
Information Processing Letters 107 (2008) 138–141
Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

Well-separated pair decomposition in linear time? ✩

Timothy M. Chan

School of Computer Science, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada

a r t i c l e i n f o a b s t r a c t

Article history:
Received 17 October 2007
Received in revised form 8 February 2008
Available online 11 April 2008
Communicated by S.E. Hambrusch

Keywords:
Computational geometry
Approximation algorithms
Quadtrees

Given a point set in a fixed dimension, we note that a well-separated pair decomposition
can be found in linear time if we assume that the ratio of the farthest pair distance to
the closest pair distance is polynomially bounded. Many consequences follow; for example,
we can construct spanners or solve the all-nearest-neighbors problem in linear time (under
the same assumption), and we compute an approximate Euclidean minimum spanning tree
in linear time (without any assumption).

© 2008 Elsevier B.V. All rights reserved.
Techniques from computational geometry have led to
efficient approximation algorithms for many proximity-
related problems on n-point sets in low-dimensional Eu-
clidean spaces [18]. For example, we can answer approx-
imate nearest neighbor queries in logarithmic time after
O(n log n)-time preprocessing [2]; we can construct a span-
ner with O(n) edges with 1 + ε stretch factor in O(n log n)

time [21]; we can construct a (1 + ε)-factor approximate
Euclidean minimum spanning tree (EMST) in O(n log n)

time [20].
In this note, we observe that many of these O(n log n)

algorithms can be sped up to run in linear time under a
fairly reasonable assumption—namely, that the spread, de-
fined as the ratio of the largest pairwise distance to the
smallest pairwise distance, is bounded by a polynomial nc

for a fixed constant c.
Specifically, we show that a well-separated pair decompo-

sition (WSPD) [5]—a well-known tool in the area (e.g., see
various books and surveys [16,18,19] or below for the pre-
cise definition)—can be constructed in linear time under
this assumption. Immediately, this implies linear-time al-
gorithms for spanners, approximate EMST, and other prob-
lems (e.g., the exact all-nearest-neighbors problem). For

✩ This work was supported in part by NSERC.
E-mail address: tmchan@uwaterloo.ca.
0020-0190/$ – see front matter © 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.ipl.2008.02.008
the EMST case, we can in fact eliminate the bounded-
spread assumption.

The model we use is one that computational geome-
ters are most comfortable with—the real-RAM model. We
only assume that the floor function is available and that
the word size is at least log n. (If instead we assume that
coordinates are integers and adopt a transdichotomous
word RAM—a model that has gained attention in recent
years [8,9]—we can eliminate the bounded-spread assump-
tion and still obtain o(n log n) algorithms for WSPD, with
running time matching the best integer-sorting results [1,
13,14].) Note that in contrast, under the algebraic decision
tree model (which disallows the floor function), �(n log n)

lower bounds were known for WSPD, spanners, and many
proximity problems for general point sets.

The techniques we use merely involve combining known
algorithms with the “shuffle-and-sort” idea from the au-
thor’s previous papers [6,7] (which addressed the static
and dynamic closest pair problems and approximate near-
est neighbor search). Although none of the individual
steps are original, the end results have not been no-
ticed before; for example, our linear-time algorithm for
approximate EMST is a strict improvement over a previ-
ous O(n log log n)-time approximation algorithm by Bern et
al. [3], which was applicable only for the 2-d case. Writ-
ing this brief note thus seems justified. The presentation
below, though concise, will be largely self-contained.

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:tmchan@uwaterloo.ca
http://dx.doi.org/10.1016/j.ipl.2008.02.008

T.M. Chan / Information Processing Letters 107 (2008) 138–141 139
Step 0: Rounding to a grid

Let P0 be the given set of n points in R
d , where d is

treated as a constant. Let ε be any sufficiently small pa-
rameter exceeding 1/n�(1) . Let D be the distance of an
arbitrary point in P0 to its farthest neighbor (computable
in linear time). Note that the diameter of the point set (the
farthest pair distance) is at most 2D .

Consider a uniform grid with side length 2εD/nc .
Round each point to its nearest grid point, and let P be
the resulting set of grid points (computable in linear time
using the floor function). By scaling, we may assume that
the coordinates of P are all integers in the range [0,2w)

where w = �log(nc/ε)� = O(log n).

Step 1: Sorting in shuffle order

Given a point p with coordinates (p1w . . . p11, p2w . . .

p21, . . . , pdw . . . pd1) written in binary, the shuffle of p is
defined to be the number p1w p2w . . . pdw . . . p11 p21 . . . pd1
written in binary.

The shuffle of a point can be computed in constant
time, since w = O(log n): We can first build a table stor-
ing the shuffles for all possible d-tuples of (log n)/b-bit
coordinates; the table can be initialized in o(n) time if
we choose a constant b > d. To compute the shuffle of a
point with O(log n)-bit coordinates, we break each coor-
dinate into O(1) subwords each of length (log n)/b (using
shifts, implementable by the floor function), and then per-
form O(1) shuffles on these subwords by table lookup and
concatenate the results. Each shuffle can be stored in O(1)

words.
As preprocessing, we sort the points p1, . . . , pn ∈ P in

increasing order of their shuffle values (the shuffle order).
This step takes O(n) time, since for a set of n O(log n)-bit
integers, radix sort with O(1) rounds runs in linear time.

Remark. If w were superlogarithmic, we can still get
o(n log n) running time by applying known integer-sorting
algorithms, on a word RAM model where the shuffle oper-
ation can be done in constant time.

Step 2: Computing a compressed quadtree

Define a hierarchy of quadtree boxes1 as follows: the
hypercube [0,2w)d is a quadtree box at level 0; for each
quadtree box B at level i, form two quadtree boxes at level
i + 1 by dividing B evenly via a hyperplane orthogonal to
the ((i mod d) + 1)th axis. Of the two subboxes of B , the
one with smaller (resp., larger) ((i mod d) + 1)th coordi-
nate is the left (resp., right) subbox. Note that all quadtree
boxes at the same level form a grid, with aspect ratio at
most 2. We use |B| to denote the diameter of a box B
(which is solely a function of the level).

It is not difficult to see that quadtree boxes and shuffles
are related: all points in the left subbox of a quadtree box

1 The name arose from the special case d = 2. Several variants of the
definition exist; we use a binary version here where the degree of the
quadtree is 2 instead of 2d .
B have smaller shuffle values than all points in the right
subbox.

The compressed quadtree T for a point set P is defined
as follows: if P has only one point, then T is just a leaf
holding this point; otherwise, T consists of a root holding
the smallest quadtree box B enclosing P , and two subtrees
recursively built for the subset of points in the left subbox
of B and the subset of points in the right subbox of B .
Note that T is a binary tree with O(n) nodes (and O(w)

height).
The definition above does not immediately suggest a

linear-time algorithm, but we can use the following equiv-
alent reformulation, based on the observation that the
left-to-right order of the leaves in T coincides precisely
with the shuffle order p1, . . . , pn . Let box(p,q) denote the
smallest quadtree box containing p and q. Consider the
index j such that |box(p j−1, p j)| is the largest. Then the
compressed quadtree T for {p1, . . . , pn} simply consists of
a root holding box(p j−1, p j) and two subtrees recursively
built for {p1, . . . , p j−1} and for {p j, . . . , pn}.

This re-definition actually reduces to a known con-
struct (specifically the “Cartesian tree” of the sequence
|box(p1, p2)|, |box(p2, p3)|, . . . , |box(pn−1, pn)|), for which
there is a standard incremental algorithm [11]. We quickly
re-describe this algorithm for the sake of completeness
(it bears some resemblance to Graham’s scan [12]). We
maintain the rightmost root-to-leaf path q1, . . . ,qk of the
tree as points are inserted in shuffle order. As the next
point pi arrives, we insert a new node for box(pi−1, pi)

in an appropriate place along this path, then update the
path by removing a suffix and appending the new node. In
the pseudocode below, q.box, q.left, and q.right denote the
box, left child, and right child of a node q.

0. q0.box = R
d , q0.right = p1, k = 0

1. for i = 2, . . . ,n do
2. while |box(pi−1, pi)| > |qk.box| do k = k − 1
3. create a node qk+1 with qk+1.box = box(pi−1, pi),

qk+1.left = qk.right, qk+1.right = pi
4. qk.right = qk+1, k = k + 1

The test in line 2 takes constant time: we can deduce
the level of box(p,q) from the most significant bit position
in which the shuffle of p and the shuffle of q differ. The
most-significant-bit operation can be implemented in O(1)

time, since w = O(log n), by using table look-up as before
if necessary.

The running time to compute the compressed quadtree
is O(n) by a simple amortization argument: the total cost
of line 2 is proportional to the total number of decrements
of k, which is bounded by the total number of increments
of k, which is clearly at most n.

Step 3: Computing a WSPD

Two sets A and B are said to be ε-well-separated if the
diameter of A and the diameter of B are both at most ε
times the minimum distance between A and B . Notice that
distances between pairs of points from A × B are all iden-
tical to within a factor of 1 + O(ε).

An ε-well-separated pair decomposition (ε-WSPD) of size m
for a point set P is a collection of ε-well-separated pairs of

140 T.M. Chan / Information Processing Letters 107 (2008) 138–141
subsets {(P1, Q 1), . . . , (Pm, Q m)}, where Pi, Q i ⊆ P , such
that every pair of points (p,q) ∈ P × P (p �= q) lies in Pi ×
Q i or Q i × Pi for exactly one index i. The usefulness of the
WSPD can be seen as it allows all pairwise distances to be
compactly summarized by m distances. Note that the size
of the WSPD is defined as the number of subset pairs m,
not the total sizes of the subsets; in constructing WSPDs,
the subsets Pi and Q i may be represented implicitly.

Given a compressed quadtree T , we can compute
a WSPD of linear size by the following simple recur-
sive algorithm, which is essentially taken from Callahan
and Kosaraju’s original paper introducing WSPDs [5]. We
quickly include both the pseudocode and analysis here for
the sake of completeness. Below, P [q] denotes the subset
of points underneath the node q. We initially call wspd(q)

with q being the root.

wspd(q):

0. if q is leaf then return ∅
1. return wspd(q.left) ∪ wspd(q.right)

∪ wspd(q.left,q.right)

wspd(q1,q2):

2. if q1.box and q2.box are ε-well-separated then
return {(P [q1], P [q2])}

3. else if |q1.box| � |q2.box| then
return wspd(q1.left,q2) ∪ wspd(q1.right,q2)

4. else return wspd(q1,q2.left) ∪ wspd(q1,q2.right)

The algorithm clearly outputs a WSPD. To analyze its
size and the running time, observe that if wspd(q1,q2)

is called, then |q1.par.box| � |q2.box| and |q2.par.box| �
|q1.box|, where q.par denotes the parent of a node q: this
follows because of the test made in line 3 (and induction).

The total running time is proportional to the total num-
ber of calls to wspd(q1,q2) such that q1.box and q2.box
are not ε-well-separated (as otherwise recursion is termi-
nated by line 2). Without loss of generality, say |q1.box| �
|q2.box|. Since in addition |q2.par.box| � |q1.box|, we can
find a quadtree box B at the same level as q1.box with
q2.par.box ⊇ B ⊇ q2.box. Since q1.box and B are not well-
separated, B must be within distance O(|B|/ε) from q1.
For each fixed node q1, there are at most O(1/εd) such
quadtree boxes B (since these boxes have bounded aspect
ratio and form a grid). For each fixed B , there are O(1)

candidates for q2 in the tree. It follows that the total num-
ber of candidates for (q1,q2) is O(n/εd). The running time,
and hence the size of the WSPD, are O(n/εd).

Finally, note that if P0 indeed has spread at most nc ,
then an ε-WSPD for P maps to an O(ε)-WSPD for P0,
since the rounding step changes the distance of any pair
(p,q) by an additive amount of O(εD/nc), which is at most
O(ε) times the actual distance. We conclude that an O(ε)-
WSPD of O(n/εd) size for any point set with polynomially
bounded spread can be constructed in O(n/εd) time.

Step 4: Computing a spanner

A δ-spanner for a point set P is a subgraph G of the
complete undirected graph on the vertex set P such that
every pair of points (p,q) ∈ P × P satisfies dG(p,q) �
(1 + δ)d(p,q) where dG(·, ·) and d(·, ·) denote the shortest
path metric for G and the Euclidean metric respectively.

As observed by Callahan and Kosaraju [4], we can easily
construct an O(ε)-spanner with m edges given an ε-WSPD
{(Pi, Q i)}i of size m = O(n/εd): just pick an arbitrary edge
(pi,qi) from Pi × Q i for each i. The total running time is
O(n) for any point set with polynomially bounded spread.

To see why this yields a spanner, take any pair of points
(p,q), say, with p ∈ Pi and q ∈ Q i . Since (Pi, Q i) is ε-
well-separated, d(p, pi),d(qi,q) � εd(p,q) and d(pi,qi) �
(1 + 2ε)d(p,q). Assume that dG(p, pi) � (1 + δ)d(p, pi)

and dG(qi,q) � (1 + δ)d(qi,q) by induction (in order of in-
creasing distances). It follows that dG(p,q) � dG(p, pi) +
d(pi,qi) + dG(q,qi) � (1 + 2ε + 2ε(1 + δ))d(p,q) � (1 +
δ)d(p,q), by setting δ = 4ε/(1 − 2ε) = �(ε).

Step 5: Computing an approximate EMST

We can compute a (1 + O(ε))-factor Euclidean mini-
mum spanning tree (EMST) for the point set P , simply by
constructing an O(ε)-spanner G with m = O(n/εd) edges
and returning the minimum spanning tree (MST) of G . The
last step takes O(n + m) time by Karger, Klein, and Tar-
jan’s randomized MST algorithm [15], or by Fredman and
Willard’s deterministic MST algorithm [10]. Note that Fred-
man and Willard’s “transdichotomous” algorithm is appli-
cable here, since the coordinates in P are O(log n)-bit inte-
gers, and so are the edge weights after squaring (squaring
does not affect the ordering of the weights and hence does
not affect the MST).

For the EMST problem, we can actually remove the as-
sumption that the spread of the given point set is bounded
by nc . We can always make the spread of P0 bounded
by O(n), by initially rounding to a uniform grid with side
length �(εD/n), since the weight of any spanning tree
changes by an additive term of only O(εD), which is
clearly at most O(ε) times the EMST weight. We conclude
that a (1 + O(ε))-factor approximate EMST can be con-
structed in O(n/εd) time for any point set.

Remark. One implication is that a factor-(2 + ε) approx-
imation for the Euclidean traveling salesman problem can
be computed in linear time in any constant dimension.
A linear-time PTAS might also be possible, but a close
examination of Rao and Smith’s algorithm [17] would be
required.

Remark. For another application, Callahan and Kosaraju [5]
have shown that given an ε-WSPD of size O(n) whose
subsets are given hierarchically (as in the preceding con-
struction) for a sufficiently small constant ε > 0, we can
solve the exact all-k-nearest-neighbors problem—finding the
k nearest neighbors in P for every point in P —in O(nk)

time. In particular, we can thus solve the all-nearest-
neighbors problem (k = 1) in linear time for any point set
with polynomially bounded spread. This extends a previ-
ous observation from [6] that the closest pair problem can
be solved in linear time deterministically for any point set
with polynomially bounded integer coordinates.

T.M. Chan / Information Processing Letters 107 (2008) 138–141 141
References

[1] A. Andersson, T. Hagerup, S. Nilsson, R. Raman, Sorting in linear
time? J. Comput. System Sci. 57 (1998) 74–93.

[2] S. Arya, D.M. Mount, N.S. Netanyahu, R. Silverman, A.Y. Wu, An op-
timal algorithm for approximate nearest neighbor searching in fixed
dimensions, J. ACM 45 (1998) 891–923.

[3] M.W. Bern, H.J. Karloff, P. Raghavan, B. Schieber, Fast geometric ap-
proximation techniques and geometric embedding problems, Theo-
ret. Comput. Sci. 106 (1992) 265–281.

[4] P.B. Callahan, S.R. Kosaraju, Faster algorithms for some geometric
graph problems in higher dimensions, in: Proc. 4th ACM–SIAM Sym-
pos. Discrete Algorithms, 1993, pp. 291–300.

[5] P.B. Callahan, S.R. Kosaraju, A decomposition of multidimensional
point sets with applications to k-nearest-neighbors and n-body po-
tential fields, J. ACM 42 (1995) 67–90.

[6] T.M. Chan, Closest-point problems simplified on the RAM, in: Proc.
13th ACM–SIAM Sympos. Discrete Algorithms, 2002, pp. 472–473.

[7] T.M. Chan, A minimalist’s implementation of an approximate nearest
neighbor algorithm in fixed dimensions, Manuscript, 2006.

[8] T.M. Chan, M. Pǎtraşcu, Point location in sublogarithmic time and
other transdichotomous results in computational geometry, SIAM J.
Comput., submitted for publication. Preliminary versions in: Proc.
47th IEEE Sympos. Found. Comput. Sci., 2006, pp. 325–332, 333–342.

[9] T.M. Chan, M. Pǎtraşcu, Voronoi diagrams in n · 2O(
√

lg lg n) time, in:
Proc. 39th ACM Sympos. Theory Comput., 2007, pp. 31–39.

[10] M.L. Fredman, D.E. Willard, Trans-dichotomous algorithms for mini-
mum spanning trees and shortest paths, J. Comput. System Sci. 48
(1994) 533–551.
[11] H.N. Gabow, J.L. Bentley, R.E. Tarjan, Scaling and related techniques
for geometry problems, in: Proc. 16th ACM Sympos. Theory Comput.,
1984, pp. 135–143.

[12] R.L. Graham, An efficient algorithm for determining the convex hull
of a finite planar set, Inform. Process. Lett. 1 (1972) 132–133.

[13] Y. Han, Deterministic sorting in O(n log log n) time and linear space,
J. Algorithms 50 (2004) 96–105.

[14] Y. Han, M. Thorup, Integer sorting in O(n
√

log logn) expected time
and linear space, in: Proc. 43rd IEEE Sympos. Found. Comput. Sci.,
2002, pp. 135–144.

[15] D.R. Karger, P.N. Klein, R.E. Tarjan, A randomized linear-time algo-
rithm to find minimum spanning trees, J. ACM 42 (1995) 321–328.

[16] G. Narasimhan, M. Smid, Geometric Spanner Networks, Cambridge
University Press, 2007.

[17] S. Rao, W.D. Smith, Approximating geometrical graphs via “spanners”
and “banyans”, in: Proc. 30th ACM Sympos. Theory Comput., 1998,
pp. 540–550.

[18] M. Smid, Closest-point problems in computational geometry, in:
J. Urrutia, J. Sack (Eds.), Handbook of Computational Geometry,
North-Holland, 2000, pp. 877–935.

[19] M. Smid, The well-separated pair decomposition and its applications,
in: T. Gonzalez (Ed.), Handbook of Approximation Algorithms and
Metaheuristics, Chapman & Hall/CRC, Boca Raton, 2007, pp. 53-1–
53-12.

[20] P.M. Vaidya, Minimum spanning trees in k-dimensional space, SIAM
J. Comput. 17 (1988) 572–582.

[21] P.M. Vaidya, A sparse graph almost as good as the complete graph
on points in k dimensions, Discrete Comput. Geom. 6 (1991) 369–
381.

