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Abstract

A comparative study of parallel metaheuristics executed in
grid environments is proposed, having as case study a genetic
algorithm, a simulated annealing algorithm and a random
search method. The random search method was constructed
in order to offer a lower bound for the comparison. Further-
more, a conjugated gradient local search method is employed
for each of the algorithms, at different points on the execution
path. The algorithms are evaluated using the protein struc-
ture prediction problem, the benchmark instances consisting
of the tryptophan-cage protein (Brookhaven Protein Data
Bank ID 1L2Y) and α-cyclodextrin. The algorithms are de-
signed to benefit from the grid environment although having
no particular optimization for the specified benchmarks. The
presented results are obtained by running the algorithms
independently and, in a second time, in conjunction with
the conjugated gradient search method. Experimentations
were performed on a nation-wide grid reuniting five distinct
administrative domains and cumulating 400 CPUs. The com-
plexity of the protein structure prediction problem remains
prohibitive as far as large proteins are concerned, making the
use of parallel computing on the computational grid essential
for its efficient resolution.

I. INTRODUCTION

With the evolution of high-performance and high-
throughput distributed computing and with the proliferation
of nuclear magnetic resonance (NMR) data, we are at the
dawns of a new era in molecular research and pharma-
ceutical drug design. A focus is set by current research
on molecular structure prediction, molecular folding and
molecular docking. Computational modeling and prediction
offer an alternative to laboratory experimentation, unfeasible
for large size molecules. A viable approach for addressing
the implied complexity matters is grid computing, nowadays
admitted as a powerful way for achieving high performance
on computational-intensive applications.

The protein structure prediction problem, further referred
to as PSP, is one of the particularly interesting challenges of
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parallel computing on the computational grid. The problem
consists in determining the ground-state conformation of a
specified protein, given its amino-acid sequence - the primary
structure. The ground-state conformation term designates the
associated tridimensional native form, referred to as zero
energy tertiary structure. Second in the above enumeration,
molecular folding represents a closely related problem, the
desired outcome being the pathways followed along the
folding process in a molecule. Third, molecular docking
describes the complexed macromolecule resulting from the
binding of two separate folded molecules, exerting geomet-
rical and chemical complementarity. From a computational
standpoint, in silico docking simulates molecular recognition,
although not relating to the molecular pathways of the pro-
cess but to the final complexed result. Having been studied
for more than a decade and of particular interest, protein-
protein docking, as a particular case, is fundamental in
understanding biomolecular processes, interactions between
antibodies and antigens, intra-cellular signaling modulation
mechanisms, inhibitor design, macromolecular interactions,
etc.

The importance of the PSP problem is determined by the
ubiquitousness of proteins in the living organisms, applica-
tions of computational protein structure prediction directing
to computer assisted drug design and computer assisted
molecular design. From a structural point of view, proteins
are complex organic compounds composed of amino-acid
residues chains joined by peptide bonds - please refer to
Fig. 1 (the graphical representations of the tryptophan-cage
protein included in the figure were created using UCSF
Chimera [32]). Proteins are involved in immune response
mechanisms, enzymatic activity, signal transduction, etc. Due
to the intrinsic relation between the structure of a molecule
and its functionality, the problem implies important conse-
quences in medicine and biology related fields.

An extended referential resource for protein structural
data may be accessed through the Brookhaven Protein Data
Bank1 [31]. For a comprehensive introductory article on the
structure of proteins and related notions and aspects, consult
[8]. Also, for a glossary of terms, see [35].

1http://www.rcsb.org - Brookhaven Protein Data Bank; offers geometrical
structural data for a large number of proteins
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Fig. 1. First row: structure of an amino-acid - A - NCαC back-
bone structure; B - polymeric structure; ω, Φ and Ψ relate to dihedral
angles; R designates the specific amino acid’s side chain characteristic.
Second row: tryptophan-cage protein (PDB ID 1L2Y) - A - multiple
near-native conformations; B - ribbon-ball&stick representation of a single
conformation.

Referring to complexity aspects of protein structure predic-
tion, as an example, for a reduced size molecule composed of
40 residues, a number of 1040 conformations must be taken
into account when considering, in average, 10 conformations
per residue. Furthermore, if a number of 1014 conformations
per second is explored, a time of more than 1018 years
is needed for finding the native-state conformation. For
example, for the [met]-enkephalin pentapeptide, composed
of 75 atoms and having five amino-acids, Tyr-Gly-Gly-Phe-
Met, and 22 variable backbone dihedral angles, a number of
1011 local optima is estimated. Detailed aspects concerning
complexity matters were discussed in [25][26], leading to
the mention of the Levinthal’s paradox [7] which states that,
despite numerous pathways, in vivo molecular folding for
example, has a time scale magnitude of several milliseconds.
Notes on molecular structure prediction complexity may be
found in [24]. As a conclusion, no simulation or resolution
is possible unless extensive computational power is applied
- it may be inferred that no polynomial time resolution is
achievable if no or less a priori knowledge is employed.

A. Comparative studies in the literature

Different comparative studies were developed in the lit-
erature, considering various areas of interest. Addressing
the diverse parametric elements modeling the behavior of
conformation sampling methods, the work of [12] discusses
the impact of variation operators and local search hybrids
employed for flexible ligand docking evolutionary algo-
rithms. The performance of the evolutionary algorithms is

evaluated by varying different algorithm specific settings, e.g.
population size, mutation, recombination and local search
operators. The presented results lead to an interesting con-
clusion, indicating that local search operators determine the
EAs to be more prone to getting trapped in local minima,
hence being unable to sample an extensive conformational
domain. As a counterpart, an annealing scheme for variance
control in the mutation operator is identified as being an
important efficiency determinant component. In this context,
the search for different annealing schemes is underlined as
an interesting area for further research.

Another comprehensive study was conducted by [13],
comparing a Monte Carlo simulated annealing, a common
genetic algorithm and a Lamarckian genetic algorithm. The
article discusses the various aspects related to the compared
algorithms, problem concepts, empirical free energy function
definition, etc. Overall, it is concluded over the efficiency of
the Lamarckian genetic algorithm under study, indicating it
as the candidate for the case of ligands with an increased
number of degrees of freedom. An interesting comparison
study is also presented in [14], the authors evaluating a
random search procedure for flexible molecular docking and
four heuristic search algorithms, namely, genetic algorithms,
evolutionary programming, simulated annealing and tabu
search. The study is performed on five test cases, using basic
implementations of the mentioned heuristics.

B. Article overview

The herein proposed study takes into consideration a hier-
archical parallel genetic algorithm and a simulated annealing
algorithm. A random search method was also constructed in
order to offer a comparison basis. Each of the algorithms
is discussed in the following chapters, experimentation setup
details being also offered in the results section. As compared
to existing research analyses, the herein proposed study aims
in opposing and comparing the considered algorithms under a
grid environment. Augmented computational resources allow
for higher and more complex algorithmic constructions thus
rendering possible the design of hierarchical concurrent and
parallel approaches. The obtained results offer the base
for creating higher level algorithms and patterns combining
different strategies.

Although briefly presented the underlying technical as-
pects of the used framework, as well as the grid envi-
ronment, were not detailed as being out of scope for our
study, allowing for a better focus on the algorithms. Under
the same considerations, no in-depth details were included
for the employed force field. An important element to be
mentioned would be that, although efforts were made to
compare the algorithms in a consistent manner, there is no
base in opposing the algorithms for the general case - the
interest relies on isolating the strengths of each approach.
Part of the notions and definitions presented in this paper
may also be found in our previous work [16][17], although
not related to the herein presented study and addressing
bicriterion resolution aspects.



The remainder of the paper is organized as follows: a
brief insight of the field is proposed in Section 2 indicating
the main directions for solving the PSP problem. Section
3 sketches each of the employed algorithms, offering also
details over the parallel models that were used. In Section
4, the ParadisEO-G4 framework is described, along with the
subsidiary underlying middleware, Globus-4, the final part
of the corresponding section sketching the general imple-
mentation aspects. In Section 5, experimentation results are
given with an introductory presentation of the GRID5000
computational grid. Section 6 comprises the conclusions.

II. PROTEIN STRUCTURE PREDICTION INSIGHT

The inter-atomic interactions to be considered for the
protein structure prediction problem are a resultant of electro-
static forces, entropy, hydrophobic characteristics, hydrogen
bonding, etc. Precise energy determination also relies on
the solvent effect enclosed in the dielectric constant ε and
in a continuum model based term. A trade-off is accepted
in practice, opposing accuracy against the approximation
level, varying from exact, physically correct mathematical
formalisms to purely-empirical approaches. The main cat-
egories to be mentioned are de novo, ab initio electronic
structure calculations, semi-empirical methods and molecular
mechanics based models. Hybrid and layered approaches
were also designed, in order to reduce the amount of per-
formed calculus in the detriment of accuracy.

The mathematical model accurately describing molecular
systems is formulated upon the Schrödinger equation, which
makes use of molecular wavefunctions for modeling the
spatio-temporal probability distribution of constituent parti-
cles [9]. There should be noted that, though offering the most
accurate approximation, the Schrödinger equation cannot be
accurately solved for more than two interacting particles. For
resolution related aspects, please consult [33], [34].

Extended explanations for the herein exposed directions
are available via [9][10][11][8].

Ab initio (first principles) calculations rely on quantum
mechanics for determining different molecular characteris-
tics, comprising no approximations and with no a priori
required experimental data. Molecular orbital methods make
use of basis functions for solving the Schrödinger equation.
The high computational complexity of the formalism restricts
their appliance area to systems composed of tens of atoms.

Semi-empirical methods substitute computationally expen-
sive segments by approximating ab initio techniques. A
decrease in the time required for calculus is obtained by
employing simplified models for electron-electron interac-
tions: extended Hückel model, neglect of differential overlap,
neglect of diatomic differential overlap, etc.

Empirical methods rely upon molecular dynamics (classi-
cal mechanics based methods), and were introduced by Alder
and Wainwright [21][22]. After more than a decade pro-
tein simulations were initiated on bovine pancreatic trypsin
inhibitor - BPTI [23]. Empirical methods often represent
the only applicable methods for large molecular systems,
namely, proteins and polymers. Empirical methods do not

make use of the quantum mechanics formalism, relying
solely upon classical Newtonian mechanics, i.e. Newton’s
second law - the equation of motion. As to the basis of the
considered approach, we should mention that, according to
recent results [27][28], empirical methods exceed ab initio
methods. Conceptually, molecular dynamics models do not
dissociate atoms into electrons and nuclei but regard them as
indivisible entities.

Also, hybrid and layered methods exist [18][19][20], con-
necting several methods through various computing archi-
tectures, in an attempt to obtain accurate results at low
computational costs, and, consequently, in a reduced period
of time.

III. PARALLEL METAHEURISTICS FOR SOLVING THE PSP
A. Encoding of the conformations

The algorithmic resolution of the PSP, in heuristic context,
is directed through the exploration of the molecular energy
surface. The sampling process is performed by altering the
backbone structure in order to obtain different structural
variations.

Different encoding approaches were considered in lit-
erature, the trivial approach considering the direct coding
of atomic Cartesian coordinates [29]. The main disadvan-
tage of direct coding is the fact that it requires filtering
and correcting mechanisms, inducing non-negligible affected
times. Moreover, by using amino-acid based codings [30],
hydrophobic/hydrophilic models were developed. In addition,
several variations exist, making use of all-heavy-atom coordi-
nates, Cα coordinates or backbone atom coordinates, where
amino-acids are approximated by their centroids.

For the herein described method, an indirect, less error-
prone, torsional angle based representation was preferred,
knowing that, for a given molecule, there exists an associated
sequence of atoms. More specifically, each individual is
coded as a vector of torsion angle values - Fig. 2.

Fig. 2. Chromosome encoding based on specifying the backbone torsional
angles.

The defined number of torsion angles represents the degree
of flexibility. Apart from torsion angles which move less than
a specified parameter, all torsions are rotatable. Rotations
are performed in integer increments, energy quantification
of covalent bonds and non-bonded atoms interactions being
used as optimality evaluation criterion.



B. Scoring function

The scoring function is computed by making use of
bonded atoms energy and non-bonded atoms energy through
an independently developed force field function. The quan-
tification of energy is performed by using empirical molec-
ular mechanics, as depicted in Table III-B. An extensive
discussion on force fields designed for protein simulations,
with in-depth details, is offered in the article of [15]. The
first part of the mentioned work covers the evolution of the
force fields, starting from the 1980s and discussing various
formulations which include the Amber, CHARMM and OPLS
force fields.

TABLE I
SCORING FUNCTION QUANTIFYING THE INTER-ATOMIC INTERACTIONS.

E =
�

bonds

Kb(b − b0)2

+
�

bondangle

Kθ(θ − θ0)2

+
�

torsion

Kφ(1 − cos n(φ − φ0))

+
�

V an der Waals

Ka
ij

d12
ij

− Kb
ij

d6
ij

+
�

Coulomb

qiqj

4πεdij

+
�

desolvation

Kq2
i Vj+q2

j Vi

d4
ij

The involved factors model oscillating entities, the inter-
atomic forces being conceptually simulated by considering
interconnecting springs between atoms. A specific constant
is associated with each type of interaction, notationally
denoted by Kinter. An optimal value for the considered
entity (bond, angle, torsion) is introduced in the equation as
reference for the variance magnitude - (A − A0). A stands
for the experimentation value, while A0 specifies the natural,
experimentally observed value. More specific, b represents
the bond length, θ the bond angle, φ the torsion angle and
qa, dij and Vp the electrostatic charge associated with a given
atom, the distance between the i and the j atoms and a
volumetric measure for the p atom respectively. Although
part of the designed algorithms, we considered out of scope
for the current study to enter into further details concerning
the employed force field. The use of empirical force fields
has the drawback of offering results which are not directly
comparable with results obtained through another differently-
parameterized force field. This inconvenient is avoided by ab
initio techniques although at the price of high computational
demands for calculating the energy of the conformations.

An example of α − cyclodextrin energy surface is given
in Fig. 3.

The set of corresponding molecular conformations was
obtained by modifying a specified near-optimal initial con-
formation. Two torsional angles were chosen at random, for
each of the two torsional angles, values between 0 and 360
being enumerated, in 10 degrees increments, all the other
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Fig. 3. Energy surface for α − cyclodextrin. High energy points are
depicted in light colors, the low energy points being identified by the dark
areas.

torsional angles being maintained rigid. The lighter areas on
the obtained surface correspond to high-energy conforma-
tions. Furthermore, an energy-map representation is given,
in the XY-plane - only the dark regions are meaningful.
The hyper-surface, generated by varying the entire set of
torsional angles has an extremely rough landscape, with a
large number of local optima.

C. Conjugated Gradient Local Search

The developed methods may benefit from relying on a
hybrid architecture, combining, for example, a genetic algo-
rithm with a conjugated gradient-based local search method
- thus, a Lamarckian optimization technique is constructed.

The exploration and the intensification capabilities of the
exploration algorithms, do not suffice as paradigm, when ad-
dressing rough molecular energy function landscapes. Small
variations of the torsion angle values may generate extremely
different individuals, with respect to the fitness function. As a
consequence, a nearly optimal configuration, considering the
torsion angle values, may have a very high energy value,
and thus, it may not be taken into account for the next
generations.

In order to correct the above exposed problem, a
conjugated-gradient based method may be applied for local
search, alleviating the drawbacks determined by the confor-
mation of the landscape. Fig. 4 was obtained by applying
the local search technique for each of the conformations that
were previously used for generating the α − cyclodextrin
energy surface in Fig. 3.

D. Genetic Algorithm

Evolutionary algorithms are stochastic search iterative
techniques, with a large area of appliance - epistatic, multi-
modal, multicriterion and highly constrained problems [4].
Stochastic operators are applied for evolving the initial
randomly generated population, in an iterative manner. Each
generation undergoes a selection process, the individuals
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Fig. 4. Energy surface obtained after applying a Lamarck local search on
the initial set of conformations.

being evaluated by employing a problem specific fitness
function.

Algorithm III-D. EA pseudo-code.

Generate(P (0));
t := 0;
while not Termination_Criterion(P (t)) do

Evaluate(P (t));
P ′(t) := Selection(P (t));
P ′(t) := Apply_Reproduction_Ops(P ′(t));
P (t + 1) := Replace(P (t), P ′(t));
t := t + 1;

endwhile

The pseudo-code in Alg. III-D exposes the generic compo-
nents of an EA. The main subclasses of EAs are the genetic
algorithms, evolutionary programming, evolution strategies,
etc.

Genetic Algorithms (GAs) are Darwinian-evolution in-
spired, population-based metaheuristics that allow a powerful
exploration of the conformational space. However, they have
limited search intensification capabilities, which are essential
for neighborhood-based improvement (the neighborhood of
a solution refers to part of the problem’s landscape). A
random population of individuals is evolved in generations
through different strategies in order for convergence to be
achieved. The genotype represents the raw encoding of indi-
viduals while the phenotype encloses the coded features. For
each generation, individuals are selected on a fitness basis,
genotype alteration being performed by means of crossover
and mutation operators. Applying the genetic operators has
as result the modification of the population’s structure as
to intensify exploration inside a delimited segment or for
diversification purposes.

The presented GA is parallelized in a hierarchical manner.
First, several GAs cooperate by exchanging their genetic
material (parallel island model [4]). Second, as the fitness
function of each GA is time-intensive the fitness evaluation
phase of the GA is parallelized (parallel evaluation of the
population model [4]). These two models are provided in
a transparent way through the ParadisEO-G4 framework

[1][2], dedicated to the reusable design of parallel hybrid
metaheuristics on computational grids.

The granularity of the problem, as counterpart term for the
computationally expensive fitness evaluations, biased the res-
olution pattern towards a parallel, cooperative island-model
approach. As a consequence, several populations evolve on
a master machine, fitness function evaluations being dis-
tributed on remotely available computing units. We have to
note that the evaluation of the fitness function consists of
several stages, including the calculation of Cartesian atomic
coordinates, inter-atomic distances determination, etc.

Complexity may also be addressed by developing spe-
cialized operators in conjunction with hybrid and parallel
algorithms. The parallel affinity of the EAs represents a
feature determined by their intrinsic population-based nature.
The main parallel models are the island cooperative model,
the parallel evaluation of the population and the distributed
evaluation of a single solution.

For a complete overview on parallel and grid specific
metaheuristcs refer to [1][3][4][5].

Island deployment model and parallel evaluation of the
individuals: multiple algorithms are executed independently
in a concurrent manner, migrations of the individuals occur-
ring on a periodic basis. Parallel evaluation of the population
is also employed by each algorithm - for simplicity the
figure depicts only one algorithm performing the parallel
evaluation step.

The designed genetic algorithm follows the above exposed
pseudo-code, including in addition two levels of parallelism
- island model and parallel evaluation of the population. An
island model was adopted in the design, several independent
algorithms being executed concurrently, the algorithms ex-
changing individuals at a predefined number of iterations -
emigrants and immigrants. The exchange is performed in
an asynchronous manner, i.e. no synchronization between
the execution/generations of the algorithms is imposed - an
important aspect to consider when there is an interest in
having algorithms converging at different rates. The emigrant
conformations are selected through a stochastic tournament
technique, the integration of the immigrant individuals being
performed by replacing the worst individuals in the popula-
tion. At each migration phase, one third of the population
is selected for the exchange. In addition, at each generation,



the best obtained conformation till that point is preserved.
In order to exploit the local search capabilities of the

conjugated gradient local search method, two different sets
of operators were designed. For each operator type, crossover
and mutation, a simple approach was followed - a two-
point crossover and, respectively, a one-point torsion angle
mutation. In addition, operators that apply the local search
method on the outcome offsprings were designed. As an
example, for the second case, the crossover generates two
new conformations starting from two specified parents, the
offsprings being optimized by applying the local search
method. Similarly, for the mutation operator, after applying
a random torsion angle variation on a random chosen angle,
the local search method is applied. One potential drawback
of this technique resides in the fact that it may lead to a
premature convergence of the algorithm, thus a careful bal-
ancing of the two sets of operators being required, allowing
in the same time for diversity and convergence.

The migrating individuals contribute to maintaining diver-
sity while assuring for the coordinated convergence of all the
islands.

E. Simulated Annealing Algorithm

Simulated annealing algorithms are solution-based meta-
heuristics and were introduced as a generalization of
Metropolis Monte-Carlo techniques, for simulating the evo-
lution of a solid in the process of annealing - refer to Alg.
III-E for a simple pseudo-code example. The system starts
from an initial disordered state gradually following a cooling
schedule, maintaining the thermodynamic equilibrium. Mod-
ifications of the current state are accepted on a Boltzmann
probability distribution, i.e. the acceptance probability being
computed according to a previous found state. Simulated
annealing algorithms have a performance guarantee of find-
ing the global optimum provided an idealistic long enough
schedule is offered. The algorithm may act alternatively as a
global search or as a local search method, depending on the
schedule.

Algorithm III-E. SA pseudo-code.

Generate(S0);
k := 0;
while T (k) > Tthreshold do

for s := 1 to nbSamples do
Srand := randomMove(S0);
∆E := eval(Srand) − eval(S0);

if ∆E < 0 then
S0 := Srand;

else
S0 := Srand with prob. 1.0

1.0+e∆E/T (k)

endif
endfor
k := k + 1;

endwhile

The main drawback of the simulated annealing algorithm
consists in the fact that it is difficult to parallelize with-
out breaking the underlying philosophy, resulting in high
computational-demanding methods. As a counterpart, there
is no optimality guarantee proof for the genetic algorithm.

For our study, a limited number of samples were generated
at each step of the schedule, the samples being evaluated
in parallel. Furthermore, a synchronous multi-start model is
employed for launching several SA algorithms in parallel on
a random generated set of initial solutions, at each step of
the schedule, a specified number of sampled conformations
being evaluated in parallel. The overall best found value is
considered as final result. Although more complex simulated
annealing variants may be constructed, for our purposes a
minimalist version was preferred as to not induce an artificial
bias between the compared algorithms.

Another problem to be considered for the simulated an-
nealing algorithm would be the design of a cooling schedule
to be followed. For our case a simple exponential decreasing
schedule was considered, at each iteration of the algorithm,
the temperature being reduced by multiplication by a fixed
constant. In this case, the initial temperature must also be
attentively selected. More sophisticated variants of simulated
annealing algorithms render the method less sensitive to
the different parameters involved, i.e adaptive versions, etc.
For the scope of the proposed study, addressing parallelism
issues, the algorithm was developed in a basic form.

F. Random search method

The developed random search method (pseudo-code ex-
ample in Alg. III-F) does not comport any optimization -
the only aspect to be mentioned is the parallel evaluation
of randomly generated set of conformations, in an iterative
manner. Evaluating the conformations in parallel for this case
only reduces to alleviating the walltime of the computation.
The overall best found conformations is considered as final
result.

Algorithm III-F. Random search method pseudo-code.

for s := 1 to nbIterations do
Prand := generateRandomConf(nbConformations);
evaluateInParallel(Prand);
updateOverallBestFoundSolution(Prand);

endfor

IV. PARADISEO-G4 BASED IMPLEMENTATION

ParadisEO2 is a framework dedicated to the reusable
design of parallel hybrid meta-heuristics by providing a
broad range of features, including EAs, local search meth-
ods, parallel and distributed models, different hybridization
mechanisms, etc. The rich content and utility of ParadisEO
increases its usefulness.

ParadisEO is a C++ LGPL white-box open source frame-
work, based on a clear conceptual separation of the meta-
heuristics from the problems they are intended to solve. This
separation, and the large variety of implemented optimization
features, allow a maximum code and design reuse. Changing
existing components and adding new ones can be easily done,
without impacting the rest of the application.

ParadisEO is one of the rare frameworks that provide
the most common parallel and distributed models, portable

2http://paradiseo.gforge.inria.fr



on distributed-memory machines and shared-memory multi-
processors, as they are implemented using standard libraries
such as MPI, PVM and PThreads. The models can be
exploited in a transparent way - one has just to instantiate
its associated ParadisEO components. The user has the
possibility of choosing, by a simple instantiation, the MPI
or the PVM for the communication layer. The models have
been validated on academic and industrial problems, and the
experimental results demonstrate their efficiency [5]. The
architecture of ParadisEO-G4 is layered as it is illustrated
in Fig. 5.

Fig. 5. A layered architecture of ParadisEO-G4.

From a top-down view, the first level supplies the opti-
mization problems to be solved using the framework. The
second level represents the ParadisEO framework, including
optimization solvers, embedding single and multicriterion
meta-heuristics (evolutionary algorithms and local searches).
The third level provides interfaces for MPICH-G2 based
programming. The fourth and lowest level supplies commu-
nication and resource management services.

The implementation relies on invariant elements provided
by the ParadisEO-G4 framework, providing support for the
insular model approach, as well as for distributed and parallel
aspects concerning the parallel population evaluation. In this
context, deployment related aspects are transparent, the focus
being oriented on the application-specific elements.

The main steps to be performed, in order to configure
the environment and to deploy the algorithm, consist in
specifying the individuals encoding, the specific operators
and the fitness function. Furthermore, elements concerning
selection mechanisms and replacement strategies must be

specified, along with configuration parameters (number of
individuals, number of generations etc).

V. EXPERIMENTS AND RESULTS

The underlying support for performing the experiments
was GRID5000, a French nation-wide experimental grid,
connecting several sites which host clusters of PCs inter-
connected by RENATER3 (the French academic network).
GRID5000 is promoted by CNRS, INRIA and several uni-
versities4 - please refer to [6] for details.

At this time the GRID is gathering more than 2600
processors with around 2.5 Tb of cumulated memory and 100
Tb of non-volatile storage capacity. Inter-connections sustain
communications of 2.5 Gbps (10 Gbps soon). The target
point to be achieved is a marker-stone of 5000 processors
for 2007, regrouping nine centers: Bordeaux, Grenoble, Lille,
Lyon, Nancy, Orsay, Rennes, Sophia-Antipolis, Toulouse.

The runs were executed on five sites, namely Lille, Nice
- Sophia Antipolis, Lyon, Nancy and Rennes, cumulating an
overall of 400 CPUs. The GRID is designed to allow a per
reservation utilization of the resources - no interferences may
occur during the experiments, the allocation of the resources
being associated only with the user which requested the reser-
vation. The demanded resources are completely available
during the entire experimentation time, unless in extremis
exceptional events occur. Detailed information regarding all
the involved functional aspects may be accessed on the
GRID5000 web site: https://www.grid5000.fr. Graphical re-
sults are presented in Fig. 6, Fig. 7 and Fig. 8 - as previously
mentioned, the benchmark instances were the tryptophan-
cage mini-protein (PDB ID 1L2Y) and α-cyclodextrin (which
is not a protein but it represents a special interest due to its
toroidal structure and its applications in drugs development).

A. Configuration of the algorithms

1) Genetic Algorithm: The genetic algorithm has been
designed to iterate for 100 generations, the size of the
population being maintained to a constant number of 300
individuals. As mentioned in section III-D, two sets of
operators were employed with the following probabilities:
0.95 - crossover operator, 0.15 - local search crossover, 0.05
- mutation operator and 0.05 - local search mutation. In
addition, overall probabilities were associated for each type
of operators: 1.0 and 0.1 for the crossover and the mutation,
respectively. This results, for example, in a probability of
0.95 for applying the simple crossover operator and of 0.15
for applying the local search crossover, given the overall 1.0
associated probability - a simple roulette wheel decision is
performed. A stochastic tournament selection strategy was
enclosed in the algorithm for selecting offsprings out of
the population to be evolved. The replacement phase for
back-integrating the offsprings is performed by using also
a stochastic tournament strategy.

3Réseau National de Télécommunications pour la Technologie,
l’Enseignement et la Recherche - http://www.renater.fr

4CNRS - http://www.cnrs.fr/index.html; INRIA - http://www.inria.fr.



Another element with important consequences over the
algorithm is the asynchronous migration parameterization -
frequent migrations may result in a premature convergence
while distant migrations fall in the opposite case (the al-
gorithms having independent evolutions). For our case, one
sixth of the population migrates at each five generations, in
asynchronous manner (migrations occur at different times,
depending on the evolution of the algorithm). A stochastic
tournament selection strategy is being applied for selecting
the emigrant individuals while the immigrant discard the
worse individuals in the target population. Migrations are
performed inside a ring topology, each algorithm having
a source island for receiving individuals and a destination
island for sending the emigrant individuals.

2) Simulated Annealing: The main problem for imple-
menting the simulated annealing algorithm in order to offer
a consistent comparison base was to assure that the same
number of evaluations is performed as for the genetic al-
gorithm. The cooling schedule is given by an interpolation
curve defined through a pre-defined set of control points.
The resulting curve was defined to mimic to some extent an
exponential schedule. The initial temperature was set to 1000,
the final threshold being set to 0.1 - each of the extremes is
defined by an associated control point. In addition, a fixed
number of steps is considered, each step having an associated
temperature given by the interpolation curve schedule. At
each step ten random moves are performed by modifying the
solution found at the given step - each of the generated iter-
ations is evaluated in parallel. Furthermore, three instances
of the simulated algorithm are launched in parallel, the final
solution being given as the overall optimal solution.

3) Random Search: No special settings were defined for
the random search method - the only constraint consists in
having the same number of evaluations as for the genetic
algorithm. The method is being executed in an iterative man-
ner, at each iteration a pre-defined number of conformations
being randomly generated (300 conformations for our case),
to be evaluated in parallel in a master-slave model.

B. Experimental outcomes

An important improvement is obtained by applying the
gradient local search method - the main disadvantage of
the method consists in the fact that it blocks easily in local
optima points. As a comparison, for the α-cyclodextrin, the
set of solutions found by genetic algorithm hybridized with
the gradient method had an average of 201.37 kcalmol−1

(stdev. 21.82 kcalmol−1), with a maximum of 243.05
kcalmol−1 and a minimum of 161.69 kcalmol−1 while
the genetic algorithm alone gave a set of solutions with an
average of 3790.56 kcalmol−1 (stdev. 708.54 kcalmol−1)
and a maximum, minimum of 5845.27 kcalmol−1, 2470
kcalmol−1, respectively. For both approaches, the maximum
number of generations was maintained at 100 - for each case,
the number of steps for the gradient method was set to 30. A
number of 30 independent executions were performed for the
hybridized GA as well as for the GA alone. Furthermore, the
runs of the simulated annealing algorithm had as result a set

of solutions with an average of 2359.26 kcalmol−1 (stdev.
281.12 kcalmol−1), with a maximum of 4593 kcalmol−1

and a minimum of 1029.14 kcalmol−1. All the solutions
obtained for the α-cyclodextrin by using the hybridized GA
were bellow the native energy - not a guarantee for a correct
solution but rather a measure of the exploration capabilities
of the algorithm. This was not the case for the tryptophan-
cage protein for which the algorithm did not descend to
a native-energy level. The average computational load for
the computers performing the evaluation phase varied in
the range of 90%-99% - at the opposite end, the computer
executing the island genetic algorithm remained in a range
which did not pass 3% of the CPU power.

In Fig. 6, a graphical comparison is offered for the
genetic algorithm and the simulated annealing algorithm -
the results obtained for the later one were stretched in order
to be overlayed inside the same interval, thus offering an
overall perspective. Only the best individuals (for each of the
algorithms deployed in the insular model) were considered,
at each generation; for the simulated annealing algorithm
only the improvement points were represented. For the
presented case, the genetic algorithm was hybridized with
the conjugated gradient method, an elitist approach being
adopted. The conformations obtained at the end of the SA
runs were further optimized by applying the gradient search
method, resulting in improvements in the range of 5%-
10%. As multiple genetic algorithms are being concurrently
executed as part of the island model, the improvements for
each of the algorithms are being depicted as points, an
overall interpolation evolution curve unifying the results.
In the same manner, the improvements for the simulated
annealing algorithms are depicted as blue points. The second
snapshot in Fig. 6 represents a fitness decorrelation measure
for the island-executed GAs over all the generations, offering
an overview of the fitness dynamics along the execution
path. The decorrelation measurements offers information
regarding the convergence rate of the algorithm thus given
the possibility of deciding on the different parameters of the
algorithm - it may be observed the tendency of converging
towards the upper limit near the 100 generation.

A typical run of a genetic algorithm for the α-cyclodextrin
is exposed in Fig. 7. Furthermore, Fig. 8 includes results for
the α-cyclodextrin for the simulated annealing algorithm, in
the first row, and the results for the random search method, in
the second row. Neither of the algorithms manages to obtain
a close result, as opposed to the native conformation, in the
fixed time-frame / number of conformations, for the 1L2Y
conformation (with 46.446 kcal mol−1). Nonetheless, for α-
cyclodextrin, with native-conformation energy of 242.4 kcal
mol−1, the genetic algorithm descends below this energy,
reaching at conformations with energy as low as 160 kcal
mol−1.

Although an artifact of the force field parametrization,
the obtained low-energy α-cyclodextrin conformations result
comes to sustain the chosen approach as a viable exploration
technique.



Fig. 6. Experimental results - execution of an island-model genetic
algorithm hybridized with a conjugated gradient local search method. As
an overlay, on the first picture, the search paths of several synchronously
started simulated annealing algorithms - only the improvement points were
depicted. The second picture offers an image of the GA fitness decorrelation
over the generations.

Fig. 7. Experimental results for α-cyclodextrine, using the genetic
algorithm combined with the gradient local search method.

Fig. 8. Experimental results: first row - results for α-cyclodextrine
using the simulated annealing algorithm; second row - random search
method results for 1L2Y (no gradient search applied) and α-cyclodextrine
(combined with the gradient search), respectively.

The second row in Fig. 8 offers the graphical represen-
tation for the random method results - the 1L2Y protein,
no gradient applied, and α-cyclodextrin, combined with
the conjugated gradient search method. As expected, much
worse results are obtained - the method was used only for
comparison purposes, with no real practical application.

VI. CONCLUSIONS AND FUTURE WORK

For the case of our study, the genetic algorithm proved to
better behave on the considered benchmarks. A few things
to be mentioned would be that, in the given time frame,
the genetic algorithm alone, without the conjugated gradient
local search method, does not outperform the simulated
annealing algorithm. The sequential nature of simulated
annealing algorithm as well as its underlying philosophy
allows for little intrinsic parallelism. Furthermore, for the
simulated annealing algorithm, hybridization schemes with
the gradient method are not straight-forward paths to follow.
Depending on the implementation template, the algorithm
tends to get easily trapped in local minima or becomes
subject to moves only from one local optimum to another,
allowing for less or no uphill changes.

The immediate idea to follow would be to hybridize the
genetic algorithm with the simulated annealing algorithm.
The first offers a variate range of conformations to serve
as starting points for further sampling while the second is
less prone to getting easily trapped in local minima, unlike
the gradient local search method. Considering in addition the
nature of the execution environment, hierarchical multi-stage
parallel models may be envisaged, combining the insular



model with the parallel evaluation of the conformations and
the synchronous multi-start model.
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