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Abstract 

Suppose two travelling salesmen must visit together all points/nodes of a tree, and the 
objective is to minimize the maximal length of their tours. Home locations of the salesmen are 
given, and it is required to find optimal tours. For this NP-hard problem a heuristic with 
complexity O(n) is presented. The worst-case relative error for the heuristic performance isi for 
the case of equal home locations for both servers and $ for the case of different home locations. 

Keywords: Travelling salesman problem: Algorithms; Worst-case analysis 

1. Problem formulation and notation 

We consider the 2-travelling-salesmen allocation problem (2-TSP) on a tree with 

minimax criterion that can be interpreted as follows. There are two identical service 
units (servers), initially situated at some nodes A Ir A, of the tree (home locations). The 

servers are required to visit together some set DP of demand points and return back to 

their home locations; LIP is either the set of all nodes or the set of all points of the tree. 

The objective is to minimize the maximum of the lengths of their tours. 

Problems of this type arise in many services such as repair and maintenance, 

delivery and customer pick-up. Demand points are interpreted as customers that need 

some service. The tree represents a transportation network connecting the customers. 

The minimax objective is motivated, first, by the desire to distribute the workload to 

the servers in a “fair” way, second, by natural restrictions such as limited working day 

of the servers. Some approximation algorithms for minimax multiserver routing 

problems on general networks have been studied in Ll]. 
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Let T = (V, E) be a tree with V the set of nodes and E the set of edges, ) I/ ) = n. 

Also, T will denote the continuum set of all points of the tree. Throughout the paper, 
the term “subtree” is used in the topological sense: T’ is a subtree of T iff T’ is 
a connected subset of T. For any subtree T’ c T, L(T’) denotes the length of T’; 
L denotes the length of T (the sum of the lengths of all the edges). Subtree visited 
(served) by a server in his service tour is referred to as allocation for that server. 

TSP for the case of a single server on a tree is trivial: it is well-known that any 
depth-first route solves the problem, and the length of the optimal tour is equal to 
twice the length of the tree. Without any loss of generality, we assume that the service 
tour of each server is a depth-first route within his allocation, with length equal to 
twice the length of the allocation. With this assumption, the considered problems can 
be formulated in graph-theoretic terms, and we use lengths of allocations instead of 
lengths of service tours. 

Problem 1 (Allocation minimax 2-TSP). Given home locations A1,A2 E V, set 
DP E {I/, T}, find closed subtrees F,, F2 c T (allocations) such that DP c F,uF, 
and Ai E FL, i = 1, 2, SO as to miniinize max{L(Fi), L(F,)}. 

We distinguish between two variants of Problem 1 called “Problem l-V”, if 
DP = V, and “Problem l-E”, if DP = T. When a variant of the problem is not 
specified, reported results pertain to both variants. 

In this paper, we present a heuristic with complexity O(n) for solving (NP-hard) 
Problem 1. The worst-case relative error for the heuristic performance is f for the case 
of equal home locations for both servers and 3 for the case of different home locations. 
We note that for the case of equal home locations the problem can also be solved 
approximately using the tour partitioning heuristic developed in [l] for general 
networks, but our heuristic has a better worst-case bound - 4 instead off for the tour 
partitioning heuristic (since we use tree structure of the network). 

We use the following notation and definitions. For any two points a, b E T let d(a, b) 
denote the distance between a and b. For an edge (ul, Q), let x(ui, u2; r) denote the 
point of edge (ul, u3) which is r units away from u1 (0 < Y < d(ur, u,)), x(ul, v2; 0) = ul, 
x(vi, v,; d(vl, vz)) = v2. For any edge (a, b) it is assumed that points a, b do not belong 
to that edge; [a, b] denotes edge (a, b) with points a, b. For any two points c, d E T let 
P(c,d) denote the path between c and d. 

Let X be a subtree of T. Connected components of set T \X are referred to as 
X-branches (note that X can be a single point). For any b$X let B(X, b) denote the 
unique X-branch containing b. Let Lg and Lz denote optimal values for problems 1-V 
and l-E, respectively. For (a, b) E E let W (a, b) denote the length of u-branch B(a, b). 

2. Complexity of the problem 

Theorem 1. Problem 1 is NP-complete even for stars (trees where all edges have 
a common node). 
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Proof. It is evident that the recognition version of Problem 1 belongs to class NP. To 
prove NP-hardness we use reduction from the following problem. 

Two-processor scheduling problem (TPSP). Tasks tr, . , t,, and a positive integer 
length ci for each task ti are given. Find a two-processor schedule, i.e. a function 
6: {tr, . . . , tn} -+ {1,2}, so as to 

minimize max C Ci. 
j= I22 r:&(t,) = j 

TPSP is known to be NP-hard [2]. 
Reduction. For an instance of TPSP (ci, . . . , c,) consider the instance of Problem 

1 on star Tr with a common vertex b and n edges (b, di), d(b, di) = Ci_ i = 1, . . . , n, and 
home locations A1 = A2 = 6. It is easy to see that both instances of the problems are 
equivalent. 

The theorem is proved. lJ 

However, it is not clear whether Problem 1 is NP-complete in the strong sense or 
there exists a pseudopolynomial algorithm to solve it. The main difficulty is that in 
some cases optimal allocations F1,F2 inevitably have intersections of non-zero 
lengths. Consider, for example, the tree in Fig. 1: both home locations are at node u. 
Then edges (c, a) and (a, b) belong to both optimal allocations F,, F,. 

Fig. 1. Example of the problem where optimal allocations have intersection of nonzero length. 
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Consider a modification of Problem 1, where it is additionally required that total 
length L(F,) + L(F,) of allocations Fr, F2 must be minimal; this modification will be 
referred to as modified Problem 1. For the case DP = T the additional restriction is 
equivalent to L(F,) + L(F,) = L, or L(Fi nF,) = 0. Therefore, for modified Problem 
1-E set F1 nF, is a single pointf: Iff= F, nFz is known, then modified Problem 1-E is 
trivially reduced to TPSP. Therefore, a pseudopolynomial algorithm for modified 
Problem 1-E can be constructed using a pseudopolynomial algorithm for TPSP [2] 
and the following observations: 
(a) f belongs to path P(A1, AZ); 
(b) fis either a node or the (L/2)-dividing point of T (point x is called (L/2)-dividing 
point if all x-branches have lengths not greater than L/2); 
(c) the (L/2)-dividing point of a tree can be obtained in O(n) time. 

Fig. 2. Illustration required for the description of Step 1 of Heuristic Hl. 
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A pseudopolynomial algorithm for modified Problem 1-V can be constructed using 

analogous ideas and the following observation: either F1nFz is a single point, or 

L\(F1uFz) is an edge belonging to path P(A1,AZ). 

3. A $-optimal heuristic for the case of a single home location 

Let A, = AZ = A. Problems 1-V and 1-E are equivalent for this case. 

LI = Lz = L,. Let Y denote the intersection of allocations F1, Fz. At each step of the 

heuristic either a %-optimal solution to Problem 1 is found (a solution is called 

(1 + &)-optimal if its relative error is not greater than E), or a new edge is included in 

common set Y; at the beginning Y = {Al. 

Heuristic Hl. Tree T = (I/, E) of length L and locations A1 = A2 = A are given. Set 

Yis initially equal to {Al,. 

Step 1: Consider all A-branches. (1) If there is an A-branch with length cp such that 

fL < cp 6 SL then assign this A-branch to one server, assign all other A-branches to 

the other server and STOP: a $-optimal solution is obtained (since L, >, fL). 

(2) If all the A-branches have lengths smaller than *L, then assign consecutively 

A-branches to the servers as follows: an A-branch is assigned to that server which can 

accept it without exceeding the limit $L. When all the A-branches are assigned 

(obviously all the A-branches will be assigned). then STOP: a +-optimal solution is 

obtained. 

(3) If there is an A-branch RA of length greater than +L, consider node B adjacent 

to A, BE R, (Fig. 2). Memorize L(R,) as a record value and allocations 

F1 = R,u(A’,, F2 = T\RA as a record solution. 

If 4(A, B) 3 SL, then STOP: the record solution is $-optimal. If d(A, B) < ;L. then 

include edge [A,B] in common set Y and go to step 2. 

Step k, k = 2,3, . . . At step k - 1 a new edge was included in common set Y. 

Suppose it was edge [C,D], and node D had not been in Y before. According to the 

description, Y is a path from A to D of length smaller than +L. 

Consider all D-branches, which do not contain point C. These branches are called 

appropriate D-branches. 

(1) If there is an appropriate D-branch RD of length cp, $L - L(Y)) d cp < 

3(L - L(Y) ), assign this branch and set Y to one server, assign set T \RD to the other 

server. Compare this solution with the record solution, take the best one and STOP: 

the obtained solution is $-optimal. 

(2) If all the appropriate D-branches have lengths smaller than +(L - L( Y )) (note 

that the situation where there is no appropriate D-branches corresponds to this case). 

then all Y-branches have lengths smaller than 3 (L - L( Y )) (since L(Y) < L/2 and all 

Y-branches according to the description have lengths smaller than L/3). Now, if there 

is a Y-branch of length cp, i(L - L(Y)) < q~ d $(L - L(Y)) then assign this branch 

and set Y to one server, all other Y-branches and set Y to the other server. Compare 
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this solution with the record solution, take the best one and STOP: a $-optimal 
solution is obtained. If all Y-branches have lengths smaller than s(L - L(Y)), then 
assign consecutively Y-branches to the servers as follows: a Y-branch is assigned to 
that server which can accept it without exceeding the limit $(L - L(Y)) + L(Y) (set 
Y is assumed to be assigned to both servers in advance). When all the Y-branches are 
assigned (obviously all the Y-branches will be assigned), then compare the obtained 
solution with the record solution, take the best one and STOP: a $-optimal solution is 
obtained. 

(3) If there is an appropriate D-branch R,, of length greater than $(L - L(Y)), 
consider node E adjacent to D, E E RD (Fig. 3). Take solution F1 = R,u Y, 

F, = T\RD, compare this solution of value L(Y) + L(R,) with the record solution, 
take the best one as a new record solution. Now, if L( Y) + d(D, E) 3 L/2, then STOP: 
the record solution is $-optimal. If L(Y) + d(D, E) < L/2, then include [D, E] into 
Y and go to step k + 1. 

Theorem 2. Heuristic Hl obtains a Q-optimal solution to Problem 1 for the case of equal 
home locations AI = A2 = A. 

Proof. Parts 1, 2 of the description of the first step need no explanations. Consider 
part 3: there is an A-branch RA of length greater than $L. There are two possibilities 
for an optimal solution: 
(1) edge (A, B) is served by only one server, 
(2) edge (A,B) is served by both servers. 

In the first case, A-branch R, of length greater than 3L is entirely served by only 
one server and solution Fi = RAu{A), F, = T\RA of value L(R,) is obviously the 
best one. Therefore, the record solution is the best solution from all allocations such 
that (A, B) is served by only one server. 

In the second case, if d(A, B) 2 L/2, then L, 3 $L. Therefore, if edge (A, B) is served 
by both servers and has length not smaller than f L, then any allocations are $-optimal 
(since any allocations have value not greater than L), and the record solution is 
+-optimal too. 

After step k - 1, if a $-optimal solution has not been obtained during this step, the 
record solution is the best one from all allocations such that current set Y is not 
entirely served by both servers. 

Consider step k, k = 2,3, . . . Parts 1,2 need no explanations. Consider part 3: there 
is an appropriate D-branch RD of length greater than $(L - L(Y)). Note that we 
should take into account only solutions such that current common set Y is served by 
both servers, since the current record solution is the best one from all other solutions. 
There are two possibilities for an optimal solution: 
(1) edge (D, E) is served by only one server; 
(2) edge (D,E) is served by both servers. 

In the first case, D-branch RD of length greater than $(L - L(Y)) is served by only 
one server and solution F, = RDuY, F, = T \R, is the best one from all allocations 
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]U.. .U[C,Dl 

Fig. 3. Illustration required for the description of Step k of Heuristic H 1 

such that set Y is served by both servers but edge (D, E) is served by only one of them. 
Therefore, the best one from this solution and the current record solution, taken as 
a new record solution, is the best solution from all allocations in which set Y u(D, E) is 
not served entirely by both servers. 

In the second case, if L(Y) + d(D, E) 2 L/2, then L, > $L (since set Yu(D, E) of 
length not smaller than L/2 is served by both servers, and the servers must serve 
together the remaining part T\(Yu(D,E))); therefore, if Y and (D,E) are served by 
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both servers and L(Y) + d(D, E) > L/2, then any feasible solution (and the record one 
too) is Q-optimal. 

The number of steps of the algorithm is not greater than 1 V ( - 1 = n - 1, since at 
each step either a $-optimal solution is found or a new edge is included in common 
set Y. 

The theorem is proved. q 

Theorem 3. Heuristic Hl can be implemented in time O(n). 

Proof. Note that values W (a, b), W(b, a) for all edges (a, b) E E can be calculated in 
total time O(n). 

At each step of Heuristic Hl, except the last step, only appropriate D-branches are 
examined, where D is the new node included in set Y at step k-l (if k = 1, then D = A). 

Therefore, if the number of steps of Heuristic Hl is M, then the number of branches 
examined at first M-l steps is not greater than ( E 1 = n-l and each branch is examined 
only once. Examination of each appropriate D-branch takes constant (unit) time if 
values W (a, b), W(b, a) are given for all (a, b) E E. Therefore, the first M-l steps can be 
implemented in time O(n). The last step consumes time O(n). The theorem is 
proved. .Q 

4. A $-optimal heuristic for the case of different home locations 

Let Al # AZ. Consider Problem 1-E. Let bl, . . . , b, be the nodes of path P(Ar, A,) in 
consecutive order from Al to AZ, bI = AI, b, = A2 (Fig. 4). 

Heuristic H2. Let L1 = W (b2, b,) - d(bI, b2), Lz = W (b,- 1, b,) - d(b,- 1, b,). L,(L,) 

is the total length of all Al-branches @,-branches) which do not include any edge 
from path P(Ar, A,). 

Case 1: If +L < L1 6 *L (SL d Lz < $L), then assign all Al-branches (A,- 
branches) which do not contain edge (b,, b,) (edge (b,_ 1, b,)) to one server and the 
only remaining Al-branch B(bI, b2) (AZ-branch B(b,,b,_ 1)) to the other server and 
STOP: a $-optimal solution is obtained (since optimal value LE is not smaller than 

L/2). 
Case 2: If L1 > SL (Lz. > $L) then obviously there exists an optimal solution such 

that point A1(A2) is served by both servers. Consider the auxiliary problem, where 
basic tree T is the same, but both servers are situated in A1 (A,), and apply Heuristic 
Hl. Let F1,Fz be the $-optimal solution for this auxiliary problem, obtained by 
Heuristic Hl; then F,, F, is a $-optimal solution for the original problem as well. 
STOP. 

Case 3: Now consider the remaining case L1 < +L, L2 < SL. Consider values 
W(bi.1, bi) for edges (bi,bi+,), i = 1,2, . . . ,r - 1, of path P(Ar,Az). 
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Fig. 4. Illustration required for the description of Heuristic H2. 

Suhcase 3.1: If for some t 

+L < W(h,+, ,h) GfL + d(b,+,,b,), (1) 

then assign set [b,,x&+i, b,; W(b t+ 1, b,) - fL)] and all b,-branches which do not 

include point b,, 1 to one server, set [b,, I, x(bt+ 1, b,; W(b,+ 1, b,) - L/2)] and all 

b,+ i-branches which do not include point 6, to the other server and STOP: an optimal 

solution of value $L is obtained. 

Subcase 3.2: If there is no t such that condition (1) holds, then there is k, 1 < k < r. 

such that 

W(bk-l,h) - d(bk-,,h) 3 +L. (3) 

Subcase 3.2.1: If $L 6 W(bk,bk+i) <iL ($L d W(bk,bk_i) <+L), then assign 

branch B(bk, bk+l) (branch B(bk, bk_J) to one server, all other bk-branches to the 

other server and STOP: a *-optimal solution is obtained. 

Note that since conditions (2) and (3) hold, values W (bkr b,, l)r W (bk, bk_ 1), cannot 

be greater than f L. 
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Subcase 3.2.2: If W (bk, b,, 1) < ;L, W (bk, bk_ J < $L, then obviously there exists 
an optimal solution F1,F2 such that bk E F,nF,. Let T1 = W(bk, bk_ J, 

T2 = W(bk,bk+l). Without loss of generality, suppose T1 6 Tz. 

Perform the following: 

Procedure R. Y will denote the intersection of allocations F1, F2. At the beginning 
Y = {bk}. At each step of Procedure R either a &optimal solution is found, or a new 
edge is included in set Y. 

Step 1: Consider all &branches, which do not include points bk_ 1, bk+ 1; we call 
them appropriate bk-branches at the first step. 

(1) If there is an appropriate b,-branch B with length q such that 

;Ldcp+ 3L - T1, then a SSI ‘g n this branch and branch B(bk, bkml) to one server, 
branch B(bk, bk+J and other appropriate bk branches to the other server and 
STOP: the obtained solution F1 = BuB(bk,bk_Ju{bk}, F2 = (T\F1)u(bk} is 
$-optimal. 

(2) If all appropriate bk-branches have lengths smaller than $L, then assign branch 
B(bk, bk_ 1) to one server, assign branch B(bk, b,, 1) to the other server, and assign all 
appropriate bk-branches consecutively to the servers as follows: a bk-branch is as- 
signed to that server which can accept it without exceeding the limit $L. When all the 
b,-branches are assigned (obviously all the bk-branches will be assigned), then STOP: 
a $-optimal solution is obtained. 

(3) If there is an appropriate b,-branch Rbk of length greater than $L - T,, then 
consider node B adjacent to bk, B E Rbk (Fig. 5). Memorize L(R,,) + T1 as a record 
value and allocations F1 = RbruB(bk, bk_&{bk), F2 = (T\F1)u{bk) as a record 
solution. If d(bk, B) 2 SL, then STOP: the record solution is q-optimal. If 
d(bk, B) < +L, then include edge [bk, B] in set Y and go to step 2. 

Step k, k = 2,3, . . . . At step k - 1 a new edge was included in common set Y. Let it 
be edge [C,D], and node D had not been in Y before. Y is the path from bk to D of 
length less than SL. 

Consider all D-branches, which do not contain point C; these branches will be 
called appropriate D-branches. 

(1) If there is an appropriate D-branch RD of length q, $(L - L(Y)) 6 

cp B +(L - L(Y)) - T1, assign this branch, set Y and branch B(bk, bk_ 1) to one server, 
and assign set T\(RDuB(bR, bk_ 1)) to the other server. Compare this solution 
with the record solution, take the best one and STOP: the obtained solution is 
$-optimal. 

(2) If all appropriate D-branches have lengths smaller than $(L - L(Y)) (note that 
the situation where there is no appropriate D-branches corresponds to this case), then 
all other Y-branches have lengths smaller than $(L - L(Y)) (since L(Y) -C +L and all 
Y-branches have lengths smaller than *L). Now: 

(a) If T, 2 i(L - L(Y)) then compare solution F2 = B(b,_ bk,.l)u{bK}, 

F, = T\B(bK, bK+l) with the record solution, take the best one and STOP: a $- 
optimal solution is obtained. 
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Fig. 5. Illustration for the description of Heuristic H2 

(b) If T2 < $(I, - L(Y)), but there is a Y-branch of length cp such that 

i(L - L(Y)) < ‘p < ;(L - L(Y)), then assign this Y-branch, set Y and branch 

B(hk, bk_ i) to one server, all other Y-branches and set Y to the other server. Compare 

this solution with the record solution, take the best one and STOP: a $-optimal 

solution is obtained. 

(c) If all Y-branches have lengths smaller than $(I, - L(Y)), then assign B(b,, b,_ ,) 

and set Y to one server, assign B(bk, bk,_l) and set Y to the other server and assign 

consecutively all other Y-branches to the servers as follows: a Y-branch is assigned to 

that server which can accept it without exceeding the limit *(L - L(Y)) + L( Y :I. 

When all the Y-branches are assigned (obviously all the branches will be assigned), 

then compare the obtained solution with the record solution, take the best one and 

STOP: a $-optimal solution is obtained. 

(3) If there is an appropriate D-branch RI, of length greater than a(L - L( YI) 

- T1 then consider node E adjacent to D, E E RD (Fig. 6). Take solution 
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Fig. 6. Illustration for the description of Heuristic H2. 

J’, = R,uYWh,bk-~), F2 = T\UWW,b-111, compare this solution of value 

L(Y) + L(R,) + T1 with the record solution, take the best one as a new record 

solution. Now, if L( Y) + d(D, E) 2 jL, then STOP: the record solution is $-optimal. If 

L(Y) + d(D,E) < L/3, then include edge [D, E] into Y and go to step k + 1. 

Theorem 4. Heuristic H2 obtains a $-optimal solution for Problem 1-E for the case of 

d@erent home locations. 

Proof. In the description of Heuristic H2, only Procedure R in Subcase 3.2.2 needs 

explanation. 
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If Procedure R stops at part 1 of step 1, then the obtained solution is +-optimal since 

its value is not greater than $L and optimal value Lf is not smaller than *L. The same 

about part 2 of step 1. 

Consider part 3 of step 1: there is a b,-branch Rhk of length greater than jL - Tr. 

There are two possibilities for an optimal solution: 

(1) edge (hk, B) is served by only one server; 

(2) edge (hkr B) is served by both servers. 

In the first case, h,-branch Rbr of length greater than $L - T, > $L (since T, < $ L) is 

served by only one server, therefore L$ > L(Rh,) and solution F1 = Rhku 

B(h,,h-l)u:b,). Fz = (T\F,)u(b,) of value L(R,,) + T1 is $optimal (since 

(L(R,,) + T,)ILE, d (LUG,,) + TJL(&,J d (L/2 + 7’,)l(L/2) < 3/2). 
Therefore the record solution is $-optimal among all allocations such that edge 

( hk, B) is served by only one server. 

In the second case, if d(bk, B) > L/3 then Lt 3 +L. Therefore, if edge (hk, B) is served 

by both servers and has length not smaller than fL, then any feasible solution is 

$-optimal, and the record solution is $-optimal too. 

After step k - 1. if a $-optimal solution was not obtained at this step. the record 

solution is $-optimal among all allocations such that current common set Y is not 

entirely served by both servers. 

Consider step k, k = 2,3 If procedure R stops at part 1 of step k, then the 

obtained solution is $-optimal, since if set Y is served by both servers, then optimal 

value Lz is not smaller than i(L - L(Y)) + L(Y). The same about part 2 of step k. 

Consider part 3 of step k: there is an appropriate D-branch RD of length greater than 

$(L - L(Y)) - T,. We should take into account only solutions such that current set 

Y is served by both servers, since the current record solution is $-optimal among all 

other solutions. There are two possibilities for an optimal solution: 

(1) edge (D,E) is served by only one server; 

(2) edge (D, E) is served by both servers. 

In the first case, D-branch RD of length greater than +(L - L(Y)) - T1 is served 

by only one server and solution F1 = RDuYuB(hk,hk~l), F, = T\,$(RDuB 

(hk. h, _ ,)) of value L(R,) + L(Y) + T1 is $-optimal among all allocations such 

that set Y is served by both servers but edge (II, E) is served by only one of them. This 

is because 

L(b) + L(Y) + T, U&I) + L(Y) + T1 ;:-(L - L(Y)) - 7-1 + L(Y) + 7-I 

LE, 
d 

L(R,) + L(Y) ’ $(L - L(Y)) - T1 + L(Y) 

Therefore the best one from this solution and the current record solution, taken as 

a new record solution, is a $-optimal solution among all allocations in which set 

Yu(D,E) is not served entirely by both servers. 
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In the second case, if L(Y) + d(D, E) > 3 L, then L$ 3 3 L (since set Y u(D, E) of 
length not smaller than $L is served by both servers, and the servers must serve 
together the remaining part T \( Yu(D, E))); thus, if Y and (D, E) are served by both 
servers and L(Y) + d(D,E) 3 SL, then any solution (and the record one too) is 
j-optimal. 

The number of steps of procedure R is not greater than 1 E 1 = n - 1, since at each step 
either a j-optimal solution is found or a new edge is included in common set Y. 0 

Theorem 5. Heuristic H2 can be implemented in time O(n). 

Proof is analogous to the proof of Theorem 3. 

Problem l-I/, A, # A,, can be solved using Heuristic H2 as follows. Consider 
values W (bi+ 1, bi) for edges (biy bi+ I), i = 1,2, . . . , r - 1, of path P(Al,A,) (Fig. 4). If 
for some t, 1 G t < Y, condition (1) holds, then F, = T\B(b,, b,, 1), F2 = T\B(b,+ 1, b,) 

is our optimal solution. If there is no t such that condition (1) holds, then Lz >, ;L and 
there is an optimal solution to the problem such that F1uF2 = T. Therefore, Heuris- 
tic H2 in this case obtains a S-optimal solution. 

5. Worst-case analysis 

The obtained bounds for the heuristics’ performance errors cannot be improved, as 
the following theorem demonstrates. 

E F 

0 

C D 

Fig. 7. Example of tightness for Heuristic Hl 
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E 

Fig. 8. Example of tightness for Heuristic H2 

Theorem 6. The worst-case relative errors for heuristics Hl and H2 are 3 and i 
respectively. 

Proof. An example of tightness for heuristic Hl is demonstrated in Fig. 7 (both 
servers are located at node A), L = 300. Heuristic Hl obtains a solution of value 200. 
but the optimal value is L, = 150 (for example, F1 = [E,A]u[A,B]u[B,C], 
F2 = [F, A]u[A, B]u[B, D]) and the relative error is (200 - 150)/150 = 5. 

An example of tightness for Heuristic H2 is demonstrated in Fig. 8 (the servers are 
located at AI and AZ), L = 200. Heuristic H2 obtains a solution of value 150, but the 
optimal value is LE, = LF = 100 (for example, F1 = [A,,D]u[D,E], F2 = [C,Az]u 
[A2,D]u[D,AI]u[A1,B]) and the relative error is (150 - lOO)/lOO = f. 

Edges of zero lengths can be considered as edges of lengths equal to E, E -+ 0. 0 

6. Conclusions and future research 

The main result of the paper is a linear-time heuristic for the (NP-complete) 
allocation minimax 2-TSP on a tree. The worst-case relative error for the heuristic 
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performance is 4 for the case of equal home locations for both servers and $ for the 
case of different home locations. 

Future research is suggested in the following directions: 
(1) Is the allocation minimax 2-TSP on a tree NP-complete in the strong sense or 

there exists a pseudopolynomial algorithm? 
(2) Try to find polynomial heuristics for the problem with lower worst-case relative 

errors. 
(3) Find polynomial heuristics for the case of p servers, p 3 3, with non-trivial 

worst-case analysis. 
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