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Abstract

Text-indexing structures provide significant advantages in the solution of many problems related to
string analysis and comparison, and are nowadays widely used in the analysis of biological sequences.
In this paper, we present some applications of affix trees to problems of exact and approximate pattern
matching and discovery in RNA sequences. By allowing bidirectional search for symmetric patterns
in the sequences, affix trees permit to discover and locate in the sequences patterns describing not only
sequence regions, but also containing information about the secondary structure that a given region
could form, with improvements in terms of theoretical and practical efficiency over the existing
methods. The search can be either exact or approximate, where the approximation can be defined
simultaneously both for the sequence and the structure of patterns. The approach presented in this
paper could provide significant help in the analysis of RNA sequences, where the functional motifs
often involve not only sequence, but also the structural constraints.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Once considered to be a mere mediator of the genetic code, RNA is now recognized
as a key player in a wide variety of cellular processes[5,9]. RNA (ribonucleic acid) is a
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linear molecule composed of four different nucleotides (bases), guanine, adenine, cytosine
and uracil (that is similar to thymine, found in DNA). Thus, RNA sequences are usually
represented by strings over the alphabet�RNA = {A,C,G,U }. In living organisms, RNA
is synthesized using one of the two DNA strands as a template. Once a RNA molecule has
been copied from DNA, it starts to fold on itself forming a three-dimensional structure. Nu-
cleotides composing the sequence bind to each other in different ways. The complementary
nucleotidesC–G andA–U form stable base pairs with each other through the creation of
hydrogen bonds between donor and acceptor sites on the bases. These are calledWatson–
Crick base pairs, since they are the same bonds that hold the two strands of a DNA molecule
together. In addition, some other base pairings are found in RNA structures, like the weaker
G–Upair (wobble pair) where bases bind in a skewed fashion. All of these are calledcanon-
ical base pairs. Other non-canonical pairs are sometimes also found, some of which are
stable (like theG–A pair).

Thesecondary structureof a RNA sequence is usually represented by the list of the base
pairs taking place between nucleotides, with the following constraints:
(1) no nucleotide takes part in more than one bond (base pair);
(2) base pairs never cross: if nucleotide in positioni of the sequence is paired with nucleotide

j > i, and nucleotidek > i is paired withl > k, then eitheri < j < k < l or i < k <

l < j , but neveri < k < j < l.
These properties allow us to represent the secondary structure in a very space efficient way.
An example is the dot–bracket notation, where the secondary structure of a RNA sequence
of n nucleotides is described by an character string on the alphabet�S = {(,.,) }.
A base pair between nucleotidesi and j is denoted by an open bracket in positioni and
a close bracket in positionj > i. Since base pairs cannot cross, it is always possible to
determine for each open bracket which is the corresponding close one. Unpaired nucleotides
are indicated by a dot. If the second constraint listed above is relaxed (base pairs can cross),
then the structure is said to containpseudoknots.

The various elements found in RNA secondary structure can be classified as follows:
(1) A stack(or helix) consists of nested, consecutive base pairs,(i, j), (i + 1, j − 1), . . . ,

(i + k, j − k), with i < j . The length of the stack isk + 1. Pair(i, j) is theterminal
base pair of the stack.

(2) A loop is defined as all unpaired nucleotides immediately interior to a base pair.
(3) Anexternal nucleotideis any unpaired nucleotide not contained in a loop. Consecutive

external nucleotides are calledexternal elements.
Each nucleotide involved in a base pair belongs to a unique stack. All unpaired nucleotides
are either interior or exterior to a base pair. Interior unpaired nucleotides must belong to a
loop, likewise exterior nucleotides must belong to an external element. Since each stack,
loop and external element is unique the decomposition is also unique. These observations
yield the following:

Lemma 1. Any secondary structure S can be uniquely decomposed into external elements,
loops and stacks.

Moreover, loops can be characterized in different ways. Leti + 1, i + 2, . . . , i + k − 1
be a stretch ofk − 1 unpaired nucleotides forming a loop. Hence, basesi andi + k must be
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Fig. 1. Decomposition of RNA secondary structure in hairpin loops (a), internal loops (b), bulges (c), multi-loops
(d), stacks (e), external elements (f). The elementse–b–e–a ande–c–e–a form two hairpins.

paired with some other nucleotide. We have different possibilities:
(1) nucleotidei is paired withi + k. Then, the loop is said to be ahairpin loop;
(2) nucleotidei is paired with some nucleotidej > i, andi + k with l. Since base pairs

cannot cross, we have thatl < j . If l = j − 1, theni + 1, . . . , i + k − 1 are said to
form abulge; otherwise, if also all nucleotidesl + 1, . . . , j − 1 are unpaired, together
with i + 1, . . . , i + k − 1 they form aninternal loop;

(3) nucleotidei + k is paired withl < i + k. Then,i is paired withj > l. Analogously
with the previous point, we have a bulge ifj = l + 1, or an internal loop ifj > l + 1
and the intervening nucleotides are unpaired;

(4) if none of the previous conditions is true, then nucleotidesi + 1, . . . , i + k − 1 form a
multiloop.

An example is shown in Fig.1. A series of stacks (possibly interrupted by internal loops
and/or bulges) immediately followed by a hairpin loop is usually referred to asstem, and
the whole structure is calledhairpin or stem–loop. Returning to the dot–bracket alphabet,
the structure shown in the figure is denoted as

..((((..(((((.(((.....)))..)))))..(((((((....)))..))))..))))..

1.1. Motifs in RNA secondary structure

Several experiments and observations have shown that local distinct structural elements
in non-coding RNA molecules are strictly correlated with their function[9,38]. Thus, given
one or more RNA sequences experimentally known or suspected to have a given biological
function, finding similar structural elements in them could provide significant evidence
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Fig. 2. Synthesis and structure of messenger RNA.

on which parts of the sequences, and their structure, is responsible for the function itself.
Alternatively, the detection of a known motif in a newly determined sequence could shed
some light on the function, or the mechanisms regulating the expression of the sequence
itself. Also, one of the most important open problems is the detection in genomes of genes
of non-coding RNA, like tRNA, ribosomal RNA, microRNA, srpRNA, RNAse P RNA,
and many others[5]. Knowing in advance a functional motif conserved throughout differ-
ent species in a given non-coding RNA molecule, together with a suitable pattern match-
ing algorithm able to detect such a motif in a newly sequenced genome, could highlight
some interesting regions that might contain the gene encoding for that type of non-coding
RNA.

Moreover, many RNA motifs of biological interest can be described by secondary struc-
ture alone. A striking example is post-transcriptional regulation of gene expression[12].
After a messenger RNA (mRNA) molecule has been transcribed from a genome, with a
complex mechanism influenced by the presence of enhancing or inhibitory signals in the
genomic regions surrounding starting point of the corresponding gene, its actual translation
into a protein undergoes further regulation, determined by the interaction of the mRNA with
proteins and/or other RNA molecules. These interactions involve the presence in the mRNA
of motifs presenting conservation both in structure and (more loosely) in sequence, that are
recognized by regulatory proteins and/or other RNAs. These motifs are usually located in
the so-calleduntranslated regions(UTRs), non-coding parts of the sequence located in the
mRNA immediately before (5′UTR) or after (3′UTR) the part actually translated into a
protein (see Fig.2). Here are some examples.

1.1.1. Histone 3′UTR mRNA
Metazoan histone 3′UTR mRNAs, lacking a polyA tail, contain a highly conserved stem–

loop structure with a six base stem and a four base loop. This stem–loop structure plays
a different role in the nucleus and the cytoplasm. The histone 3′UTR hairpin structure is
peculiar in that the bases of the stem are conserved, unlike most functional hairpin motifs,
where conserved bases are found in single-stranded loop regions only, and its consensus is
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usually represented as in[42]:

((((((....))))))
GGYYYUHURHARRRCC

whereY = C,U (pyrimidines),R= A,G (purines) andH= not G .

1.1.2. Iron responsive element
The iron responsive element (IRE) is a hairpin structure conserved in the 5′UTR or in

the 3′UTR of various mRNAs coding for proteins involved in cellular iron metabolism, that
works as a sensor of the iron level of the cell. Two alternative IRE consensus structures
have been found. Some IREs present an unpaired nucleotide (usually cytosine) on the stem,
whereas in others the cytosine nucleotide and two additional bases seem to oppose one free
3′ nucleotide[14]:

(((((.(((((......))))))))))
NNNNNCNNNNNCAGWGHNNNNNNNNNN
(((((...(((((......))))).)))))
NNNNNNNCNNNNNCAGWGHNNNNNNNNNNN

whereW= A,U . As we can see, there is no conservation in the nucleotides forming the stem,
but only in those forming the loops. And, moreover, the motif can appear in two alternative
structural forms.

1.1.3. Selenocysteine insertion sequence
Selenocysteine is the recently discovered 21st amino acid. The codon calling for this

amino acid in mRNA isUGA, usually indicating the end of translation. In order to have
UGAread as a selenocysteine codon, and bound by the corresponding tRNA, proteins con-
taining this amino acid (usually calledselenoproteins) present the Selenocysteine Insertion
Sequence (SECIS) element, a conserved stem–loop motif located in the 3′UTR of the corre-
sponding mRNAs. Two forms of the SECIS motif have been determined, respectively with
long (12–14 nucleotides, SECIS I) and short (3–6 nucleotides) apical loops (SECIS II)[6].
SECIS I stems can be split in two parts, interspersed by an internal loop (see Fig.3). The
topmost helix contains non-canonical base pairings at the bottom, always with twoG–A
pairs. In the second form, nucleotides forming the apical loop bind to one another, and as a
result the upper helix is interrupted by another internal loop. Other than the non-canonical
G–A pairs, SECIS hairpins present two consecutive unpaired adenine nucleotides, either in
the apical loop (I) or inside an internal loop (II). Experimental evidence supports the fact
that the form II is found more often than the first. The non-canonical pairs are essential to
mediate selenoprotein translation. Several algorithms and programs have been developed
for the discovery of potential SECIS elements in mRNA, and genome-wide scans have led
to the discovery of new selenoproteins[2,19,23]. All the methods relied on the presence of
the non-canonical base pairs.

In biological sequences, sequence similarity usually implies structural and/or functional
similarity. However, if we consider RNA secondary structure we notice that, very often,
conserved motifs present similarity at the sequence level only in the unpaired elements
(internal or hairpin loops), that are free to interact with other nucleotides and/or proteins.
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Fig. 3. Examples of SECIS I (left) and SECIS II (right) hairpin structures found in the mRNA of selenoproteins.
(Figure taken from[2].)

Paired elements (i.e., along stacks) are instead much less conserved at sequence level, since
what is required from them is only to bind to each other. Thus, looking for elements similar
in sequence in a set of RNA sequences sharing the same biological function often yields
unsatisfactory results, since regions loosely similar can fold anyway into similar structures
playing the same biochemical role. Unfortunately, the secondary structure is almost never
available.

It is therefore important, when developing algorithms for pattern matching and discovery
in RNA sequences to consider not only sequence similarity, but also associate with the
regions compared the (potential) secondary structure that they might form. For example, a
genomic sequence can be scanned for coding regions or promoters by considering sequence
information alone. Instead, sequence conservation in non-coding RNA is much looser, and
almost undetectable by current methods (or detectable at the price of millions of false
positives). A number of different secondary structure matching tools have been introduced
so far for RNA[20,26,32]. However, to our knowledge, the one presented in this paper is
the first algorithm for this problem based on an indexing structure. As we will see, this fact
provides significant advantages in terms of theoretical and practical efficiency with respect
to existing methods.
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2. Affix trees

Let � be an alphabet, and�∗ the set of strings over�. In our case,� = {A,C,G,T}
(or � = {A,C,G,U} ). Given a string (sequence)S = s1 . . . sn ∈ �∗, we denote withSR

the reverseof S, that is,SR = sn . . . s1. If S = ���, with �,�, � ∈ �∗, then� is a prefix
of S, and� is a suffix ofS. Text-indexing structures, like suffix trees, present significant
advantages for the solution of problems related to string analysis and comparison, and
are nowadays widely used for the representation of DNA and protein sequences. In this
section we introduce the affix tree, a data structure that contains more information than the
suffix tree, but can anyway be built in linear time and space. As we will see, this additional
information can be exploited in the case of RNA.

Definition 1. An affix tree[37] for a non-empty stringS = s1 . . . sn is a directed acyclic
graph[13] A(S) = (V , E) such that:
(1) one distinct node, with no incoming edges, is marked asroot;
(2) E = Es ∪ Ep, andEs ∩ Ep = ∅. That is, the edges ofA(S) are divided in two disjoint

subsets, that we will callsuffixandprefixedges;
(3) suffix edges are labeled with non-empty substrings ofS;
(4) prefix edges are labeled with non-empty substrings ofSR;
(5) two edges of the same type leaving the same node cannot have labels starting with the

same character;
(6) on each path starting from the root and following suffix edges only, the concatenation

of the edge labels spells out a substring ofS;
(7) on each path starting from the root and following prefix edges only, the concatenation

of the edge labels spells out a substring ofSR;
(8) every substring ofSis spelled out by a unique path starting from the root and following

suffix edges only, while every substring ofSR is spelled by a unique path following
prefix edges only.

(9) for each nodep the tree, where� is the concatenation of the labels of suffix edges from
the root top, the path from the root top following prefix edges spells out�R.

The structureA(S) can be seen as composed by two sub-structures(V , Ep) and(V , Es),
that are trees that index the substrings ofSR andS, respectively. An example is shown
in Fig. 4. As we have seen in the definition, ifp is a node of the structure, and� is the
concatenation of the labels of suffix edges from the root top, the path from the root to
p following prefix edges spells out�R. There is a path on suffix (prefix) edges labeled�
ending exactly at a node if substring� appears inS (or SR, respectively) followed by at
least two different characters, or if it is a suffix ofS(SR). In the example shown in Fig.4,
the node whose suffix label isATA has been created because its label on prefix edgesata
corresponds to a suffix ofSR.

Now, letp be a node of the structure, and� be the concatenation of the labels of suffix
edges from the root top. The path from the root top following prefix edges will spell�R. Let
p → q be a prefix edge leavingp and entering nodeq, and� = �1 . . . �l be its label. Then,
the suffix path from the root toq spells out substring�R� of S. This property is essential for
the algorithms we will present in the following, since once a substring ofShas been located
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Fig. 4. Affix tree for stringATATC. Suffix edges are solid, while prefix edges are dotted. Prefix edges labels are in
italic.

in A(S), we can expand it in both directions starting from the corresponding node in the
structure. That is, we can add characters both to its right end (by following suffix edges) and
to the left end, by following prefix edges, but always moving downward in the structure. If
|�| > 1, then�1� occurs in the stringalwayspreceded by substring�l . . . �2. If no prefix
edge leaves nodep, then substring� starts only at position 1 (is a prefix) ofS. Conversely, if
no suffix edge leaves nodep, then� occurs only as a suffix ofS. The same argument holds
for the substrings ofSR, clearly by swapping suffix edges with prefix edges, and vice versa.
From now on, we will callstring depthof any path along the edges of the structure (either
suffix or prefix) the length of the concatenation of the edge labels of the path.

The affix tree of a string can be built in linear time, and takes linear space[25]. An
analogous structure can be built for a set ofkstrings, following for example the construction
method described in[13] for suffix trees. Moreover, each node of the structure can be
annotated with ak-bit string, where theith bit is set iff the corresponding substring (spelled
by suffix edges) occurs in theith string of the set.

2.1. Pattern matching with affix trees

Text-indexing structures, like suffix trees and automata, usually permit to find the occur-
rences of a pattern in a string by matching the characters of the pattern from left-to-right (or,
in some cases, from right-to-left), until all the characters have been matched, or a mismatch
is encountered[13]. Instead, given the affix tree for a stringS, we can match a pattern
P = p1p2 . . . pm with the sequence starting from any character ofP. For example, let
pi be the middle character (we assume w.l.o.g. thatm is odd): we will have to match the
characterspi+1 . . . pm on suffix edges as usual (forward match), and those precedingpi on
prefixedges (backward match).
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More in detail, we first locatepi on the suffix edges leaving the root. To matchpi−1 we
(1) Go to the node entered by the edge where we foundpi . Letcsbe the number of characters

on the edge label we skip.
(2) Traverse the prefix edge whose label starts with characterpi−1 (if it exists: otherwise,P

does not appear inS). Move backward toward the root (on a suffix edge) bycs characters.
We will have to move along a single edge. Letpi−1� be the label of the prefix edge we
have traversed. We have two cases
(a) |�| = 0. The position reached corresponds to the endpoint of the path (read on suffix

edges) corresponding to the occurrences inSof pi−1pi .
(b) |�| > 0. The position reached corresponds to substring�Rpi−1pi . Sincepi−1pi

and�Rpi−1pi occur exactly at the same positions inS, all paths starting from the
endpoints ofpi−1pi and�Rpi−1pi will have the same suffix edge labels. The only
difference is that in the next matches we will use the same prefix edge for the
characters precedingpi−1 in the pattern, without traversing it but only matching
characters, keeping the endpoints reached at the previous forward match, until all
the characters of� have been used. Then, we proceed as usual. In general, we will
follow these steps for any prefix edge with labela� and|�| > 0.

At this point, we matchpi+1 on suffix edges from the endpoint reached at the previous
step. Then, we continue withpi−2 as withpi−1, and so on, alternating one forward match
with one backward match, until all characters have been matched in both directions, or a
mismatch is encountered. We chose to match the characters ofP starting from the center
and alternating the two directions. While for any pattern this is probably not the simplest
and most efficient way, it is anyway the best choice when dealing with patterns describing
RNA secondary structure, as we will see in the following.

3. Matching hairpins

The basic element of RNA secondary structure, often by itself responsible for a variety of
biological functions, is the hairpin. If we observe the pattern associated with it, for example
H = (((((....))))) (possibly interspersed by internal loops and/or bulges), we can
notice that it presents a peculiar symmetric layout, with the central part corresponding to
the hairpin loop, flanked by the nucleotides that form the stem. Now, suppose that, given
a RNA sequenceS = s1 . . . sn, we want to find out whether it might form, somewhere,
the hairpin structureH. The idea is that, ifH can appear in the secondary structure of the
sequence, thenSwill present at least one substringsi+1 . . . si+14 such thatsi+1 can form a
canonical base pair withsi+14, nucleotidesi+2 with si+13, and so on.

Now, letA(S) be the affix tree forS. From the root, we follow every path on suffix edges
only until we reach the string depth corresponding to the size of the hairpin loop (four in the
example). Since we do not impose any sequence constraint, every substring of length four is
a candidate for the formation of the hairpin loop. Then, from the endpoints we reached, we
try to expand each path by adding one character to its right and one to its left, and, for each
possible pair, we check whether it can form a canonical base pair. We discard the paths that
do not satisfy this property. The surviving paths will spell out substrings ofSthat might fold
into structure(....) . If the structure we want to find contains also internal loops and/or



38 G. Mauri, G. Pavesi / Theoretical Computer Science 335 (2005) 29–51

Fig. 5. Adding a base pair to substring�(p). Bases� and�′ form a base pair. Noder spells substring�′�(p)�.
Suffix edges are solid, prefix edges are dotted.

bulges on the right-hand side, we just have to follow the suffix edges on each path for a
number of characters matching their length, without any further check. The same holds for
internal loops and bulges on the left-hand side, that will be matched against characters on
prefix edges (see Fig.5). Each path can be defined by a pair of pointers, one indicating the
end of the path on suffix edges, and the other one indicating its end on prefix edges, that can
be used when we have to traverse a prefix edge whose label is longer than one character.

More formally, letP = p1p2 . . . pm a pattern on the bracket alphabet�S describing a
stem–loop structure, andS a string on�RNA. Let A(S) be the affix tree ofS. Let pi be
the first character ofP before the hairpin loop (an open bracket), andpj the first character
after it (a close bracket). Letl = j − i − 1. Each path on the structure is denoted by two
pointersep andes for prefix and suffix edges, respectively. The steps of the algorithm can
be summarized as follows:
Initialization: From the root ofA(S), follow every possible path on suffix edges until

string depthl is reached. LetE be the set of paths (each one denoted by two pointers)
reached. Nucleotidepi is the last nucleotide before the hairpin loop,pj is the first one after
the hairpin loop.

While i > 0 andj < m

(1) While pi = ( andpj = ) do
(a) E′ = ∅;
(b) For each path(ei

p, e
i
s) ∈ E:

(i) add one character on prefix edges from the endpointei
p (by moving by one char-

acter on the prefix edge, or by traversing it). LetÊP be the set of corresponding
pointers;

(ii) for each path(êi
p, ê

i
s) ∈ ÊP , move by one character from̂ei

s on those suffix
edges that continue with a character that forms a canonical base pair with the
one that was added toei

p. Add the corresponding paths toE′.
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(c) E = E′;
(d) i = i − 1; j = j + 1.

(2) Left= 0;
(3) While pi =. Left= Left+ 1;
(4) If Left> 0

• E′ = ∅;
• On each path(ei

p, e
i
s) ∈ E move byLeftcharacters on prefix edges starting fromei

p.

For each endpoint(êi
p, ê

i
s) reached,E′ = E′ ∪ (êi

p, ê
i
s);

• i = i − Left;
• E = E′;

(5) Right= 0;
(6) While pj = . Right= Right+ 1;
(7) If Right> 0

• E′ = ∅;
• On each path(ei

p, e
i
s) ∈ E move byRightcharacters on suffix edges starting from

ei
s. For each endpoint̂ei

s reached,E′ = E′ ∪ (êi
p, ê

i
s);

• j = j + Right;
• E = E′;

The algorithm stops whenever the set of pointersE is empty. In this case, patternP does
not appear inS, that is, the structure it represents cannot be formed, according to base
pairing rules, by the sequence, and the part of it that has been matched represents the largest
sub-structure ofP that has been found inS. Otherwise, at the end the setE will contain
pointers to the substrings ofSthat might fold into the structure.

3.1. Validating candidate matches

Clearly, from a biological point of view, locating regions that match a structural pattern
according to base pairing rules only is not enough to guarantee that they actually form
the structure described by the pattern. The most widely used methods for the prediction
of RNA secondary structure associate with each possible conformation an energy value
[27,40]. The energy of the unfolded sequence is set at 0 kCal/mol. Every base pair brings a
negative contribution to the energy, according to its stability. For example, theG–Cpair has
the lowest value, since it is stable and causes the formation of three hydrogen bonds between
the two nucleotides. PairA–U brings a slightly higher energy contribution, since one less
hydrogen bond is formed, and so on. Unpaired nucleotides contained in the structure have
a destabilizing effect, bringing a positive contribution to the energy, that changes according
to which nucleotides are left unpaired, and the size of the unpaired elements (larger loops
give a larger energy value). The space of all possible conformations is explored with a
dynamic programming algorithm that takes O(n3) time for a sequence of lengthn, and the
structure of minimal energy (if there exist a structure whose energy is lower than zero)
is the one predicted. The problem is that often, in practice, the real structure of a RNA
molecule does not correspond to the one of minimal energy, since RNA energy landscapes
are often bumpy and rugged[3], and the actual structure is just a local minimum, instead of a
global one.
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However, a similar approach can be followed also in our case. That is, once the substrings
that could fold into the structure described by the pattern have been located, we can also
evaluate the energy of the structure associated with each one. Then, we can report the hits
sorted according to their energy, in order to highlight the most probable ones, or report only
those of negative energy, and so on. While energy by itself is not always reliable for the
evaluation of the overall structure of a sequence, it is much more precise when it is applied
to a single hairpin structure corresponding to a substring. In fact, our experiments revealed
that functional hairpin motifs (not involved in more complex structures) in non-coding
RNA like the ones shown in Section1.1have a negative energy value, usually proportional
to the number of base pairs involved in the structure, as also demonstrated in[31]. Thus,
considering only those substrings whose corresponding energy is lower than the unfolded
one, permits to eliminate from the output a large number of false positives, usually with
low risk of losing a true motif.

3.2. Complexity

Let Sbe a string over the alphabet�RNA of lengthn. Given a patternP of m characters
on the dot–bracket alphabet, a naive approach to matchP againstScould be to consider
each of the substrings ofSof lengthm, and to check whether it fits the structural patternP,
with an overall O(nm) time complexity.

In our method, instead, the construction of the affix tree takes O(n) time. For matching
patternP in the structure in the worst case we have to follow every possible path leaving
the root. When we are at string depthl, there are at mostp = min{4l , n} possible paths
in the structure. However, only 6 pairs out of 16 can form a canonical base pair in RNA
structure. Thus, when we add a base pair starting from all the possible 4l paths we discard
more than half of them. If string depthl was reached by addingb base pairs andu unpaired
nucleotides, the number of paths is thus bounded byp = min{(3/8 · 42)b · 4u, n}. Each
expansion takes constant time on each path, and, ifP appears inS, the algorithm performs
at most O(pm) expansions. The affix tree requires O(n) nodes, and we need at most 2n

pointers to perform the search. Thus, the overall space complexity of the algorithm is O(n).
The advantages of the preliminary construction of the affix tree become evident when one

has to match a large number of patterns against a sequence, andn?m, like a newly sequence
bacterial genome scanned for known non-coding RNA motifs. In fact, while without the
indexing structure the O(nm) bound is tight, since we have to consider exactlyn − m + 1
substrings of lengthm, with the affix tree we can expect the number of paths to be in practice
much lower thanp, also whenn > 4l . For example, if we assume that the input sequence
has uniform nucleotide composition, we can expect, on the average, to discard more than
one half of the possible paths each time we add a base pair.

4. Matching approximate descriptors

The method presented in the previous section can be easily extended in order to consider
approximate matching of hairpin structures, that is, allowing differences in size and posi-
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Fig. 6. Defining an approximate hairpin. The lower part of the stem can have from 3 to 5 base pairs, the internal
loop can have from 1 to 3 unpaired nucleotides on the left-hand side and at most one on the right-hand side, and
the hairpin loop is formed by 5 or 6 nucleotides.

tion in the various elements forming them. For example, we can define structural patterns
like

([3-5].[1-3]([4-5].[5-6])[4-5].[0-1])[3-5]

(see Fig.6). In this way, we describe an hairpin whose lower stem ranges from 3 to 5 base
pairs, that has an internal loop ranging from 1 to 3 nucleotides on the left-hand side and
from zero to one nucleotide on the right-hand side, 4 or 5 base pairs on the upper part of
the stem, and finally an hairpin loop of five or six nucleotides. Note that range values of the
paired elements on the left-hand side have to match those of the corresponding elements
on the right-hand side. The idea is similar to the exact case: first, we locate in the affix tree,
on suffix edges, all the substrings whose length corresponds to the range allowed for the
hairpin loop. In the example, we consider all substrings of length five and six. Then, we
proceed by adding base pairings as usual, but in this case we will consider as matching all
those paths where we were able to add four or five base pairs. On each of these paths, we
add one, two, or three unpaired nucleotides on the left-hand side (prefix edges), and zero or
one nucleotide on the right-hand side (suffix edges). Finally, on the paths obtained, we add
three, four, or five base pairs.
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More in general, approximate patterns will have the form:

([s 1-S 1] .[i 1-I 1] . . . ([s p-S p] .[h-H] )[s p-S p] . . .

.[i 2p-2 -I 2p- 2] )[s 1-S 1]

describing a pattern composed of a stem divided inp parts, interspersed on each side by
p − 1 internal loops, and with an hairpin loop ranging fromh to H nucleotides. For each
element, we provide a minimum and maximum size value. In the initialization step we
consider all the substrings of length ranging fromh toH. Then, on each path, we try to add
a minimum ofsp base pairs and a maximum ofSp, and so on. For example, a descriptor
containing the two alternative forms of the IRE motif can be written as

([3-5] .[1-3] ([5-5] .[6-6] )[5-5] .[0-1] )[3-5]

4.1. Complexity

With respect to the exact case, in the approximate case paths of different length can
correspond to occurrences of the same pattern. Moreover, different structures can be asso-
ciated with the same substring, at least before the final energy check. For example, substring
CGGGCNNNNGUCUG(whereNstands for any nucleotide) could fold, according to canonical
base pairing rules, into structures(.((((....).)))) or (((((....))))) . At the
initialization step, we start with at most(H − h + 1)n paths. When we add the base pairs
of the upper part of the stem, we have at most(Sp − sp + 1)(H − h + 1)n paths. When
we add an internal loop of size ranging fromij to Ij the number of paths is multiplied by
(Ij − ij + 1). An upper bound on the number of pathsb can be thus given by:

b�(H − h + 1)

p/2∏

j=1

(Sj − sj + 1)

2p−2∏

j=1

(Ij − ij + 1) · n.

Given i = maxj (Ij − ij + 1) ands = maxj (Sj − sj + 1) an estimate of the complexity
is finally given by O((H − h)i2p−2spn). In biological circumstances, usuallyp�3,
(H − h) < 5, the difference in sizei between internal loops is lower than five (and their
size is lower than ten), and the range of paired stackssdoes not exceed three or four.

4.2. Adding sequence information

If something about the sequence composition of a motif, other than its structure, is known
in advance, this information can be easily added to the algorithm, in practice making it
faster. As we have seen in the examples, sequence conservation is often encountered in the
unpaired regions of the motifs. Thus, while defining a pattern, we can extend the bracket
alphabet with additional symbols, representing the four nucleotides or groups of them. The
only difference is that now, instead of accepting any substring in the initialization step and
any path in correspondence to internal loops, we check whether the characters defined are
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matched. For example, given one of the two forms of the IRE motif:

(((((.(((((......))))))))))
NNNNNCNNNNNCAGWGHNNNNNNNNNN

in the initialization step we keep the substrings matchingCAGWGH(CAGAGA, CAGUGA,
CAGAGC, and so on). Then, after five base pairs have been added, we expand the surviving
paths by looking for aCon prefix edges, discarding the others. The unpaired regions can be
also described with a consensus and a maximum error allowed for their instances (according
for example to Hamming or edit distances), or with a profile and a corresponding weight
threshold.

5. Hairpin discovery with affix trees

In some cases, instead of knowing a functional motif in advance, we just suspect that a
set of coregulated RNA sequences might contain a conserved motif, responsible for their
function and/or regulation. The problem is that the motif, as well as its conservation, is not
known in advance.

The problem of finding conserved secondary structure motifs in RNA sequences has been
often coupled with the prediction of the structure itself. If the sequences are expected to
fold into an overall similar structure, they can be aligned beforehand, and the alignment
can be used to predict a consensus secondary structure[8,36,39,41]. A method to predict
the same global structure for a set of sequences without aligning them is instead presented
in [1].

If structural similarity is instead limited to some elements, like single hairpins, the prob-
lem becomes even more challenging. Sequence alignments can be anyway used also in this
case, and common structural elements can be predicted only for the most conserved parts
[43]. Alternatively, one can try to identify with statistical methods regions of the sequences
that seem to be good candidates for the formation of a functional motif, such as unusual
folding regions[22] (where the folding free energy of the region is significantly lower than
that expected by chance) or well ordered folding regions[21], and try to predict a common
fold only for these regions, even if a precise characterization of what can be considered an
interesting region is far from immediate[35]. Another idea is to align the sequences and
predict a common secondary structure simultaneously, either locally or globally, as in the
FOLDALIGNandSLASHalgorithms[10,11]. The main drawback of this kind of approach
lies in its high time complexity, a priori exponential in the number of input sequences, that
even if reduced to about O(L4N4) for L sequences ofN nucleotides with the introduction
of some heuristics, limits its usage to short sequences. Finally, if one has some hint about
the structure and/or the sequence of the motif, a pattern matching tool, like the one just
presented, can be used, in order to locate regions in the sequences that can fold into a given
structure[20,26,32], and the results can be post-processed in order to extract from them the
most similar hits[7]. An approach based on evolutionary computation aimed at the opti-
mization of the search parameters is presented in[18]. In any case, an ultimate tool, able
to detect efficiently and reliably conserved secondary structure elements, such as simple
stem–loop structures, has yet to be introduced. It is thus hardly a surprise the fact that this
problem has been called “finding hairpins in a haystack”[4].
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However, another precious feature of indexing structures is that they allow to implement
recursively the exhaustive search for a given set of patterns. This property also holds for affix
trees and RNA secondary structures. Suppose that we are given a set ofk RNA sequences
S, and we want to find out whether the same (unknown) hairpin structure appears in every
sequence, perhaps with some differences. The idea is to build the affix tree for the set of
sequences, and implement a recursive search for the set of all possible hairpin structures.

In fact, the search, for example, of structures(((((....)))..)) and
(((((....))))) will have to locate(((....))) first. Thus, the set of endpoints
reached for this structure can be used as a starting point for both searches, and we do not
have to start from the root again while searching for the second motif. Moreover, if we
find out that no substring can fold into structure(((....))) , then we know also that no
substring will be able to fold into any structure having(((....))) as a core. In this way,
the exhaustive search for all possible stem–loop folding patterns, including bulges and/or
internal loops can be implemented in a much more efficient way. In order to determine
in how many, and which, sequences a given pattern appears, we can employ the bitstring
annotation describe in Section2.

Given a set of RNA sequencesS, the basic version of the discovery algorithm needs as
input a maximum value for the loop size of the motifs (in biological circumstances, this
usually is never larger than 20), a maximum numberuof unpaired nucleotides that can form
internal loops and bulges along the stem (both these parameters are optional, but providing
an upper bound for them significantly accelerates the search, ten is a suitable value), and
a quorumq representing the minimum number of sequences a motif has to appear in. The
core of the algorithm can be summarized as follows:

Initialization (stringsS, int max_loop_size, quorumq):
(1) Build and annotate with bitstrings the affix tree for the strings ofS.
(2) For each loop sizel, with l�3 andl�max_loop_size:

(a) Locate in the affix tree all the nodes corresponding to substrings of lengthl, and try
to add a base pair to each one; letP be the set of the surviving paths;

(b) Call Expand(P);

ProcedureExpand(pathsP):
(1) For each path inP try to add a base pair; letP ′ be the set of paths obtained.
(2) If at leastq bits are set in the bit string ofP ′, call Expand(P ′), otherwise Report(P).
(3) If less thanu unpaired nucleotides have been added, for each path inP add a single

letter by following suffix edges; letP ′ be the set of paths reached.
(4) Call Expand(P ′).
(5) If less thanu unpaired nucleotides have been added, and the current structure does not

end with unpaired nucleotides, add a single letter to each path ofP by following prefix
edges; letP ′ be the set of paths reached.

(6) Call Expand(P ′).
(7) Return.

The additional condition in step (5) of procedure Expand ensures that no duplicate structures
are generated, that is, avoids that the same structure is obtained more than once in different
iterations by adding unpaired nucleotides in different order.As we have just presented it, the
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algorithm can detect regions candidate to form exactly the same structure, with an apical
loop of sizel and at mostu unpaired nucleotides along the stem. Whenever a base pair
cannot be added to a structure the algorithm reports it (Report(P)), as well as the substrings
folding into it (possibly if the structure contains a minimum number of base pairs). Keeping
the basic idea intact, we can also allow some differences in the occurrences of a motif, that
is
• motifs with apical loops of different size in their occurrences (providing a range value

�l to the algorithm for the initialization step: the algorithm will start each iteration with
loop sizes ranging froml to l + �l);

• motifs presenting in their occurrences internal loops of different size (or bulges) located
at the same positions along the stem;

• motifs presenting in their occurrences internal loops of different size (or bulges), located
at different positions along the stem;

• motifs differing in their occurrences in any combination of the previous points;
• any stem–loop structure that appears in the sequences is considered as an instance of the

same motif.
Once again, the algorithm looks for regions of the sequences thatmight form a given
structure. The energy evaluation can however be applied also to this case. In other words,
we expand each path that satisfies the base pairing rules, but, before reporting a motif, we
check whether the energy associated with each substring is negative (or lower than a given
threshold that depends on the substring size). If the constraint is satisfied in at least one
occurrence forq sequences, we report the motif.

5.1. Sequence similarity

Sequence similarity can be included also in this algorithm, for example in the choice of
the initial loop candidates, or during the expansions with unpaired nucleotides. However, it
is not simple to establish a priori what degree of similarity require for unpaired elements.
Thus, in our experiments, we took a different approach. First, we use the algorithm to locate
structural motifs, without taking into account sequence information. Then, in case more
than a single occurrence per sequence is reported by the algorithm, we post-process the
output by looking for similarity in the unpaired nucleotides, in order to find out which
candidate regions are more likely to correspond to a conserved structural motif. This can be
done by employing a greedy approach similar to the pattern-discovery methodConsensus
[15,16]. In case also the structural similarity required to the algorithm is not very stringent,
we can compare different candidate motif occurrences by considering paired and unpaired
nucleotides simultaneously, employing an appropriate values for matches and mismatches
between paired and unpaired nucleotides[30]. The difference is that, instead of aligning and
comparing whole sequences, in this case the regions to compare, as well as the structure
associated with them, have already been selected, with a few occurrences in each input
sequence. In this way, it is also possible to group into separate motifs regions that on
a structural basis were assigned to the same motif. For example, suppose that a set of
sequences contains two distinct motifs, both having a four nucleotide loop. By considering
only structural similarity, the algorithm will report their occurrences as belonging to the
same motif. If sequence similarity in the loop can be used to discriminate one motif from
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the other, then the algorithm at the end of the post-processing step will be able to report two
motifs instead of one. The same considerations apply also to structural similarity. Moreover,
in case more than a single motif is reported, the score of the alignment of the respective
occurrences can be used as a measure of significance to rank the motifs output according
to their conservation.

5.2. Complexity

The affix tree for a set ofk sequences takes O(N) time to be built, and has O(N) nodes,
whereN is the overall length of the strings. Annotating it with the bit strings requires
additional O(kN) time. If we do not consider sequence similarity in the choice of the initial
loops, ranging in size froml to L we have at mostN initial paths for each length, O(�LN)

in all, where�L = (L − l + 1). At each expansion, either of a base pair or an unpaired
base, we just have to follow the edges of the structure (constant time) and perform a O(k)

time OR of the bit strings. Since the structure contains at most O(N) paths from the root for
each loop length, each motif expansion takes O(k�Lp) time, where againp is the minimum
between 4l (the maximum string depth reached) andN. The number of iterations we have
to perform clearly depends on the number of different structures we have to match on the
sequences, and on the degree of structural similarity we allow. For example, if we require
the motif to be without any internal loop or bulge, we have to performb iterations, where
b is the number of base pairs in the stem of the longest motif discovered, and we return to
the exact case complexity of O(b�Lkp). If we allow a single internal loop of size range
�i, and require it to appear at the same position in every instance, we have O(b) choices
for its location along the stem, and thus O(b2�i�Lkp) iterations to perform. Analogous
expressions can be derived for any type of structure and approximation.

5.3. Beyond hairpins

Clearly, RNA motifs are sometimes more complex than single hairpins. An example
is the Y-shaped structure of the internal ribosomal entry site (IRES)[29], or, in general,
multi-loops, as shown in Fig.1. Moreover, if we also allow crossing base pairs, as in
some definitions of RNA secondary structure, we also havepseudoknots. However, in both
cases any complex RNA element can be decomposed into single hairpins, possibly with
threshold values for the size of unpaired elements connecting them, and with additional
base pairs closing the structure. The idea is thus to first locate in the sequence all the
single hairpins composing the structure. Then, simple post processing can determine which
hairpins are located within distance thresholds specified, and/or cross each other to form
pseudoknots.

6. Experimental evaluation

The algorithms described in this article have been implemented on a standard Pentium
III class computer with 256 Mb of RAM running the Linux operating system. The routines
for folding and free energy calculation were taken from theRNAlib library (part of the



G. Mauri, G. Pavesi / Theoretical Computer Science 335 (2005) 29–51 47

Vienna RNA package[17]), using Turner energy rules[27,40]. We report here the results
obtained on some typical case studies, where the presence of a motif in a set of sequences,
as well as its structure, has been verified experimentally.

6.1. IRE

We briefly described the structure and function of the IRE in the first section. Although
quite simple and structurally well-conserved, this motif has proved itself to be quite elusive
in the years, and it is a typical benchmark for RNA analysis methods[7,10,11,18]. In fact,
if we compute the free energy associated with the structure, in most of the cases it is very
close to zero (corresponding to the unfolded state). Thus, if we run a prediction algorithm
on a sequence known experimentally to contain the motif, it often does not appear in the
prediction, nor in most of the sub-optimal structures, since the energy contribution of the
motif to the overall structure is significantly small[28]. In our test, we reproduced the
experiment performed withSLASH[11], taking from the UTR data base[33] the 5′ UTR
region of 20 ferritin mRNA sequences containing the IRE element (fourteen were included
also in the original benchmark, plus one that had been discarded because too long for
SLASH, plus five new ferritin sequences added to the data base in the meantime). Sequence
length ranged from 100 to about 600 nucleotides. We ran the algorithm looking for motifs
appearing in all the sequences with the same loop size, and an internal loop (of unknown
and variable size, possibly composed of zero nucleotides, not necessarily located at the
same position) on each side of the stem. Basically, these parameters described every short
hairpin structure, with the sole additional constraint that the occurrences of the motif had to
have the same (unknown) apical loop size. We successfully discovered the motif, without
any false positive. Also, we did not need any post-processing of the results: that is, the only
motif reported was the IRE, appearing once in each sequence, in either of the two forms,
matching either form of the experimentally known structure. All in all, the execution of
the program, including the preliminary construction of the affix tree, took a few (less than
five) seconds. To make a comparison, the running time ofSLASHon the same dataset was
reported to be around 10–12 h[11]. As a further test, we re-ran the algorithm searching
for motifs with different structures, allowing the loop size to vary from three to twenty
nucleotides, and allowing up to ten unpaired nucleotides, regardless of their position in the
sequences. The only constraint we kept was requiring an apical loop of the same size in
all the occurrences. The algorithm took longer (less than 1 min), but once again the only
conserved motif detected was the IRE, without false positives in its occurrences.

6.2. SRP RNA

Some proteins have to be translocated across a membrane to perform their biological
function. These proteins are characterized by the presence of a specific N-terminal signal
sequence. The Signal Recognition Particle (SRP) binds to ribosomes while they are trans-
lating the mRNA of a protein of this kind. Then, the SRP bound to the ribosome interacts
with the SRP-receptor located on plasma membranes (prokaryotes) or the endoplasmic
reticulum (eukaryotes), driving the protein and the ribosome to translocational membrane
pores[24]. SRP RNA (4.5S in prokaryotes and 7S in eukaryotes) is an essential component
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Fig. 7. The secondary structure ofHalobacterium alobiumSRP RNA[34].

>MET.JAN.
CCGCCAGGCCCGGAAGGGAGCAACGG
(((.....(((....))).....)))
>MET.VOL.
CCGCCAGGCCCGGAAGGGAGCAACGG
(((.....(((....))).....)))
>MET.FER.
GGT-CAGGCCCGGAAGGGAGCA-GCC
(((-....(((....)))....-)))
>MET.THE.
GGT-CAGGCCTGGAAAGGAGCA-GCC
(((-....(((....)))....-)))
>MET.ACE.
GTC-GAGGCCCGGAAGGGAGCA-GAC
(((-....(((....)))....-)))
>HAL.HAL.
CGC-CAGGCACGGAAGTGAGCA-GCG
(((-....(((....)))....-)))
>ARC.FUL.
GCC-CAGGCCCGGAAGGGAGCA-GGC
(((-....(((....)))....-)))
>PYR.ABY.
CGC-AAGGCCCGGAAGGGAGCA-GCG
(((-....(((....)))....-)))

Fig. 8. Alignment of the domain IV stem–loop structures of archaea SRP RNA output by the algorithm.

of the particle (see Fig.7). Through phylogenetic comparison, SRP RNA has been divided
into four structural domains (I–IV). A key part of SRP RNA is a stem–loop structure in
domain IV (number 8 in the figure), that is the binding site for the protein component of
the SRP. We retrieved from the SRP data base[34] all the SRP RNA sequences (without
using the alignment provided for them). The set comprises 48 bacterial, 14 archaea, and
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64 eukaryote sequences, ranging in size from 200 to 500 nucleotides. Then, we ran the
algorithm on each separate superkingdom, with the same parameters (same hairpin size,
internal loop of variable size) of the IRE test. In each case, the only motif reported had hair-
pin loop size four, with a few (at most around five) occurrences in each sequence. The post
processing phase allowed to highlight the correct instance in each sequence, correspond-
ing to the domain IV stem–loop structure (see Fig.8). Each run of the algorithm (com-
posed by the construction of the structure, pattern discovery, and post-processing) took less
than 1 min.

7. Conclusions

We have presented algorithms for exact and approximate pattern matching and discovery
in RNA sequences. All the algorithms permit to locate and discover motifs not only accord-
ing to sequence information, but also considering the secondary structure formed by the
sequences. The introduction of the affix tree permitted to obtain significant improvements,
both in theory and in practice over existing methods. In fact, the implementation of the
algorithms described on this paper and the tests performed on real biological instances like
the ones briefly introduced at the beginning of this article have shown results compara-
ble with the best existing methods, with a significant reduction on the time needed by the
computations.
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