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This paper presents an efficient algorithm, called pattern reduction (PR), for reducing the
computation time of k-means and k-means-based clustering algorithms. The proposed
algorithm works by compressing and removing at each iteration patterns that are unlikely
to change their membership thereafter. Not only is the proposed algorithm simple and easy
to implement, but it can also be applied to many other iterative clustering algorithms such
as kernel-based and population-based clustering algorithms. Our experiments—from 2 to
1000 dimensions and 150 to 10,000,000 patterns—indicate that with a small loss of quality,
the proposed algorithm can significantly reduce the computation time of all state-of-the-
art clustering algorithms evaluated in this paper, especially for large and high-dimensional
data sets.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Data clustering [27,28,62] refers to the process of grouping similar data into the same cluster or splitting dissimilar data
into different clusters according to some predefined criteria. Apparently, methods [28] developed to solve the data clustering
problem can be easily extended and applied to many different problem domains, such as search engine [23,18,65], document
analysis [64,37], bio-information [8,21], financial analysis [35], and human face recognition [60,20]. While considering data
clustering as the epitome of metaheuristics, many researchers have adopted different approaches to solve the data clustering
problem, including k-means [28], genetic algorithm (GA) [31,3], fuzzy system [50], tabu search (TS) [47,42], ant colony opti-
mization (ACO) [32,22], self-organizing map (SOM) [59], particle swarm optimization (PSO) [58,10], support vector machine
(SVM) [12,9], and artificial immune system (AIS) [5]. Of them, k-means [45] is an extensively adopted clustering algorithm.
However, the above approaches largely focus on increasing the accuracy of the clustering result.

Today, most data clustering algorithms are confronted with extremely large data sets that require online processing. That
is, in addition to quality, response time is of major concern to most data clustering algorithms nowadays. Despite performing
well on small- to medium-sized data sets, traditional clustering algorithms fail to scale up well for large data sets, especially
in terms of computation time. Therefore, of major concern is designing a scalable clustering algorithm, capable of solving
large data set problems [63,28,30,2,36] that require terabytes or even petabytes of space such as web contents, magnetic
resonance imaging (MRI), video streaming, astronomy, and finance.

Xu and Wunsch [63] categorized algorithms for ‘‘large-scale’’ data clustering as random sampling [48], data condensation
[67], density-based approaches [16], grid-based approaches [61], divide and conquer [24], and incremental learning [25]. An-
other problem worthy of note is ‘‘high-dimensional’’ data clustering. As the computation time of high-dimensional data clus-
tering is generally proportional to the number of dimensions of the input data, some researchers [15,63] have focused on
reducing the number of dimensions of the input data, by decreasing the number of features in the original data.
. All rights reserved.
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This paper presents an efficient algorithm, called pattern reduction (PR), for reducing the computation time of k-means
and k-means-based clustering algorithms. Its performance is evaluated by applying the proposed algorithm to five state-of-
the-art clustering algorithms: standard k-means [45], relation k-means [49], kernel k-means [52,53], triangle inequality k-
means [14], and genetic k-means algorithm [31]. Moreover, the proposed algorithm is thoroughly analyzed in terms of
the adopted strategies and the time complexity.

The remainder of the paper is organized as follows. Section 2 briefly discusses the related work. Section 3 presents the
proposed algorithm and the motivation of the work. Section 4 provides a detailed analysis of the proposed algorithm. The
experimental results, along with the data sets and the parameter settings, are discussed in Section 5. Conclusions are drawn
in Section 6.
2. Related work

This section briefly reviews the clustering problem and discusses the k-means clustering algorithm and the issues it faces.

2.1. The clustering problem

Given n patterns, or data points, in d-dimensional space, the clustering problem refers to the process of partitioning the n
patterns into k groups or clusters based on some similarity metrics. An optimal clustering is a partitioning that minimizes the
intra-cluster distance and maximizes the inter-cluster distance. Vesanto and Alhoniemi [59] presented several ways to mea-
sure the quality of the clustering result. In practice, the most popular metric is the sum of squared errors [28] defined as
SSE ¼
Xk

i¼1

Xni

j¼1

kxij � cik2
; ð1Þ
where ci ¼ ð1=niÞ
Pni

j¼1xij denotes the mean of the ith cluster; k the number of clusters; xij the jth pattern in the ith cluster; ni

the number of patterns in the ith cluster; and n ¼
Pk

i¼1ni. Accuracy, F-measure, and entropy [41] provide alternative ways to
measure the quality of the clustering result.

2.2. The k-means clustering algorithm

This work focuses on k-means [45] clustering, which is by far the most widely used partitional algorithm for data clus-
tering for a very simple reason. As outlined in Fig. 1, k-means is simple and easy to implement.

However, as is well known, k-means has several limitations [51,27,28,62]:

� Scalability: It scales poorly computationally.
� Initial means: The clustering result is extremely sensitive to the initial means.
� Noise: Noise, or outliers, deteriorates the quality of the clustering result.
� Number of clusters: The number of clusters must be determined before the k-means clustering begins.
� Local minima: It always converges to local minima.
� Inability to cluster non-linearly separable data set: It fails to split non-linearly separable data sets in the input space.

Scalability of the k-means clustering algorithm, especially for large or high-dimensional data sets, has received extensive
attention recently. Scalable k-means [7] uses buffering and a two-stage compression scheme to either compress or discard
patterns to enhance the performance of k-means. However, according to Ordonez and Omiecinski [49], scalable k-means is
slightly faster than standard k-means, but not always. The most important factors affecting the performance of scalable k-
means are parameter settings and compression processes such as buffer size and compression ratio. Simple single pass k-
means [17] was also developed to reduce the computation time. Relational k-means [49] uses the block and incremental con-
cept to provide a more stable method than scalable k-means. Moreover, the computation time of k-means can be reduced
using parallel [39] and triangle inequality [14] methods.

To resolve the problem of the clustering result being extremely sensitive to the initial means, Bradley and Fayyad [6]
adopted a random sampling method to obtain K � J centers for use in building a better initial solution. Laszio and Mukherjee
Fig. 1. Outline of the k-means algorithm.
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Fig. 2. The end result of partitioning a 579-pattern data set into three clusters [56].
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Fig. 3. The result at the end of iteration 2.
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[34] devised a genetic algorithm using hyper-quadtrees to identify a good initial center set. However, if the data set is noisy
or consists of outliers [29,26],1 the results of classical clustering algorithms degrade. The sampling method [6] can help mit-
igate this problem. In [26], Hua et al. detected the outliers by using the distances of a pattern to the closest and second closest
cluster centers and the distance between the two centers.

Rather than standard k-means determining the number of clusters k automatically, k is assumed to be given. Likas et al.
[40] developed a modified k-means algorithm that can dynamically add a cluster center to determine suitable initial posi-
tions. The X-means [51] can not only accelerate the iterative process but also find the best k for k-means. Bisecting k-means
[54,55] starts off with a single cluster containing all of the data. The process of splitting a cluster up into two is then repeated
until the desired number of clusters is reached.

Many studies [3,31–33,47] have attempted to combine k-means with other heuristic algorithms to prevent k-means from
falling into local minima. Genetic k-means algorithm (GKA) [31] and k-means with genetic algorithm (KGA) [3] use k-means
to find the local minima and genetic algorithm to search for the global minimum. Kuo et al. [32] used ACS and SOM, while Ng
and Wong [47] used tabu search combined with k-means to obtain results better than those of standard k-means.

The inability of k-means to separate data that are non-linearly separable in the input space has received considerable
attention recently. Kernel k-means [52,53,66,13] was developed to solve this problem by transforming the input data to a
1 More precisely, as far as this paper is concerned, noise denotes patterns that are close to two or more cluster centers while outlier represents patterns that
are distant from the cluster to which they belong.
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Fig. 4. The result at the end of iteration 3.

Fig. 5. Example illustrating how the mean of group a, ca, is computed.
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high-dimensional space in order to separate them. The difficulty in implementing kernel k-means is that the kernel matrix H
takes up a considerable amount of memory. Scheme kernel k-means [66] was proposed to solve this problem by splitting the
kernel matrix H into blocks.
3. The proposed algorithm

This section gives the motivation of the work and discusses in detail the PR algorithm.
3.1. Motivation of this work

The work is motivated by the observation that most k-means-based clustering algorithms behave extremely similar at the
later stage of convergence in the sense that most of the computations are repeated yet contribute nothing to the final solu-
tion. For instance, Fig. 2 shows the final result of a 579-pattern data set partitioned into three clusters by k-means. Figs. 3 and
4 summarize the results at the end of iterations 2 and 3, indicating that a large number of patterns (those enclosed in rect-
angles) remain in the same cluster of the previous iteration. This makes clear that many computations of k-means such as the
computation of means, the computation of distances to means, and the assignment of patterns to the nearest mean are
essentially redundant and thus can be eliminated to save its computation time.

For concreteness, Fig. 5 gives a highly simplified example to show that in the computation of a mean, many of the com-
putations are essentially redundant. As depicted in Fig. 5, the data set D consists of four patterns, x1, x2, x3, and x4. Patterns x1

and x2 are clustered into the same group a at iterations 2, 3 and 4. Pattern x3 is assigned to group b at iteration 2 and to the
group a at iterations 3 and 4. Pattern x4 is assigned to the group b at iterations 2, 3, and 4. By using superscript to indicate the
iteration number and subscript to represent the group number, the mean of group a at iteration 2 can be computed as
c2

a ¼ ðx1 þ x2Þ=2 and at iterations 3 and 4 as c3
a ¼ c4

a ¼ ððx1 þ x2Þ þ x3Þ=3. The mean of group b at iteration 2 can be computed
as c2

b ¼ ðx3 þ x4Þ=2 and at iterations 3 and 4 as c3
b ¼ c4

b ¼ x4. Obviously, the computations of x1 + x2 at iterations 3 and 4 and
the computation of (x1 + x2) + x3 at iteration 4 are redundant. If patterns x1 and x2 are compressed into a single pattern, say,
�x1;2 ¼ ðx1 þ x2Þ=2 and removed at iteration 2, then the mean of group a can be computed as c3

a ¼ c4
a ¼ ðð2� �x1;2Þ þ x3Þ=3 at

iterations 3 and 4. It is clear from the above discussion that by compressing and removing at each iteration patterns that
do not change their membership thereafter, the computation time can be significantly reduced relatively easily.
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One of the reasons why pattern x3 is not compressed and removed at iterations 3 and 4 is that pattern x3 is far away from
its means c3

a and c4
a and thus is likely to change its membership later. Compressing and removing pattern x3 will make it re-

main in the cluster from which it is compressed and removed permanently. Consequently, the accuracy rate2 of the clustering
result will be decreased. Another reason is that the number of iterations pattern x3 remains in the cluster a is less than those of
the other two patterns x1 and x2. From the perspective of the convergence characteristics of the k-means algorithm, it is clear
that the longer a pattern remains in a cluster, the less likely it will change its membership.

Despite shedding light on how the PR algorithm works, the above example is probably much too small to accurately re-
flect the amount of computation time that can be reduced. To further clarify the notion of PR, here is another example. As-
sume that cluster i consists of 10,000 patterns at the beginning of iteration ‘. Further assume that half of the 10,000 patterns
are compressed and removed at the end of iteration ‘. Next, consider the cost of computing the mean of cluster i at iteration
‘ + 1, assuming that no patterns are moved in or out of cluster i at iteration ‘ + 1. Without pattern compression and removal
at iteration ‘, 9,999 additions and one division are required to compute the mean of cluster i at iteration ‘ + 1. With pattern
compression and removal at iteration ‘, the cost is reduced to one multiplication,3 5,000 additions, plus one division—a con-
siderable savings in terms of the number of computations. This analysis is intended for only one cluster and is based on the
assumption that the data points are one-dimensional. If the number of clusters k and the number of dimensions d are consid-
ered, the savings is proportional to k � d, which is consistent with the experimental results in Section 5.

Furthermore, as far as the PR algorithm is concerned, patterns that are compressed and removed will remain in the cluster
from which they are compressed and removed forever. That is, for each pattern, the compression and removal process is
done once and only once, although a compressed pattern may again be compressed and removed at later iterations. More
important, by using a pattern to represent a large number of patterns, the number of computations can be significantly
reduced.

3.2. Notations

To simplify our discussion of the PR algorithm in the next subsection, the following notations are used throughout the rest
of this section.
n number of input patterns or data points
k number of clusters
‘ superscript denoting the iteration number beginning with 1, i.e., ‘ = 1,2, . . . , up until the iteration stops
d number of dimensions of the input patternseD array of input patterns or data points, i.e., for each i; 1 6 i 6 n; eD½i� ¼ xi where xi denotes the ith input pattern
D copy of eD, i.e., for each i, 1 6 i 6 n; D½i� ¼ eD½i� initially (and only initially). In other words, eD and D differ in that eD will

remain intact, but D will be changed by the PR algorithm. From this perspective, the sole purpose of eD is to make it
easy to locate patterns belonging to each cluster at the end of k-means with PR. Furthermore, with the arrays eD and D
are associated two arrays C and M of the same size as the arrays eD and D.

C array whose element denotes the cluster to which each pattern belongs. That is, for each i, 1 6 i 6 n, C[i] 2 {1,2, . . . ,k}
denotes the cluster to which the pattern D[i], and the original pattern eD½i�, belongs.

M array whose element denotes the state of each pattern. That is, for each i, 1 6 i 6 n, M[i] denotes if pattern D[i] is re-
moved or if pattern D[i] is xi or if pattern D[i] is a compression of M[i] patterns. Initially, M[i] = 1, indicating that no
pattern is compressed and removed, i.e., D[i] = xi. When pattern D[i] is removed, M[i] associated with it will be set to 0.
M[i] > 1 indicates that the corresponding pattern D[i] is the average of the M[i] patterns removed.

jSj cardinality of the set S

C‘
i set of indices to the arrays D, C, and M, indicating patterns assigned to cluster i and their state at iteration ‘. That is,
2 The
3 For
C‘
i ¼ fs‘i1; s‘i2; . . . ; s‘ijC‘

i j
g

and for each i and j, 1 6 i 6 k and 1 6 j 6 jC‘
i j;D½s‘ij� denotes the jth pattern assigned to cluster i; C½s‘ij� ¼ i the cluster

to which pattern D½s‘ij� is assigned; and M½s‘ij� the state of pattern D½s‘ij� at iteration ‘.

R‘

i set of indices to the arrays D, C, and M, indicating patterns removed from cluster i and their state at iteration ‘. That is,
R‘
i ¼ fr‘i1; r‘i2; . . . ; r‘ijR‘

i
jg

and for each i and j, 1 6 i 6 k and 1 6 j 6 jR‘
i j;D½r‘ij� denotes the jth pattern removed from cluster i; C½r‘ij� ¼ i the clus-

ter from which pattern D½r‘ij� is removed; and M½r‘ij� the state of pattern D½r‘ij� at iteration ‘. Moreover, R‘
i is a subset of

C‘
i , and it can be empty, i.e., R‘

i ¼ ;, indicating that no patterns are compressed and removed from cluster i at iter-
ation ‘.
C‘ union of C‘
i , i.e., C‘ ¼ [k

i¼1C‘
i ¼ f1;2; . . . ;ng

R‘ union of R‘
i , i.e., R‘ ¼ [k

i¼1R‘
i

accuracy rate refers to the percentage in which the input patterns are classified into the correct cluster.
most commercially available computer architectures, one multiplication is obviously less expensive computationally than 4,999 additions.



Fig. 6. Outline of the k-means algorithm with PR.
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3.3. The PR algorithm

Fig. 6 gives an outline of the k-means algorithm with PR. Initially, the ‘‘combined’’ algorithm works exactly the same as k-
means except that it continues to check whether it is the right time to start the PR algorithm. If it determines the right time
to do so and the removal bound has not been reached, the PR algorithm is applied. Then, it continues to check whether or not
to stop the PR algorithm based on the removal bound.

Basically, the PR algorithm can be divided into two parts:

1. Pattern compression and removal (PCR), and
2. Pattern assignment and mean update (PAMU).

In practice, however, an optional step is generally added to generate a ‘‘better’’ initial solution—better in the sense that
it is closer to the optimal solution than a randomly generated one—in order to mitigate the problem of PR being extremely
sensitive to the initial solution. A detailed discussion follows.

3.3.1. Generation of a better initial solution
The initial solution of the k-means algorithm is usually generated randomly. However, to improve the clustering result of

the k-means algorithm that is extremely sensitive to the initial solution, many researchers [6,34] have adopted a non-ran-
dom procedure to create a ‘‘better’’ initial solution, thus yielding a better clustering result. Using the non-random procedure
also creates a better initial solution to prevent PR from removing patterns that belong to other clusters and thus should not
be removed at early iterations. This is owing to the fact that similar to the k-means algorithm, PR is extremely sensitive to the
initial solution and probably even more so because our goal is to start PR as early as it can. For instance, as shown in Fig. 7(a),
PR compresses and removes patterns that have a small probability of migrating from cluster 1 to clusters 2 and 3. Neverthe-
less, if the current mean is too far away from the optimal mean, as depicted in Fig. 7(b), it is very likely that PR compresses
and removes patterns that belong to clusters 2 and 3 instead of cluster 1.

In this paper, a very simple method is used to create a better initial solution to mitigate the problem of PR being extre-
mely sensitive to the initial solution. It works as follows: First, the proposed algorithm selects a certain percentage of the
input patterns by random sampling. Then, these patterns are clustered by using the standard k-means algorithm. Finally,
the outcome serves as the initial solution of the proposed algorithm. It is worth noting that random sampling is neither
the only nor the best method available to generate a better initial solution for PR. In fact, any method that can generate a
better initial solution efficiently would suffice. This paper utilizes random sampling to demonstrate the feasibility of using
such a simple method to mitigate the problem of PR being extremely sensitive to the initial solution.

3.3.2. Pattern compression and removal (PCR)
Fig. 8 depicts the procedure for pattern compression and removal (PCR). This procedure shows how patterns are com-

pressed and removed by the PR algorithm. First, PR requires that a removal bound be set to denote the percentage of patterns
that are allowed to be compressed and removed. Such a bound is set partially owing to the need to reduce the extent to
which noise in the input data impacts the clustering result. Ideally, if the input data are free of noise or no patterns are fuzzy
about to which clusters they should belong, the removal bound can be set to 100%. This implies that all of the patterns are
allowed to be compressed and removed, and at the end, only k patterns representing the k cluster centers are retained. Our
experimental results show that setting the removal bound to 80%—with respect to all of the removal bounds from 10% to
100% with an increment of 10% tested in this work—gives a satisfactory result. Notably, setting the removal bound to too
large of a value may decrease the accuracy rate whereas setting the removal bound to too small of a value imposes a limit
on the amount of computation time that can be reduced.

According to Fig. 8, if the removal bound has not been reached, then for each cluster i, PCR first checks to see which pat-
terns in that cluster are near the mean and thus can be removed. Next, PCR compresses and removes these patterns by
selecting one of the patterns to be removed, say, pattern D½r‘i � where r‘i 2 R‘

i , as the representative pattern and setting its va-
lue to the average of all patterns removed, as follows:
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Fig. 7. Example showing that the initial means may affect the compression and removal result. (a) As marked, the current mean is close to the optimal
mean. Thus, only patterns that have a low probability of changing their membership are compressed and removed. (b) As marked, the current mean is
distant from the optimal mean. Thus, PR has a high probability of compressing and removing patterns that should not be compressed and removed.

Fig. 8. Procedure to compress and remove patterns.
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D½r‘i � ¼
P R‘

ij j
j¼1 D½r‘ij�
jR‘

i j
: ð2Þ



Fig. 9. Procedure to assign patterns and update means.
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Then, for each pattern removed, i.e., for all z 2 R‘
i , the value of M[z] is set to zero except, of course, M r‘i

� �
whose value is set to

the number of patterns removed, as follows:
M½z� ¼ jR‘
i j if z 2 R‘

i and z ¼ r‘i ;
0 if z 2 R‘

i and z – r‘i :

(
ð3Þ
It is important for the PR algorithm to keep track of the average and the number of patterns removed because once a pat-
tern is removed, all information about it is lost. When computing the means at later iterations, the average and the number
of patterns removed play a crucial role in recovering part of the lost information to reduce the degree to which outliers in the
input data may drag the new means too far away from the real means, or more precisely, from the means of the standard k-
means algorithm.
3.3.3. Pattern assignment and mean update (PAMU)
Fig. 9 depicts the procedure for pattern assignment and mean update (PAMU). Like PCR, PAMU is performed if the removal

bound has not been reached. PAMU requires that the distances between each pattern and all the means be compared to
determine the cluster to which that pattern belongs. Moreover, for the PR algorithm, if a pattern D½s‘ij� is compressed and
removed (i.e., M½s‘ij� ¼ 0 or M½s‘ij� > 1), that pattern will remain in the cluster from which it was compressed and removed
permanently. This implies that the representative pattern (i.e., M½s‘ij� > 1) will never be reassigned to a new cluster; instead,
only patterns with M½s‘ij� ¼ 1 can be reassigned to a new cluster. In other words, PAMU described in Fig. 9 reassigns each pat-
tern with M½s‘ij� ¼ 1 to the cluster to which it belongs first and then computes the new mean of each cluster i, as follows:
c‘i ¼
PjC‘

i j
j¼1M½s‘ij� � D½s‘ij�P C‘

ij j
j¼1 M½s‘ij�

: ð4Þ
Finally, the new SSE is computed, as follows:
SSE‘ ¼
Xk

i¼1

XjC‘
i j

j¼1

kD½s‘ij� � c‘ik
2 �M½s‘ij�: ð5Þ
3.3.4. Applying PR to k-means-based algorithms
The basic idea of how the PR algorithm is applied to k-means-based algorithms is essentially the same as that of k-means.

Using GKA [31]—a hybrid of GA and k-means—as an example, here is how it works. GKA is basically no different from simple
GA except that the crossover operator is replaced by the k-means algorithm. Besides, GKA encodes solutions in the same way
as k-means does; that is, each chromosome represents a solution, as the array C discussed earlier in Section 3.2 does. GKA
uses one iteration k-means to replace the crossover operator. For all k-means-based algorithms that use a complete k-means
and encode the solutions in the same way as k-means such as GKA, the PR algorithm can be applied directly, i.e., in exactly
the same way as it is applied to k-means. Otherwise, all the PR algorithm needs to do is to re-encode the solutions first and
then proceed as before.
4. Strategy analysis

This section begins with a simple example to illustrate how PR works, followed by the analysis of its strategies.
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Fig. 10. A simple example illustrating how PR works, where P indicates the number of patterns remaining to be clustered at next iteration. (a) At the end of
iteration t � 1, 12 patterns are assigned to three clusters. (b) At iteration t, PR kicks in; patterns ‘‘close’’ to their means are compressed and removed. As a
result, at the end of iteration t, only 9 patterns are left, meaning that PR needs to compute no more than 9 patterns thereafter. In other words, by
compressing and removing at each iteration patterns that are unlikely to change their membership afterwards, the computation time can be significantly
reduced.
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Fig. 11. Convergence process of k-means with 579 patterns.
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4.1. Example

Fig. 10(a) shows that at the end of iteration t � 1, 12 patterns, denoted xi, for i = 1,2, . . . ,12, are assigned to three clusters
numbered 1, 2, and 3. Then, at iteration t, PR is applied so that patterns ‘‘close’’ to their means are compressed and removed.
More precisely, according to Fig. 10(b), patterns x3 and x4 of cluster 1 are compressed into a single pattern x03 and then re-
moved, x5 and x7 of cluster 2 compressed into x05 and removed, and x10 and x11 of cluster 3 compressed into x010 and removed
because they are ‘‘close’’ to their means, i.e., within a predefined distance, and are unlikely to change their membership
thereafter. It is important to note that PR needs to compute no more than nine patterns afterwards. In other words, by com-
pressing and removing at each iteration patterns that are unlikely to change their membership later, the computation time of
k-means and k-means-based algorithms can be significantly reduced.
4.2. Strategies

Strategies of the PR algorithm are discussed next. It is important to note that such strategies may significantly impact the
performance of the PR algorithm.
4.2.1. Time to start
In Section 3.1, we showed that a large number of computations of the k-means algorithm on its convergence process are

redundant. The results further indicated that if patterns that do not change their membership at later iterations are com-



Table 1
Comparison of the accuracy rate using different approaches to determining the right time to start the PR algorithm.

Benchmark KM KM + TS1 KM + TS2 KM + TS3

Iris 368 ms (81.28%) 309 ms (78.31%) 344 ms (78.75%) 464 ms (81.28%)
(D = 4,P = 150,C = 3) �16.03% (�3.65%) �6.52% (�3.11%) +26.09% (+0.00%)

400 453 ms (75.21%) 434 ms (75.61%) 354 ms (75.59%) 445 ms (75.21%)
(D = 2,P = 400,C = 2) �4.19% (+0.54%) �21.85% (+0.51%) �1.77% (+0.00%)

579 713 ms (96.55%) 537 ms (90.08%) 565 ms (91.13%) 626 ms (96.55%)
(D = 2,P = 579,C = 3) �24.68% (�6.70%) �20.76% (�5.61%) �12.20% (+0.00%)

800 1477 ms (94.89%) 855 ms (83.50%) 890 ms (88.08%) 1386 ms (94.82%)
(D = 2,P = 800,C = 4) �42.11% (�12.00%) �39.74% (�7.18%) �6.16% (�0.07%)

D: # of dimensions, P: # of patterns, C: # of clusters.
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pressed and removed at early iterations, a significant amount of computation time can be reduced in such a way that the
quality of the clustering result is retained. However, if patterns are compressed and removed too early, say, at iteration 1
in Fig. 11, the k-means algorithm may fall into local minima, thus converging to an inaccurate result. If patterns are com-
pressed and removed too late, say, at iteration 15 in Fig. 11, no computation time will be reduced. For this reason, the timing
of starting the PR algorithm is extremely important.

In this paper, we assess three approaches to determining the right time to start the PR algorithm:

� The first approach is to start the PR algorithm at iteration 2 because the convergence speed of k-means slows down sub-
stantially after iteration 2 in the sense that a large number of patterns remain in the same group. Therefore, it is reason-
able to assume that iteration 2 is the right time to start the PR algorithm to compress and remove patterns.
� The second approach is to find the best time to start the PR algorithm, which requires knowledge of the convergence char-

acteristics of k-means. In other words, this approach requires that factors such as the number of patterns, the number of
clusters, and the distribution of patterns be analyzed, and then statistics or other intelligent algorithms knowing the con-
vergence characteristics before the k-means algorithm begins be used. For instance, compare the current SSE with the
previous one. If the decrease rate is smaller than a threshold, the PR algorithm can be started. Unfortunately, it is extre-
mely difficult to end up with a reasonable threshold because the decrease rate of SSE depends on factors such as the dis-
tribution of patterns and the number of clusters.
� The third approach is to start the PR algorithm when a large number of patterns remain in the same group for a certain

number of iterations in a row.

Table 1 compares the accuracy rates of the above three approaches. TS1, TS2, and TS3 represent, respectively, the first,
second, and third approaches. Each field is divided into four subfields. The upper-left subfield represents the time that each
algorithm takes in milliseconds; the upper-right subfield the accuracy rate; the lower-left subfield the percentage of com-
putation time reduced; the lower-right subfield the percentage of accuracy rate lost. For comparison, we set the threshold
for TS2 to 0.3, implying that when the decrease rate of SSE is less than 0.3, k-means with PR will start the PR algorithm; the
threshold and the number of iterations for TS3 to n/2 and 3, implying that when more than n/2 patterns remain in the same
cluster for three iterations in a row, k-means with PR will start the PR algorithm. Our experimental results show that the PR
algorithm is highly efficient in terms of both the accuracy rate and the computation time. Besides, the percentage of com-
putation time reduced and the percentage of accuracy rate lost provide a viable means of analyzing the effectiveness of trad-
ing the accuracy rate for the computation time.

To better understand how time to start impacts the performance of the PR algorithm, we also test thresholds from 10% up
to 90% with an increment of 10% for TS2 and TS3. The experimental results indicate that regardless of which threshold is
used, the results are approximately the same in terms of both the accuracy rate and the computation time, despite the fact
that the optimal thresholds of TS2 and TS3 depend to a certain extent on the data set in question except for TS1. The exper-
imental results further demonstrate that the iterations at which TS2 and TS3 start the PR algorithm are extremely close to
each other for all thresholds tested. In addition, TS1 is faster than TS2 and TS3. Therefore, in this work, TS1 is used as the time
to start strategy for all the experiments described in Section 5.

4.2.2. Removal strategy
In this paper, we evaluate two methods for pattern compression and removal. The first method utilizes the mean l and

standard deviation r of the distances of patterns in a cluster to their cluster center to locate and remove patterns that are
among the top a% near the cluster center. The second method removes patterns that remain in the same cluster for a certain
number of iterations in a row.

Table 2 compares the accuracy rates of the two methods, denoted by RM1 and RM2, respectively. For RM1, a is set to 50
because we want to remove patterns in a cluster the distances of which to their cluster center are smaller than l. For RM2,
the number of iterations is set to 3 because most of the patterns remaining in a cluster for three iterations in a row have a



Table 2
Comparison of the accuracy rate and the running time using different pattern compression and removal methods.

Benchmark KM KM + RM1 KM + RM2

Iris 364 ms (82.56%) 343 ms (80.44%) 281 ms (80.22%)
(D = 4,P = 150,C = 3) �5.77% (�2.57%) �22.80% (�2.83%)

400 419 ms (76.77%) 345 ms (77.02%) 315 ms (77.14%)
(D = 2,P = 400,C = 2) �17.66% (+0.33%) �24.82% (+0.49%)

579 805 ms (96.55%) 547 ms (89.46%) 538 ms (89.05%)
(D = 2,P = 579,C = 3) �32.05% (�7.34%) �33.17% (�7.76%)

800 1508 ms (93.21%) 836 ms (83.16%) 725 ms (82.72%)
(D = 2,P = 800,C = 4) �44.56% (�10.78%) �51.92% (�11.25%)

D: # of dimensions, P: # of patterns, C: # of clusters.

Table 3
Data sets.

Data set Benchmark k d n

DSR1 Reuters-21578 25 302 8,284
DSR2 KDD-98 Data Set 20 56 95,413
DSR3 20 News Groups 10 1000 10,000

DSS1 Iris 3 4 150
DSS2 579 3 2 579
DSS3 800 4 2 800
DSS4 uci-sc 6 60 600

DSH1 c50d2n6000 50 2 6000
DSH2 c50d10n6000 50 10 6000
DSH3 c50d25n6000 50 25 6000
DSH4 c50d50n6000 50 50 6000
DSH5 c50d100n6000 50 100 6000
DSH6 c50d250n6000 50 250 6000
DSH7 c50d500n6000 50 500 6000
DSH8 c50d1000n6000 50 1000 6000

DSL1 c50d2n60000 50 2 60,000
DSL2 c50d2n600000 50 2 600,000
DSL3 c50d2n6000000 50 2 6,000,000
DSL4 c50d2n10000000 50 2 10,000,000

k: # of clusters, d: # of dimensions, n: # of patterns.
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low probability of changing their membership at later iterations. According to Table 2, RM1 outperforms RM2 in terms of the
accuracy rate; however, RM2 outperforms RM1 in terms of the computation time. Therefore, for all experiments described in
Section 5, RM1 is used because we want to reduce the computation time while at the same time limiting the loss of quality.
However, if the loss of quality is not of major concern, RM2 provides an alternative means of reducing even more of the com-
putation time. It is worth pointing out that the time differences as shown in Tables 1 and 2 are generally expected because all
experiments are performed independently.

Since RM1 uses l and r of each cluster to determine patterns near their cluster center, determining patterns to be com-
pressed and removed takes O(n) time rather than the lower bound of all comparison-based sorting algorithms O(n logn).
Although incapable of locating exactly a% of the patterns, using l and r is an efficient means of identifying patterns to
be compressed and removed. Obviously, if the distances between patterns and means are not normally distributed, PR
can always use other statistical measures, such as median, to locate patterns that are close to means.
4.2.3. Removal bound
Several removal bound settings—from 10% to 100% with an increment of 10%—have also been tested. The experimental

results indicate that setting the removal bound to a larger value allows a larger number of patterns to be removed and thus
a larger amount of computation time to be reduced. However, doing so may incur a larger loss of quality. Alternatively, set-
ting the removal bound to a smaller value allows a smaller number of patterns to be removed and thus a smaller amount of
computation time to be reduced. Fortunately, doing so incurs a smaller loss of quality. Our experimental results show that
setting the removal bound to 80% yields the best result. Although setting the removal bound to 90% or higher can reduce 80%
or more of the computation time, the accuracy rate decreases. Setting the removal bound to 80% appears to provide a good
balance between the computation time and the accuracy rate. Consequently, for all experiments described in Section 5, the
removal bound is set to 80%.



Table 4
Experimental results of small and high-dimensional data sets.

Data
set

PR-KM PR-RKM PR-TKM PR-KKM PR-GKA

DD DT R DD DT R DD DT R DD DT R DD DT R

DSS1 �0.72 �5.56 – �4.04 �3.45 – 0.18 10.34 57.44 0.18 0.00 0.00 0.45 �39.36 �87.47
DSS2 2.10 �2.56 �1.22 31.21 2.21 0.07 4.20 0.35 0.08 4.20 0.00 0.00 0.00 �36.28 –
DSS3 3.43 �24.79 �7.23 0.16 3.21 20.06 5.18 �24.55 �4.74 5.18 �28.57 �5.52 0.13 �45.73 �351.77
DSS4 �0.17 �49.07 – 15.25 �35.16 �2.31 0.90 �23.16 �25.73 0.90 �40.00 �44.44 0.68 �62.68 �92.18

DSH1 0.99 �76.26 �77.03 2.14 �34.10 �15.93 2.71 �67.36 �24.86 2.34 �81.80 �34.96 9.11 �61.78 �6.78
DSH2 0.74 �79.05 �106.82 1.49 �40.63 �27.27 1.14 �80.08 �70.25 0.94 �81.67 �86.88 3.27 �69.89 �21.37
DSH3 0.62 �79.37 �128.02 1.25 �42.35 �33.88 0.67 �80.66 �120.39 0.55 �81.26 �147.75 2.45 �72.11 �29.43
DSH4 0.63 �76.60 �121.59 0.96 �44.50 �46.35 0.42 �80.58 �191.86 0.33 �81.97 �248.39 2.72 �73.26 �26.93
DSH5 0.47 �76.53 �162.83 0.68 �45.36 �66.71 0.24 �80.19 �334.13 0.19 �82.22 �432.74 0.70 �73.54 �105.06
DSH6 0.23 �72.14 �313.65 0.07 �47.58 �679.71 0.09 �77.68 �863.11 0.07 �80.49 �1149.86 0.09 �73.53 �817.00
DSH7 0.13 �65.48 �503.69 0.32 �49.70 �155.31 0.03 �72.38 �2412.67 0.03 �76.53 �2551.00 0.88 �72.64 �82.55
DSH8 0.04 �56.51 �1412.75 0.26 �50.94 �195.92 0.01 �65.98 �6598.00 0.01 �70.99 �7099.00 0.49 �73.19 �149.37

Note that – means R is undefined.
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5. Empirical analysis

As mentioned earlier, this work evaluates the performance of PR by applying it to five state-of-the-art clustering algo-
rithms: standard k-means [45], relational k-means [49], kernel k-means [52,53], triangle inequality k-means [14], and genet-
ic k-means algorithm [31]. The empirical analysis is conducted on an IBM X3400 machine with 2.0 GHz Xeon CPU and 8 GB of
memory running CentOS 5.0 with Linux 2.6.18. Also, the programs are written in Java 1.5.0_09.

To simplify the discussion of the experimental results in Tables 4 and 5 and Fig. 12, the following conventions are
adopted. Let KM denote standard k-means; RKM relational k-means; TKM triangle inequality k-means; KKM kernel k-means;
and GKA genetic k-means algorithm. Let w denote either KM, RKM, TKM, KKM, or GKA. Let D and T denote, respectively, the
quality of the clustering result in terms of SSE and the computation time. Let b denote either D or T. The enhancement of b
‘‘the original algorithm with PR’’ makes, denoted bPR�w, with respect to b of ‘‘the original algorithm,’’ denoted bw, in percent-
age can be expressed as
Db ¼
bPR�w � bw

bw

� 100%: ð6Þ
For instance, the enhancement of the computation time PR-KM makes (TPR-KM) with respect to the computation time of KM
(TKM) is defined as
DT ¼
TPR-KM � TKM

TKM
� 100%;
where w = KM and b = T. Moreover, it is important to note that as defined above in Eq. (6), a more negative value of Db im-
plies a greater enhancement.

Moreover, to measure the rate of reduction of computation time in comparison with the rate of loss of quality, we define
the following metric
R ¼ DT

DD
; ð7Þ
where DT < 0 denotes the percentage of computation time reduced and DD > 0 represents the percentage of quality lost. In
other words, R indicates for every percent loss of quality, what percentage of computation time is reduced. As defined above,
a more negative value of R implies a greater reduction of computation time. It is important to note that R is just an indication
of how well the proposed algorithm performs instead of stating that the rate of reduction of computation time can exceed
100%. Moreover, R is undefined in the case of a gain in quality (DD 6 0) or an increase in computation time (DT P 0).

5.1. Data sets and parameter settings

As depicted in Table 3, for comparison, the test data sets are divided into two categories: real and synthetic. The real data
sets include Reuters-21578 [38], KDD-98 Data Set [4], 20 News Groups [46], Iris [19], and Synthetic control chart time series
(uci-sc) [1]. The synthetic data sets are further divided into the small data sets, which include 579 [56] and 800 [57]; the
high-dimensional data sets (from 2 to 1,000 dimensions), which include DSH1 to DSH8; and the large data sets (from
60,000 to 10,000,000 patterns), which include DSL1 to DSL4.

Furthermore, all experiments are carried out for 30 runs and 30 iterations per run, and 10% of the input patterns are ran-
domly sampled to create the initial solution. Also, as noted earlier, for all of the experiments, TS1 is used as the time to start
strategy; RM1 the removal strategy; 80% the removal bound.



Table 5
Experimental results of real and large data sets.

Data set PR-KM PR-RKM PR-TKM

DD DT R DD DT R DD DT R

DSR1 0.26 �77.83 �299.35 2.71 �36.17 �13.35 0.83 �79.85 �96.20
DSR2 6.01 �73.51 �12.23 1.08 �43.32 �40.11 2.76 �71.22 �25.80
DSR3 0.60 �76.85 �128.08 0.42 �33.74 �80.33 0.22 �75.49 �343.14
DSL1 1.74 �69.57 �39.98 1.00 �31.04 �31.04 2.26 �64.76 �28.65
DSL2 2.85 �70.01 �24.56 �2.59 �35.73 – 2.05 �65.07 �31.74
DSL3 4.51 �69.33 �15.37 �4.17 �35.92 – 3.72 �65.36 �17.57
DSL4 2.57 �69.37 �26.99 �5.22 �36.63 – 2.47 �65.16 �26.38

Note that – means R is undefined.
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Fig. 12. Experimental results of real and large data sets. (a), (b), and (c) show the results by percentage; (d), (e), and (f) by factor. Note that all the results
given in (a) through (f) are with respect to the results of KM given in (a) and (d).
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5.2. Experimental results

Table 4 evaluates the performance of PR, by applying it to KM, RKM, TKM, KKM, and GKA and then using them to cluster
DSSs and DSHs. As depicted in Table 4, a larger number of dimensions generally implies a smaller loss of quality. Moreover,
PR can reduce the computation time of standard k-means by up to 79.37%, relational k-means by up to 50.94%, triangle
inequality k-means by up to 80.66%, kernel k-means by up to 82.22%, and genetic k-means algorithm by up to 73.54%, respec-
tively. It is interesting to note that although relational k-means [49] and triangle inequality k-means [14] can reduce the
computation time of standard k-means by more than 84% and 64%, respectively, PR can further reduce their computation
time by up to 50.94% and 80.66%, respectively, as given in Table 4.

Finally, for completeness, the performance of PR-KM, PR-RKM, and PR-TKM on clustering two large data sets are com-
pared. Table 5 and Fig. 12 show that PR can further reduce the computation time of relational k-means [49] and triangle
inequality k-means [14], despite their ability to reduce a significant amount of computation time of standard k-means. In
addition, Tables 4 and 5 show the rate of reduction of computation time in comparison with the rate of loss of quality as
defined in Eq. (7); that is, for every percent loss of quality, what percentage of computation time is reduced. In case R is unde-
fined, i.e., DD 6 0 or DT P 0, a dash is given.

According to the experimental results of DSR3 (20 News Groups) in Fig. 12, relational k-means by itself can reduce the
computation time of standard k-means by 97.05% or by a factor of 33.88. However, Table 5 indicates that relational k-means
with PR can further reduce the computation time of relational k-means by 33.74%. In other words, relational k-means with
PR can reduce the computation time of standard k-means by 98.04% or by a factor of 51.13.

Together, Tables 4 and 5 and Fig. 12 indicate that with a small loss of quality, PR can reduce the computation time of all of
the clustering algorithms evaluated in this work. More important, they indicate that PR can be applied not only to single-
solution-based algorithms such as k-means-based algorithms but also to population-based and kernel-based algorithms
such as GKA and kernel k-means to reduce their computation time.
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5.3. Time complexity

As described in [28,11], the time complexity of k-means is O(nk‘), where n denotes the number of patterns; k the number
of clusters; and ‘ the number of iterations. This analysis is limited in that it did not take into account the number of dimen-
sions of the input patterns. As is well known, most commercially available computer architectures such as personal comput-
ers can not add or subtract two 1000-dimensional vectors in exactly the same number of cycles as adding or subtracting two
scalars does. Thus, a more reasonable time complexity analysis of the k-means algorithm would be O(nkd‘), which considers
the number of dimensions of the input patterns. This observation corresponds to the time complexity of SSE given by Krishna
[31] and Lu [43,44]. According to their results, the time complexity of SSE is O(nd) where n denotes the number of patterns
and d the number of dimensions of the input patterns. That observation also corresponds to our experimental results, which
indicate that the computation time is proportional to the number of dimensions of the input patterns. Therefore, in the fol-
lowing analysis, the time complexity of k-means is assumed to be O(nkd‘). Theoretically, the PR algorithm can reduce the
time complexity of k-means from O(nkd‘) to O(nkd). This can be easily proved by letting D (0 < D < 1) be a constant that de-
notes the percentage of patterns retained at each iteration. In other words, 1 � D denotes the percentage of patterns re-
moved at each iteration. Then,
X‘�1

i¼0

Dinkd ¼ nkd
X‘�1

i¼0

Di
6 nkd

X1
i¼0

Di ¼ nkd
1

1� D
¼ OðnkdÞ: ð8Þ
However, our experimental results indicate that in practice, a removal bound is required to limit the number of patterns
that can be compressed and removed by the PR algorithm. The purpose of this bound is to reduce the extent to which noise in
the input data impacts the accuracy rate of the clustering result. For the results described earlier, the bound is set to 80%
because we do not know exactly how k-means or k-means-based algorithms converge. If the PR algorithm removes too many
patterns at each iteration, the accuracy rate will decrease. Therefore, all we can claim about the time complexity of k-means
with PR is that it falls somewhere between O(nkd) and O(nkd‘). In other words, the time complexity of k-means with PR is
bounded from above by O(nkd‘) and from below by O(nkd). In the best case, when the PR algorithm is started at the first
iteration and the removal bound is set to 100%, the time complexity of k-means with PR is O(nkd). In the worst case, when
k-means with PR converges before the PR algorithm is started or the removal bound is set to 0%, then k-means with PR falls
back to k-means, and the time complexity is O(nkd‘). Moreover, according to our experimental results of Iris, 400, 579, and
800, k-means with PR converges to the local minima approximately 41% faster than k-means on average. This is consistent
with the time complexity of PR, which is somewhere between O(nkd) and O(nkd‘). Overall, the time complexity and conver-
gence speed of k-means with PR depend on (1) the iteration at which the PR algorithm is started, (2) the number of patterns
removed at each iteration, and (3) the removal bound. Our experimental results indicate that for complex data sets, PR can
reduce approximately 70% of the computation time of k-means when the removal bound is set to 80%. The above results fur-
ther demonstrate that if the removal bound is set to a larger value at the right time, the time complexity of k-means can be
reduced to approach that of the ideal case, i.e., O(nkd).
6. Conclusions

Inspired by the observation that many computations of k-means and k-means-based clustering algorithms are essentially
redundant, this work presents an efficient algorithm, called pattern reduction (PR), to accelerate their performance. The pro-
posed algorithm works by compressing and removing at each iteration patterns that are unlikely to change their member-
ship later. Our experimental results indicate that the proposed algorithm can significantly reduce the computation time of k-
means and k-means-based algorithms. This corresponds to the time complexity of PR. In addition, the strategies of PR are
analyzed to more thoroughly understand their impact on the performance of PR. Moreover, the convergence speed of k-
means with PR is analyzed. Efforts are underway to apply the proposed algorithm to other clustering algorithms in order
to enhance their performance.
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