of
Sn.k depends on k only but the diameter depends on both n and k. Hence the (n, k)-
star graphs deserve some attention as well. In this paper, we show that the more
recent (n, k)-star graphs also have the desired property that they can be oriented so
that the resulting directed graphs have the highest possible arc-connectivity.

2. Preliminaries

Basic terminology in graph theory can be found in Chartrand and Oellermann?, and
West?2, Here, we record the basic terminology used in this paper for easy reference.

Notations and Conventions: A graph (respectively directed graph) may con-
tain multiple edges (respectively arcs) but no loops (respectively directed loops).
Let H be a graph and X be a proper nonempty subset of the vertex-set. Define
di(X) to be the number of edges with exactly one end in X. Let G be a directed
graph and X be a proper nonempty subset of the vertex-set. Define ¢ (X) (respec-
tively pe(X)) to be the number of arcs leaving (respectively entering) X, that is,
the number of arcs with head (respectively tail) in X and tail (respectively head)
in X. Observe that dg(X) = pe(X).
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Basic Terminology: A graph H is k-edge-connected if the deletion of any k — 1
edges will not disconnect the graph. This is equivalent to dy(X) > k for every
0 # X Cc V. A directed graph G is k-arc-connected if the deletion of any k — 1
arcs will not disconnect the directed graph. This is equivalent to dg(X) > k for
every ) # X C V. A graph H is r-regular if the degree is r for every vertex v of
H. A directed graph G is r-regular if the in-degree and out-degree is r, that is,
da({v}) = pa({v}) = r for every vertex v of G. An r-regular undirected graph is
mazimally edge-connected if it is r-edge-connected. An r-regular directed graph is
mazximally arc-connected if it is r-arc-connected. A graph H = (V, E) is r-connected
if [V| > r + 1 and deleting any set of less than r vertices results in a connected
graph. A graph has connectivity r if it is r-connected but not (r + 1)-connected. An
r-regular r-connected graph is maximally connected.

An (n, k)-star graph Sy, with 1 < k < n is governed by the two parameters n
and k. The vertex-set of S, consists of all the permutations of k elements chosen
from the ground set {1,2,...,n}. Two vertices [a1,as,...,ax] and [by, by, ..., by are
adjacent if one of the following holds:

1. There exists a 2 < r < k such that a; = b, a, = by and a; = b; for i €

1,20 kN flr)
2. @y =b; fori e {2,...,k}, @y #b;.

Hence given a vertex [aj,as,...,ax), it has k — 1 neighbours via the adjacency
rule 1 by exchanging a; with each of a;, i € {2,3,...,k}, and it has n — k neigh-
bours via the adjacency rule 2 by exchanging a; with each element in {1,2,...,n}\
{ai1,as,as,...,a;x}. We note that adjacency rule 1 is precisely the rule for the k-
dimensional star graph. Hence we will refer the adjacency rule 1 as star-ezchange.
In keeping with the terminology for star graphs, an edge corresponding to a star-
exchange, a star edge, will be called an i-edge if the exchange is between position 1
and position ¢ where i € {2,3,... k}. We will refer to adjacency rule 2 as residual-
ezchange and an edge corresponding to such an exchange as a residual-edge. Figure 1
gives Sy 5. (We note that for convenience, we write the (n, k)-permutation |[i, j] as
ij for example, [1,4] as 14.) Note that given an edge in S, ; with the labellings of
its two end-vertices, one can immediately determine whether it is a star-edge or a
residual-edge. The family of S, » generalizes the star graph since S, ,—; is the star
graph S, (an (n—1)-permutation on an n-set is really a permutation on n elements).
For S,, ,—1, that is, the star graph S, the unique residual-edge for each vertex is its
n-edge.

The next result contains elementary properties of (n, k)-star graphs. The proofs
of these properties are either obvious or can be found in Chiang and Chen!!.




22 E. Cheng & M. J. Lipman

1234 4231

3142 2143

E?ig. 1. 5;4,2

Theorem 1 The (n,k)-star graph S, has n!/(n — k)! vertices and is a reqular
graph with degree n — 1. Moreover,

1.
2.

Snn—1 18 isomorphic to the star graph S, forn > 3.
Sn,1 is isomorphic to K, the complete graph on n vertices.

Let {zy,x2,...,zx} € {1,2,...,n} with k > 3. Let G be the subgraph of S,
induced by vertices whose labellings are permutations of x1,xs,...,x. Then
G s isomorphic to the star graph Sj.

Let {za,x3,..., 23} € {1,2,...,n}. Let G be the subgraph of Sk induced by
vertices of the form [y, x9, 3, ..., 2] wherey, € {1,2,...,n}\{z2,23,..., 24}
Then G is isomorphic to K, .1, the complete graph on n — k + 1 vertices.

Let G be a subgraph of Sy i with k > 2 induced by vertices with labellings having
the same symbol in the kth position. Then G is isomorphic to Sp_1 j—1.

Sn k 15 vertez-transitive but in general not edge-transitive.
Sn.k 18 mazimally connected (and hence mazimally edge-connected).

Sk has diameter 2k — 1 if 1 < k < [n/2], and has diameter k + |(n—1)/2]
if [n/2) +1<k<n-—1.

A star subgraph of S, ; using the rule in (3) of Theorem 1 will be called a
fundamental star. A complete subgraph of S, ; using the rule in (4) of Theorem 1
will be called a fundamental cligue. It is clear that there are (}) fundamental stars
and (") (k —1)! = T#I-HJ' fundamental cliques.

Like other interconnection networks, S, ; may contain exponentially many ver-
tices (with respect to n and k). Hence we cannot efficiently apply regular shortest
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path algorithms. One needs an algorithm polynomial in n and k or perhaps even
a distributed routing algorithm. A distributed routing from a to b means that at
an intermediate vertex v, the next step is determined by v and b only and does
not require information about the previous steps nor impose any future steps. In
the paper by Chiang and Chen!!, a simple and efficient optimal (in terms of path
length) distributed routing algorithm is given to find the shortest path between any
two vertices of S, x. Our objective is to orient S, j in such a way that the resulting
directed graph is 231-regular and “51-arc-connected when n — 1 is even. Of course
such an orientation exists from a theorem of Nash-Williams?*' as S, is (n — 1)-
regular and (n — 1)-edge-connected. (In fact, if n — 1 is even then the proof of this
theorem is easy as well, because the graph is Eulerian.) But here, we also want the
resulting directed graph to have a small diameter and to obtain an efficient optimal
or near-optimal routing algorithm. In fact, we will like to have a local orientation
rule, that is, given an edge in S, , its orientation is determined only by its end-
vertices. If n —1 is odd, we will show that S, i (except for certain degenerate cases)
can be made n-regular and n-edge-connected by adding a carefully chosen perfect
matching from its complement; moreover, we solve its orientation problem.

3. Ingredient I: More than maximally-edge-connected

In this section, we show that, except for certain degenerate cases, the (n,k)-star
graph is “more” than maximally-edge-connected. We now state some necessary def-
initions. An undirected noncomplete r-regular graph is loosely super connected or
simply super connected if its only minimum disconnecting vertex-sets are those in-
duced by the neighbours of a vertex. This is a much stronger property than requiring
the connectivity to be r. If, in addition, the deletion of a minimum disconnecting
set always results in a graph with exactly two components, one of which has only
one vertex, then the graph is tightly super connected. Note that the complete bi-
partite graph K,, with r > 3 is loosely super connected and not tightly super
connected. We note that we exclude complete graphs in our discussion. This is not
a restriction as a complete graph is too expensive to be used as an interconnection
network. Another related notion is that of super edge-connectedness. A graph is
super edge-connected if the only minimum edge-disconnecting sets are those induced
by a vertex. (Obviously, the notion of “loosely superness” and “tightly superness”
are the same in this case.) The notion of “superness” was first introduced by Bauer,
Boesch, Suffel and Tindell®.

Our goal is to show that S, x is tightly super connected. Since S, ; is the complete
graph on n vertices, we ignore this trivial case. Consider k = 2. Since S35 is a 6-
cycle, it is not super connected. From Figure 1, we can see that S;» is not super
connected as deleting the three vertices 12,13, 14 gives a graph with two nontrivial
components. This can easily be generalized to Sy, 2; hence S, 2 is not super connected
for n > 3. However, our next result shows that Sy is tightly super connected if
k>3
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Theorem 2 S, is not super connected forn > 3. Ifn > k > 3, then Sk 18 tightly
super connected.

Proof. We have already seen that S, 5 is not super connected for n > 3. Suppose
k > 3 and n > k. Let H; be the subgraph of S, ; with i in the last position for
1 <4 < n. Then by Theorem 1, H; is isomorphic to S,_; ;. It is clear that
every vertex in H; has exactly one neighbour not in H;. We also note that there are
(n —2)!/(n — k)! independent’edges between H; and H; for 1 <i < j < n. Let T be
a set of vertices in S, x such that |T| = n— 1. Assume S, \ T is disconnected. We
want to show that T' is the set of neighbours of a unique vertex, and that Sy, 5 \ T
has exactly two components. Let T; = V(H;) N T and t; = |T;| for 1 < i < n. So
Z?:l i =n—1.

Case 1: |tj] <mn -3 for 1 <i < n. Then H; \ T} is connected since Sn—1,k—1 18
(n — 2)-connected by Theorem 1. There are (n — 2)!/(n — k)! independent edges
between H; and Hj, t; < n —3 and t; < n — 3. Hence there are at least Qi =
(n —2)!/(n — k)! — min{t; +t;,n — 1} edges between H; \ T; and H; \ T

Case 1a: k > 4. Thena;j; > (n-2)(n—3)—(n—1) > 1asn > k > 4. Hence
there are edges between H; \ T; and H; \ T;. Therefore, Sy, 4 \ T is still connected,
a contradiction.

Case 1b: k = 3. Note that o;; = (n —2) — min{t; + t;,n — 1}. If a;; > 1 for all
1 <14 < j < n, then we are done, as before. If this is not the case, then there is
a set {i,j} such that e;; < 0. For notational convenience, we assume i = 1 and
j=2. Hence tj +t2 =n—1lort; +t3 =n—2. Hence tg+ty+ - +1, < 1,
that is, T3 UTy U--- UT, has at most one vertex. Clearly, Sy \ (V(H;) UV (Hs)U
T3 UTyU---UT,) is connected. Since t; < n—3, t3+t4+ -+, < 1 and
n > 4, either a;3 > 1 or a4 > 1. Hence there is an edge between H, \ T} and
Sak \ (VH)UV(H)UT3UTy U---UT,). Similarly, there is an edge between
Hy\ T and Sp i\ (V(H)UV(Hy)UT3UTyU---UT,). Hence Sy i\ T is connected,
a contradiction.

Case 2: t; > n — 3 for some i. Without lost of generality, we may assume t; is
the maximum among the ¢;'s for notational convenience. The remaining cases are
ty =n—1and t; = n—2. We note that H, \ T} may be disconnected. If t; =n —1,
then T; = 0 for 2 < i < n. Since every vertex in H; \ T is adjacent to a vertex not
in H; and this vertex is not in T', S, 4 \ T' is connected, a contradiction. We now
assume ¢ = n—2. Let z be the unique vertex in 7'\ T}. Clearly, S, \(V (H;)U{z})
is connected. If H; \ T} is connected, then S, x \ T' is connected (since H; \ T} has
at least two vertices), a contradiction. Assume H; \ T} is not connected. Consider
a component C in Hy \ T}. If C has two distinct vertices say u and v, let y be the
neighbour of w that is not in H; and z be the neighbour of v that is not in Hj.
Since y # z, at least one of y and z is not z; hence the vertices in C and the vertices
of Sy« \ (V(H;) U {z}) belong to the same component in S, \ 7. If C has only
one vertex say w, then w and the vertices of Sy, \ (V(H;) U {z}) belong to the

'A set of edges are independent if no two of them are incident to the same vertex.
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same component in Sy, \ T' unless z is a neighbour of w; in this case, T' is the set
of neighbours of w. Since x has only one neighbour in H;, we can conclude that
Sn,k \ T has exactly two components, one of which has only one vertex. Hence S, i
is tightly super connected. O

As a corollary of Theorem 2, we have the next result whose proof is given by
Cheng and Lipman’. In fact, the proof of Theorem 2 given here is a slight modifi-
cation of the proof given Cheng and Lipman? for Corollary 3.

Corollary 3 53 is not super connected. The star graph S, is tightly super connected
forn > 4.

The proof of the next result is given in Cheng and Lipman®, and Cheng, Lipman
and Park” so we will state it without proof.

Theorem 4 *Let H = (V,E) be a s-reqular tightly super connected graph with
k > 1. If H has more than 2k + 2 vertices, then it is super edge-connected.

Corollary 5 Let k > 3. Then Sy is super edge-connected.

Proof. This follows from Theorem 2 and Theorem 4 as S, ; has more than 2(n —
1) + 2 vertices since n > k > 3. O
Corollary 5 will be useful in Section 6.

4. Ingredient II: Orientation of substructures

Recall that Sy, , contains (j;) fundamental stars and (,",)(k—1)! = (n+l+1)' funda-
mental cliques. Moreover, these fundamental stars and fundamental cliques partition
the edge-set of S, . Furthermore, every vertex is on exactly one fundamental star
and exactly one fundamental clique. Since our goal is to find a good orientation for
Shnk, it is useful to find a good orientation for complete graphs and star graphs.

Proposition 6 Let ¢ > 3 be odd. Then Ky can be oriented into a ‘-’;—1-mgular
directed graph such that every arc is on a directed 3-cycle.

Proof. Assume the labels of the g vertices are 1,2,...,q. Given an edge between
i and j where ¢ < j, we orient it from 7 to j if i and j have different parity, and
orient it from j to 7 if 2 and j have the same parity. Then it is easy to see that the
resulting directed graph is 9;—1-regula.r. Now consider an arc a — b.

1. Suppose b < a. Then a and b have the same parity and hence a > b+ 2. We
have the following directed 3-cycle: @ = b, b — (b+ 1) and (b+ 1) — a.

2. Suppose a < b. Then a and b have different parity. If a # 1, then we have the
following directed 3-cycle: a — b, b — (a—1) and (a —1) = a. If a = 1, then
b # q since ¢ is odd. Hence we have the following directed 3-cycle: a — b,
b— (b+1) and (b+1) — a. 0

“This is a weaker version of a more general result. For our purpose, this weaker version is enough.
See Cheng, Lipman and Park® for the statement and a proof of the stronger result.
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Although the proof of the next result is almost identical to that of Proposition 6,
we include it here as we need the orientation explicitly given in the proof.

Proposition 7 Let g > 4 be even. Then K, can be oriented into a directed graph
such that half of the vertices have in- de_qree [9'— | and half of the vertices have
in-degree [L] Moreover, every arc is on a directed 3-cycle or a directed 4-cycle.

Proof. Assume the labels of the ¢ vertices are 1,2,...,q. Given an edge between
i and j where i < j, we orient it from ¢ to j if 4 and j have different parity, and
orient it from j to i if 4 and j have the same parity. Then it is easy to see that the
resulting directed graph has the required degree property To be precise, a vertex
with an odd label has out-degree [9—] and m—degree [g-—J a vertex with an even
label has in-degree [4;'] and out-degree |4 |. Now consider an arc a — b.

1. Suppose b < a. Then @ and b have the same parity and hence a > b+ 2. We
have the following directed 3-cycle: a =+ b, b— (b+1) and (b+1) = a

2. Suppose a < b. Then a and b have different parity. If a # 1, then we have the
following directed 3-cycle: @ — b, b — (e — 1) and (a — 1) = a. If b # g, then
we have the following directed 3-cycle: a — b, b — (b+1) and (b+ 1) — a.
The remaining case is a = 1 and b = q. Since g > 4, the following vertices are
distinet: 1,2,3,¢ and we have the following directed 4-cycle: 1 — ¢, ¢ — 2,
2—=3and 3 — 1. O

Our goal is to orient the fundamental stars and fundamental cliques separately so
that the resulting directed (n, k)-star graph has the desired property. In particular,
we would like the resulting directed graph to be regular. For example, if each
fundamental star and fundamental clique can be oriented as a regular graph, then
the resulting graph is regular. But this is not always possible. So we desire a
good terminology to indicate when an orientation is regular, and when it is not,
we want a descriptive name. So it is reasonable to call the orientation given in the
proof of Proposition 6 a balanced orientation. The term is to indicate the resulting
orientation is regular. The orientation given in the proof of Proposition 7 can be
called an oDD-more-out orientation. (The term is to indicate an odd labelled vertex
has a larger out-degree in the orientation. We purposely use “oDD” instead of “odd”
as a different kind of oddness will be introduced later on.) If we reverse the rule, such
an orientation can be called an oDD-more-in orientation. The orientation results
given in Proposition 6 and Proposition 7 will be useful later on.

Remark 8 If we replace the labellings of the vertices, namely, 1,2,3,...,q, by the
labellings 2,3,4,...,q+ 1, in the proof of Proposition 6, the resulting orientation is
still balanced.
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We now describe the orientation of star graphs given by Day and Tripathil”. Let
7, and 7, be adjacent in S, through an i-edge. We may assume 7, is even®and 7
is odd. Then the edge is oriented from 7, to m, if ¢ is even, and the edge is oriented
from my, to w4 if 7 is odd. The resulting graph is denoted by US,,. Figure 2 gives USj.
Let 7 be a vertex in US,. Then its in-degree and out-degree are [271] and |%5* |
respectively if 7 is odd and vice versa if 7 is even. This orientation of the star graph
Sy, will be called the Day- Tripathi orientation. If n is odd, then the resulting directed
graph is regular; hence the Day-Tripathi orientation is a balanced orientation if n
is odd. If n is even, then a vertex corresponding to an odd permutation has in-
degree one more than the out-degree; hence we say the Day-Tripathi orientation is
an ODd-more-in orientation when n is even. (Note that we purposely use “ODd”
instead of “oDD” or “odd” as “ODd" here indicate odd permutations.) The next
result is easy to see and will be used in subsequent sections.

14 41

24 34 2 31

42 12 43 13

32 23
Fig. 2. USi: odd-more-in

Proposition 9 Every arc in US,, with n > 3 is on a directed 6-cycle.

5. Global oddness, global evenness and local orientation

In the previous section, we use terms such as balanced orientation, oDD-more-in
orientation and ODd-more-in orientation to describe certain orientations on star
graphs and complete graphs. The idea in orienting Sy, x is to orient the fundamental
stars and the fundamental cliques by using such rules. However, we have seen the
dual usage of the word odd to describe a vertex. The word odd corresponds to an
odd permutation in S, whereas the word odd corresponds to an odd numbered label
in the case of a complete graph. Hence we have used “oDD” and “ODd” instead of a
generic “odd” in terms such as odd-more-in orientation. In this section, we remedy
this by defining oddness and evenness for the vertices in S, ;. Note also that since

®A permutation is even (odd) if it can be written as a product of an even (odd) number of
transpositions.
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the orientation rule for a complete graph depends on the ordering of the vertices, we
need to have a rule to address this using the labellings of vertices in Sy ;. Finally, we
present a local orientation rule, that is, given an edge, an orientation is determined
completely by the labels of the two end-vertices.

Given an (n, k)-star graph Sp &, we map each vertex to a unique full permutation
of {1,2,...,n}. Suppose a vertex in Sy has the labelling [a1,a2,"--ai]. Then the
unique permutation on {1,2,... ,n} associated with it is [a1,a2," * @k, T1, s Tk
where {@1,Z2,...,Zn—k} = {1,2,. . ,n}\ {a1,a2...,ax} and & <2y <0 < Tnk-
We call a vertex odd if its associated permutation is odd and even if its associated
permutation is even. We note that under this definition, a star-exchange still induces
an edge between an odd vertex and an even vertex. This definition is consistent
with the basic properties and terminology of star graphs. We want to give a local
orientation rule to the edges so that the following is true:

1. If k is odd, then every fundamental star has a balanced orientation with reg-
ularity %; if k is even, then every fundamental star has an odd-more-in ori-
entation with every odd vertex having in-degree [EE—I] and out-degree L%—lj
and every even vertex having out-degree ‘-&5—11 and in-degree P;—J

9. If n — k + 1 is odd, then every fundamental clique has a balanced orientation
with regularity "'Q-i If n — k + 1 is even, then either every fundamental
star has an odd-more-out orientation or every fundamental star has an odd-
more-in orientation. In an odd-more-out orientation, every odd vertex having

out-degree [”—E&-' and in-degree LE%&J , and every even vertex having in-degree

[”———;k] and out-degree lig—kJ In an odd-more-in orientation, every odd vertex

having in-degree [%-. and out-degree ["—gﬁ}, and every even vertex having

n—

out-degree ["—}E-’ and in-degree lTJ

If we can accomplish this, then the terminology odd-more-in orientation and odd-
more-out orientation may replace oDD-more-in (out) for fundamental cliques and
ODd-more-in (out) for fundamental stars. For the rest of this section, we assume
n — k > 2 as we need Propositions 6 and 7.

Recall that given an edge in Spk with the labellings of its two end-vertices, one
can immediately determine whether it is a star-edge or a residual-edge. Consider
an i-edge with end-vertices mqy and 7. We may assume 7, is even and 7 is odd.
Then the edge is oriented from 7y to mp if 7 is even, and the edge is oriented from
, to 7q if 4 is odd following the Day-Tripathi rule. This gives the orientation of the
fundamental stars.

To give a local orientation rule for a fundamental clique, we note that given a
residual-edge, one can immediately determine the vertices of the fundamental clique
containing this edge. Let the vertices of this fundamental clique be

[1171,&2,- . ,ﬂbk],[ﬂ’,‘g,ag,. . 1ak]:' ey [Cﬂn_k+],a‘2, s sak]
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with ) < 29 < 3 < ... < Ty—k4+1. Next we note that the parity of the above
vertices (with respect to their associated permutations) alternates. At first glance,
we may want to copy the rule from the previous section as follows: Given the

two end-vertices of a residual-edge, say [z,a2,...,a;] and [y, aa,...,ar]. Suppose
z < y. Then we orient it from [z,as,...,ak] to [y,az,...,a] if [z,a9,...,a;] and
[y, a2, ...,ax] have different parity, and orient it from [y,as, ..., ax] to [z,as,...,ak]

if [z,as,...,ax] and [y,as,...,a;] have the same parity. In other words, we map
[551,02, siavd sak}» [3:27"1'2: . ee :ak}s avu al’y [In—k-i-lsaZs . Wia !a'k]

to 1,2,3,...,n—k+ 1 as an ordered list and apply the rules given in Propositions 6
and 7 as n —k > 2. Note that this has a small problem as [z;,as,...,ar] may
not be odd. However, the resulting orientation for this fundamental star is still
balanced if n — k + 1 is odd as indicated by Remark 8. Suppose n — k + 1 is even
and [z1,as,...,ax) is even. Then [z,_g41,a9,...,ak is odd. So we map

[.’E],ﬂg, wisa 1a*k]s [I:E‘D az,. .. aak]v +e vy [mnwk+lsa'27' e :ak]

ton—k+1,n—Fk,...,3,2,1 as an ordered list and apply the rules given in
Proposition 7 as n — k > 2. In other words, suppose the two end-vertices of a

residual-edge are [z,as,...,ax and [y,as,...,a;]. Suppose z > y. Then we orient
it from [z,as,...,ax] to [y,as,...,a¢] if [z,a9,...,a;] and [y, as,...,ax] have dif-
ferent parity, and orient it from [y, as,...,a] to [z,ag,...,ak] if [z,a9,...,a;] and

[y, a2, . ..,ax] have the same parity. Then the resulting orientation is odd-more-out.
Of course, if we reverse the rule, it is odd-more-in.

We note that such a rule is a local orientation rule. For example, suppose our
intention is to give every fundamental clique an odd-more-out orientation. Con-
sider the residual-edge between [9,1,6,5,4] and (3,1,6,5,4] in Sips. From these
labellings, we know this residual-edge belongs to the fundamental clique with the
following vertex-set:

(2,1,6,5,4],[3,1,6,5,4],[7,1,6,5,4],[8,1,6,5,4], 9,1,6,5,4], [10, 1,6, 5, 4].

Now the associated permutation for (2,1,6,5,4] is [2,1,6,5,4,3,7,8,9,10] which is
an odd permutation. Hence [2,1,6,5,4] is odd in Syp5. Since 3 < 9, and the two
vertices [9,1,6,5,4] and [3,1,6,5,4] have different parity, we orient the edge from
[3,1,6,5,4] to [9,1,6,5,4]. Now consider the residual-edge between [9, 1, 6,4, 5] and
(3,1,6,4,5] in Sip5. From these labellings, we know this residual-edge belongs to
the fundamental clique with the following vertex-set:

2,1,6,4,5],[3,1,6,4,5],[7,1,6,4,5],[8, 1,6,4,5],[9,1,6,4, 5], [10, 1, 6,4, 5.

Now the associated permutation for (2,1,6,4,5| is [2,1,6,4,5,3,7,8,9,10] which is
an even permutation. Hence [2,1,6,4,5| is even in Syp5. Since 3 < 9, and the two
vertices [9,1,6,4,5] and [3,1,6,4,5] have different parity, we orient the edge from
[9,1,6,4,5] to [3,1,6,4, 5].
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6. Orientation of S, ;

Our objective is to give an orientation to S, so that the resulting directed graph
is highly connected and has a small diameter; moreover, we want a good routing
algorithm. Throughout the section, we assume k > 3. Since the case for star graphs
has been studied already, we assume n — k > 2 throughout the section. We begin
with the following simple result.

Proposition 10 Let H = (V, E) be a (2r)-regular (2r)-edge-connected graph. Let
G be an orientation of H. If G is r-reqular, then G is r-arc-connected.

Proof. Let X be a nonempty proper subset of V. Then ¥, .y dc({v}) = va(X) +
da(X) and ¥ . v pa({v}) = v6(X) + pe(X) where 4(X) is equal to the num-
ber of arcs with both head and tail in X. Since G is r-regular, ¥,y dc({v}) =
Yvex p({v}) = r[X[; hence dg(X) = pa(X). Therefore, dg(X) = 6c(X)+pa(X) =
20G(X). Since H is (2r)-edge-connected, dg(X) > 2r. Hence dg(X) > r and we
are done. 0

This is of immediate interest to us since for connectivity purpose, we only need
to orient Sy x such that the resulting directed graph is regular (if possible). Suppose
n—1is even. Since Sy, 4 is maximally-edge-connected, our goal is to orient S,  into
a regular graph. We consider two cases: k — 1 is even, and k — 1 is odd. Since n — 1
is even, k — 1 being even is equivalent to n — k being even and k — 1 being odd is
equivalent to n — k being odd.

Suppose k > 3, k — 1 is even (and hence n — k > 2 is even). Hence k is odd and
n—k+1 > 3 is odd. Therefore, we give the fundamental stars balanced orientations
and we give the fundamental cliques balanced orientations. In this case, let the
resulting directed graph be m, and we have the following result.

Theorem 11 Let n — 1 be even, k > 3 and n — k > 2 be even. Then m s a
"T_l-regular directed graph such that every arc is on a directed 3-cycle or a directed

6-cycle.

Proof. The regularity condition is clear. If an arc is in an oriented residual-edge,
then it is on directed 3-cycle by Proposition 6. If the arc is an oriented star-edge,
then it is an arc in a subgraph isomorphic to US;. Hence by Proposition 9 as k > 3,
it is on a directed 6-cycle. |

Now suppose n — k is odd and k > 3. Then n —k +1 > 4 is even and k is
even. Then we give every fundamental star an odd-more-in orientation and every
fundamental clique an odd-more-out orientation. Hence such an orientation gives a
B;—l-regular directed graph. This orientation is denoted by m in this case. This
together with Propositions 7 and 9 give the next result.

Theorem 12 Let n — 1 be even, k > 3 and n — k > 2 be odd. Then ST,A is a
Tiz—“l-myutar directed graph such that every arc is on a directed 3-cycle, a directed
4-cycle or a directed 6-cycle.
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A regular directed graph G has many advantages such as dg(X) = pg(X) for
every nonempty proper subset X of the vertex-set. Since regularity is important in
the design of interconnection networks, it is reasonable to insist that an unidirec-
tional interconnection network to be regular. If n — 1 is odd, then it is impossible to
orient Sy, i into a regular directed graph. However, we will show that it is possible to
orient Sy, » with the property that half of the vertices have in-degree [“‘T_l] and half
of the vertlces have in-degree |%5= 1|, Hence if we add a directed perfect matching®
of size g(—ﬂ between these two sets (with the proper directions), the augmented
directed graph is regular.

Proposition 13 Let k > 3. Then ezactly half of the vertices in Sy is even.

Proof. Since every vertex appears in a unique fundamental star and exactly half of
the vertices in every fundamental star is even, the result follows. 0

Suppose n — 1 is odd, k > 3 and n — k > 2. We consider two cases. Suppose
kis odd. Then n — k+ 1 > 3 is even. We give every fundamental star a balanced
orientation and every fundamental clique an odd-more-in orientation. Suppose k is
even. Then n —k+1 > 3 is odd. Then we give every fundamental star an odd-
more-in orientation and every fundamental clique a balanced orientation. In either
case, the resulting directed graph is denoted by m

Proposition 14 Letn—1 be odd, k > 3 andn—k > 2. Then

with odd vertices having in-degree [“2;1} and out-degree [ J and even vertices

_H.} k 8 a directed graph

n—1 n—1

having in-degree {TJ and out-degree [%1

Let n —1beodd, k >3 and n— k > 2. Let Z be the set of odd vertices and
Y be the set of even vertices. If a perfect matching of size —(—ﬂ between Y and

Z is added to Sn k and with orientation from Z to Y, the resulting graph is [251]-
regular. There are many choices of such a directed perfect matching. We would like
to find one so that the resulting graph is maximally arc-connected. It turns out that
any such perfect matching will work: we will use one that is convenient.

Theorem 15 Letn—1 be odd, k > 3 and n — k > 2. Let M be a perfect match-
ing between the set of even vertices and the set of odd vertices. Then the graph
(with multiple edges allowed) obtained by adding M to Sy is n-regular and n-edge-
connected.

Proof. Let H be the resulting graph. It is clear that H is n-regular. Let X be
a nonempty proper subset of the vertex set. Suppose X is not a singleton. Then
dy(X) > n since ds,  (X) > n as Sy is a (n — 1)-regular super edge-connected
graph by Corollary 5. If X is a singleton, then dg(X) = n as H is n-regular. Hence
H is n-edge-connected. 0

*Given a graph H = (V, E), M C E is a perfect matching if every vertex of the graph H' = (V, M)

has degree one. Moreover, M is said to be between Y and Z where Y and Z form a partition of the
vertex-set if every element of M has exactly one end in ¥ and one end in Z.
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Now n — 1 be odd, & > 3 and n — k > 2. Let M be any perfect matching
in the complement of Sy between Z (the set of odd vertices) and Y (the set of
even vertices) in Sy, ; and are directed from Z to Y. In particular, we choose the
matching consisting of edges of the form (u, f(u)) where f(u) is obtained from u
by interchanging the second and third symbols in the labelling of u. Clearly the
associated permutations of u and f(u) have opposite parities, hence this is indeed a
perfect matching between Z and Y. Let the resulting directed graph be m, the
augmented oriented (n, k)-star with the direction of the edges in the added matching
oriented from Z to Y.

Theorem 16 Let n — 1 be odd, k > 3 and n — k > 2. Then AS, is a 5 -reqular
mazimally-arc-connected directed graph. Moreover, every arc is on a directed 3-
cycle, a directed 4-cycle or a directed 6-cycle.

7. Connectivity and routing of unidirectional (n, k)-star graphs

In Section , we augmented the oriented S, into a regular directed graph m if
n—1is odd. We will refer to ﬂ if n—1 is even and AS, if n — 1 is odd as
unidirectional (n, k)-star graphs. We have already seen that unidirectional (n, k)-star
graphs are [ﬂ%}]-regula.r maximally-arc-connected directed graphs. In this section,
we will consider the diameter and routing properties of unidirectional (n, k)-star
graphs.

Note that we can apply anwtimal routing algorithm for S, ; to obtain a near
optimal routing algorithm for S, x and AS,, . Given two vertices a and b, we apply
a routing algorithm for S, ;. In an intermediate step from @ to b using the edge
(z,y), if it is directed in the right direction in m then use z — y; otherwise, we
replace this one-step move by a (p — 1)-step move using a directed p-cycle where
p € {3,4,6} by Theorems 11, 12 and 16. In particular, we can use the distributed
routing algorithm given by Chiang and Chen!'. The length of this directed path
from @ to b is at most five times the length of the undirected path between a and
b. Hence this algorithm produces a directed path of length at most five times the
optimal length. This gives a near-optimal solution with the ratio of performance
guarantee being 5. We note that it is possible for the length of an optimal routing
to grow five times from the undirected case to the directed case. Suppose k& > 3 and
n—k > 2. It is easy to see that a star-edge (z,y) is not on a cycle of size smaller
than 6. Suppose in m, it is directed from y to x. Then any routing from z to y in
ST‘E has length at least 5. This, of course, does not imply that the diameter of m
is five time that of S, ;. Nevertheless, this observation together with Theorem 1
(the diameter of S, ;) provides a simple upper bound.

Theorem 17 Suppose k > 3 and n — k > 2. Then in an unidirectional (n, k)-star
graph, there is an efficient routing algorithm (in n and k) to find a directed path
from a to b whose length is at most five times the distance from a to b. In particular,
its diameter is at most 10k — 5 if 1 < k < |n/2|, and at most 5k + 5| (n — 1)/2] if
n/2] +1<k<n-1.
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We note that we only use the term efficient rather than giving an explicit running
time in Theorem 17 because we have not described the algorithm given by Chiang
and Chen''. Without knowing the algorithm exactly, one simply examines every
edge in the routing produced by the algorithm and checks for its direction to see
whether a replacement of a directed path of length two or three or five is necessary.
Moreover, such a replacement is readily available as the direction procedures given
for fundamental stars and fundamental cliques are explicit and hence such a replace-
ment (if necessary) is also explicit. Hence, any officient routing algorithm for Shik
will give an efficient routing algorithm for Spk- Indeed an efficient optimal routing
algorithm for S,k is given by Chiang and Chen''. Therefore, we have an efficient
near-optimal routing algorithm for m This algorithm is not strictly distributed.
A distributed routing from z to y means that at an intermediate vertex v, the next
step is determined by v and ¥ only and does not require information about the
previous steps nor impose any future steps. Now, for our algorithm, we may need to
replace a reversed arc a < b by a directed path of length two or three or five, hence
a imposes future moves. This contradicts our requirement for a distributed routing
algorithm. However, this imposition is for the next p moves only and p is bounded
above by a constant 5, so it still retains the characteristics of a distributed routing
algorithm. In fact, one can view a step of being p consecutive moves with p < 5.

Although we have only provided a near-optimal routing algorithm and not an
optimal routing algorithm, we note that even for the well-studied special case, the
star graph, an optimal routing algorithm for the unidirectional star graph is un-
known. However, Day and Tripathi'” gives a very good near-optimal algorithm for
the unidirectional star graph.

8. Concluding Remarks

In this paper, we studied the orientation problem on the generalized (n,k)-star
graphs which are generalizations of the popular star graphs. If the regularity of
Sp K is even, then we gave an orientation to obtain a regular directed graph m
If the regularity of Spk 18 odd, then we added a perfect matching to it and gave
an orientation of the resulting graph to obtain a regular directed graph ASp k- In
either case, the resulting directed graph is maximally-arc-connected. In addition,
its diameter is small and we gave an efficient near-optimal routing algorithm. These
graphs provide a large hierarchy of classes of unidirectional interconnection networks
with good properties. This shows that the unidirectional (n, k)-star graphs are very
desirable. An open problem is 0 find a better estimate of the diameter of these
graphs.
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