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Abstract

The focus of this paper is the problem of finditign@sted common intervals of two general
sequences. Blin, Faye, and Stoye introduced thgels to define nested common intervals of two
sequences: the uniqueness, the free-inclusiontrendijection models. We consider all the three
models. For the uniqueness and the bijection mpaedsgiveO(n + Nyy)-time algorithms, where

1+e

Nout denotes the size of the output. For the free-giclu model, we give a@(n™™ + Nyy)-time
algorithm, wheree > 0 is an arbitrarily small constant. We also pre#san upper bound on the size
of the output for eachmodel. For the uniqueness and the free-inclusiodatso we show thdll,,; =
O(n?). Consequently, our algorithms for the uniquersss the free-inclusion models improve the
previousO(n®)-time algorithms by Blin, Faye, and Stoye. I&t Y q05 01(0)0,(0), whereX is the
set of distinct genes, ara@(a) andoy(a) are, respectively, the numbers of copiesxah the two
given sequences. For the bijection model, we statN,,: = O(Cn). As compared with Blin, Faye,

and Stoye'(n®)-time algorithm, our new algorithm is more practical,@ss likely to be much

smaller tham? in practice.
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1. Introduction

Identifying conserved gene clusters of two or mgemomes is a fundamental problem in
computational comparative genomics [8, 11, 17,28, 24]. It is a delicate task to define gene
cluster properties that are biologically meaninghlrecent years, several formal models have been
developed to capture the essential biological featof a conserved gene cluster [1, 4, 6, 10,92, 1
22, 25, 26]. Please refer to [3] for an excellemtvey. One important example is tkemmon
interval modeintroduced by Uno and Yagiura [25], in which a gemosequence is considered as a
permutation of distinct genes andcammon intervals defined to be a set of genes that appear
consecutively, possibly in different orders, in tgiven permutations. Uno and Yagiura had an
algorithm that finds all common intervals of twarpeitations ofn genes ifO(n + Ny time, using
O(n) space, wherdél,,: denotes the size of the output. Heber and Stoykeditended this work to
find all common intervals ok permutations irO(kn + Noy) time, usingO(kn) space. In addition,
Didier [9] extended this model to include paraldgs considering a sequence definition more
general than a strict permutation, and gave anrighgo that finds all common intervals of two
sequences i®(n’log n) time, usingO(n) space, on the extended model. Later, SchmidtStoge
[23] improved this result t®(n?) time. Schmidt and Stoye's algorithm can be exadrtd find all
common intervals of sequences i®(kr?) time, usingd(n®) additional space.

For genome comparison, one cluster property thaenerally not considered explicitly, but
may be assumed implicitly, reestednesgl4]. A gene cluster of sizeis nestedf eithers = 2 or it
contains a nested cluster of sge- 1. Kurzik-Dumke and Zengerle [16] observed thieparty
early in 1996. In this paper, we focus on tiested common interval modet which a cluster is
defined to be a common interval with the nestedpesgerty. Hoberman and Duran [14] proposed
this model and presented @n?)-time simple algorithm for finding all nested commintervals of
two permutations. Recently, Blin, Faye, and Stoyg qtudied the problem of finding nested
common intervals comprehensively. For permutatidhey gave an improved algorithm that
requiresO(n + Ngyy) time. A nested common interval of sigés maximalif it is not contained in a
nested common interval of sizet 1. Blin, Faye, and Stoye showed that the nunatbenaximal
nested common intervals of two permutation©{gs) and gave a linear time algorithm to find all
maximal nested common intervals. For sequencesidfiaition of nestedness is subtle. Depending
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on the treatment one wants to apply to duplicateege Blin, Faye, and Stoye proposed three
models to define nested common intervals of twaiseges. The models are called, respectively,
theuniquenessthefree-inclusion and thebijectionmodelsin this paper. Formal definitions of these
models are given in Section 2. On each of the nspd&iln, Faye, and Stoye gave @n°)-time
algorithm for finding all nested common intervals two sequences. Ampproximate nested
common intervalis a nested common interval with at mdsgaps. Blin, Faye, and Stoye also
studied the problem of finding all maximal approzai® nested common intervals. For permutations,
they had anO(n3%)-time algorithm. For sequences, they hath®15%)-time algorithms for the
uniqueness and the free-inclusion models.

In this paper, we study the problem of findingra#sted common intervals of two sequences.
Efficient algorithms are presented for all the hreodels defined in [5]. More specifically, for the
uniqueness and the bijection models, we @ + Noyo)-time algorithms; and for the free-inclusion

1+e

model, we give ai©(n" + Ngy)-time algorithm, where > 0 is an arbitrarily small constant. We
also present an upper bound on the size of theubédp eachmodel. For the uniqueness and the
free-inclusion models, we show tHag.; = O(n?). Consequently, our algorithms for the uniqueness
and the free-inclusion models improve the previ@s®)-time algorithms in [5]. LelC = Yq0s
0o1(a)oz(a), whereZ is the set of distinct genes, anda) ando,(a) are, respectively, the numbers
of copies ofa in the two given sequences. For the bijection modle show thatNy,; = O(Cn). In
the worst caseC = n? and thus the worst-case time complexity of oupgdgm on the bijection
model isO(n®). Since the best-case time complexity of @@°)-time algorithm in [5] is the same
as the worst case, Blin, Faye, and Stoye suggesteeloping an more efficient algorithm for the
bijection model as a future work. As compared wihbir algorithm, our new algorithm is more
practical, asC is likely to be much smaller thamf in practice [27]. Moreover, our algorithm is
output-sensitive. In many practical cases, the rarmb(nested) common intervals is small [5, 25].
The remainder of this paper is organized as fdlo®ection 2 introduces notation and
definitions that are used throughout this papecti&e 3 presents algorithms for the problem of

finding all nested common intervals of two sequenme the uniqueness, the free-inclusion, and the

bijection models. Finally, Section 4 concludes tragper.



2. Notation and definitions

A genome is model as a string over an alphabeif homology families. A string is a
permutationif each element iX appears exactly once, otherwise it seguencelet S be a string
with length §. We useX(S) to denote the set of homology families which appa S Thei®
element ofSis denoted byji], where 1<i < |[§. For any indicesandj such that ki <j < |9, the
substring ofS consisting ofi], §i + 1], ..., anddj] is denoted b¥{i, j]. For eacho O Z, letocqa,
S be the number of copies afin S. For example, le§ = (d, &, &, f4, &, &, €, G, &), where the
letters represent homology families and the numipetise subscript denote indices. In this example,

we have§2, 6] = (e, G, fa, &, &), Z(S ={a, d, e, f, g}, andcde, S) = 3.

For any integersandj, wherei < j, we use intervali[] to denote the set of all integers in the
rangei to j. The common intervals and nested common inteviale/o permutations, and$; are
defined as follows. A pair of intervals{[ji], [i2, j2]), where 1<i; <j;<nand 1<i; <j,<n,is a
common intervalof S and $; if Z(S[i1, j1]) = Z(S]i2, j2]). Note that this definition excludes
common intervals of size one, since they are naosidered in the definition of a nested common
interval. A common interval f, j1], [i2, j2]) of § and$; is called anested common intervéleither
Q) |11, Jall = [z, j2ll = 2, or (2) [1, j1] contains a sub-intervad; and |, jo] contains a sub-interval
Xz such thatXy, Xo) is a nested common interval of siXg| E |[i1, ja]| — 1. Clearly, in this definition,
Xy is either [1 + 1,j1] or [i1, j1 — 1], andX; is either [> + 1,]j] or [i2, j2 —1]. For example, consider
S = (a, by, G, Ay, &, fe, &7, 1) andS: = (&1, @, 3, hu, b5, ds, &, Ge). In this example, ([6, 7], [2, 3]),
(5, 71, [1, 3]), ([5, 8], [1, 4]) are, respectiyehested common intervals of sizes 2, 3, and d;(Hn
4], [5, 8]) is a common interval, but is not a eelstommon interval.

It is easy to extend the definition of a commoteival to sequences. However, since several
copies of a gene may appear in a substring, theidlef of nestedness in sequences is subtle. A
nested common interval of sigeould be extended to produce a nested commorvattef sizes +
1. Depending on the treatment one wants to applgnwiduring the extension of an interval, an
element that already inside the interval is meteoagain, Blin, Faye, and Stoye [5] proposed the

following three models to define a nested commaeriral of two sequencey andS,.



(1)

(2)

)

It is forbidden to include a second copy of a gena nested common interval, which is called
theuniquenessnodel in this paper.

We can extend a nested common interval to decla gene that is already inside it “for free",
caring about only the "innermost occurrence". Wk ttas model thefree-inclusionmodel.
More precisely, in this model, a common interval, ], [i2, j2]) is anested common intervil
either (1) ¥(Sliv, ju)| = B(&i2, j2)| = 2, or (2) [1, Ja] contains a sub-interval'{, j'1] and 2, j2]
contains a sub-intervai'{, |'2] such that ([1, |'1], [i'2, j'2]) is @ nested common interval of size
(S, 1Dl = (Sl JaD)l = 1.

If ([i1, Jal, [i2, J2]) is @ nested common interval, each gen&jn, j;] must match a unique gene
of the same family ir§[i,, j2]. We call this model théijection model. More formally, in this
model, a common intervali([ j1], [i2, j2]) is anested common intervileither (1) |[1, ja]| = [[i2,
j2ll = 2, or (2) there existO {iy, j1} andy O {i», j2} such thatS[X] = S[y] and (fi1, ji] \ {X}, [i2,

j2] \{y}) is a nested common interval.

For example, consider two sequenges (a, br, &, &, &, &, &7, G) andS, = (dh, &, G, by, &, &,

b7, &). The common interval ([2, 5], [5, 8]) is nested the bijection model, but is not on the

uniqueness model, since the family "a" occurs ntloae once. The common interval ([1, 6], [4, 8])

is nested on the free-inclusion model, but is nottlee bijection model, since we can not find a

bijection, from the genes f&[1, 6] to the genes i§;[4, 8], to satisfy the nestedness property.

For the first two models, we define thigeof a nested common intervaly([j1], [i2, j2]) to be

[Z(S[i1, ja])| (i.e., the number of distinct families &i[i1, j1]); while for the last model, we define

thesizeto be the lengthil, j1]|.

Consider the free-inclusion model. Since an irgkpanfreely include genes that are already

inside, several nested common intervals may indeft to the same nested common interval. We

say that a nested common interval, (], [i2, j2]) is closedif none ofS[i; — 1], S[j1 + 1], S[i» — 1],
Slj2 + 1] belongs t&(S[is, j1]). For example, i, = (a, ¢, &, &, bs, bs, d7, bg) aNdS, = (a, by, o,
ay, bs, bs, ¢, dg), then ([3, 6], [4, 6]) is a closed nested comnmaerval, but ([4, 6], [4, 5]) is not,
since it can be freely extended to incl &) and$[6]. By definition, if ([i1, j1], [i2, j2]) is a closed
nested common intervat,can not be extended to anyS&fi; — 1], Si[j1 + 1], S[i> — 1], §[j- + 1] to
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obtain a longer nested common interval of the ssige In the bijection and the uniqueness models,
we are interested in finding all nested commonryais. However, in the free-inclusion model, we

are only interested in finding all closed nestechown intervals.

3. Finding the nested common intervals of two sequees
Let S andS; be two sequences of lengthSection 3.1 presents &§n + Nyy)-time algorithm
for finding all nested common intervals §f andS, on the bijection model. Sections 3.2 and 3.3

extend the algorithm in Section 3.1 to the unigesrend the free-inclusion models, respectively.

3.1 The bijection model
Blin, Faye, and Stoye's [5] had &n®)-time algorithm for finding all nested common
intervals ofS and$S; on the bijection model. Their algorithm is desedhin Section 3.1.1. Then,

our new algorithm is presented in Section 3.1.2.

3.1.1 Blin, Faye, and Stoye's algorithm

First, a directed acyclic graph is constructed. (Figure 1 gives an illustratioricka comes
from [5].) The vertex set b represents all possible candidates of nested commervals. More
specifically, each pair of intervals{][ji], [i2, j2]) IS represented by a verteix, (1, i2, j2), where 1<
I1<j1<n 1<i; <j2<n, andSJiy, j1] and Sy, j2] contain the same multiset of families. In the
bijection model, two intervalsi j;] and [2, jo] can form a nested common interval onlyiif, [l1]| =
Iliz, j2]|. Therefore, the number of verticesGris O(n°).

In G, a directed edge is drawn from a verntex (i1, j1, i2, J2) t0 a vertex' = (I'1, |'1, I'2, '2) if
and only if there exist 0 {i; — 1,j1 + 1} andy O {i, — 1,j2 + 1} such tha§[x] = S[y] and (Ji'1, ] 1],
[1'2,)'2]) = ([11, Ja] O {x}, [i2, j2] O {y}). An edge from a vertex to a vertex/' indicates that it/ is a
nested common interval, thehis a nested common interval. Each vertex has tdegree at most

four. Thus, the number of edgesGris O(n®).



(1,7,3,9)

1,5, 2, 6) (3,7.5,9)
(1,4,1,4 (1,4,2,5) (25363Q
1,3,1,3) (1335) 2,4,1,3) (2435) (3,5, 4, 6)
T T “"“““"' STt T T TTT ST TS ““"“““"\ """"" \
L (1,2,2,3)  (1,2,3,4) (3,4,1,2) (3,4,4,5 1 U,

Figure 1. GraphG for S, = (¢, &, b, &, G5, &, f7) andS, = (by, &, &, G, bs, &, f7, G, &).

Let U, be the set of vertices i@ corresponding to multisets of size two. By defomt the
vertices inU, represent nested common intervals of size twoh Eadex inG is a nested common
interval if and only if it can be reached from ateg in U,. Therefore, all nested common intervals
can be found by performing a simple graph-searchlggrithm onG, starting from the vertices in
U..

Blin, Faye, and Stoye showed tlatan be constructed @(n’) time. Consequently, the time

complexity of the above algorithm &(n®).

3.1.2 AnO(n + Noyi)-time algorithm

Our new algorithm is a modified version of Blin,yleaand Stoye's. It also solves the problem
by finding all vertices inG that can be reached from the verticen If the construction of the
whole graphG is necessary, since the number of vertices andseis®(n°), Blin, Faye, and Stoye's
algorithm is optimal. Our idea is to do the findwghout constructing the whole graph.

We classify the vertices db into two classes: essential vertices and redundartices. A
vertex isessentialif it is a nested common interval, otherwise itasundant Fors > 2, letUs be
the set of essential vertices corresponding mtstied sizes. Our problem is to compute all
nonempty settls. The selJ; is the set of vertices B corresponding to multisets of size two. Bor
> 2, according to the nestedness property, eadexvén Usis reachable from a vertex ds.
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Therefore, we can generate the verticeddiby using the vertices ibs;. Our algorithm works as
follow. First, we find the sdtl,. Then, iteratively, we find the st by using the vertices ids; for

eachs > 2. The computation df, is done by the following procedure.

Procedure SZETWOINTERVAL (S, $)
begin

1. 1y < {[ig, iz + 1] |1<iz<n}; Iy « {[igiz2+ 1] | 1<iz <n}

2. A= {Sfia], S[i1+1]}[1<iz<n} O{ Sliz], Sliz + 1]} | 1<iz<n}

3. for each seM JA do

4. begin

5. L1(M) —~ a list containing the intervalg [i; + 1] inl; with {S[i4], Si[i; + 1]} =M
6. Lo(M) — a list containing the intervalg[i, + 1] inl, with {S)[iz], S[i2 + 1]} =M
7. end

8. Uy {(ig, i1+ 1,igi2+ 1) | [, iz +1]0Ly(M), [iz, iz + 110 Lay(M), M O A}

end

Using radix sort, the intervals Ip andl, can be sorted to obtaland allL;(M) andLy(M) in
O(n) time. Therefore, lines 1-7 requires linear tiM@@nsequently, BETWOINTERVAL takesO(n +
|Us|) time.

We proceed to discuss the computatiotefor a fixeds > 2. For ease of discussion, for each
vertex (1, j1, i2, j2), we define its LL-, LR-, RL-, and RR-extensionsspectively, to be the vertices
(1= 1, j1,i2=1,j2), (1 — 1,ja, iz J2 + 1), (1, jo + 1,i2—1,j2), and (1, j1 + 1,iz j2 + 1). The
LL-extension of {1, 1, iz, j2) is feasibleif S[i; — 1] = i, — 1], and isinfeasibleotherwise. The
feasibilities of LR-, RL-, and RR-extensions ardirtkd similarly. For each vertex= (i, j1, i2, j2)
in Us-1, the vertices i that are reachable fromcorrespond to the feasible extensions9f{, i-,
j2). ThereforeUs is constructed as follows. First, we generatdeasible extensions of the vertices
in Us-1 and store them in an arr&y Since each vertex has at most four feasible sideg, [f| <
4|Us4| and thus this step take¥|Us-1|) time. Each vertex it is contained irfE. However, since a
vertex may appear more than oncé&jwe need to remove duplicates. All verticedJiare nested
common intervals of the same sgeTherefore, two elements,(j1, iz, j2) and (1, j'1, i'2,j'2) INE

are the same vertex if and onlyiif,(2) = (i'1, I'2). To remove duplicates, we sort the elemenRt$:(



i2, J]2) In E according to the lexicographic order of (2) and then delete duplicates by a simple scan
on the sorted sequence. After the remadizadtores the set of verticesd{.

The bottleneck of the above construction is to #wtelements iE. We implement this step
by radix sort. More specifically, we sort the elensetwo times with a stable sort: first gnand
next oni;. Since all indices; andi, are integers in the range 1ripby counting sort, this step can
be done irO(n + Us|) time. In the following, we show that the timendze reduced t®(|Us-1|), so

that the overall time complexity B(n + Noy). We start with the following simple result.

Lemma 1. Let K be a set of integers in the range Infavhere K| <n, and letK be the sorted
sequence of the integers i Let A be a sequence of integers drawn frkmGivenK’, we can

stably sort the integers min O(IK| + A]) time.

Proof: The sorting is done by counting sort, with modifions, as follows. Two auxiliary arrays
are used: the arrd8{1..]JA]] is used to hold the sorted output, and the a@fdy.n] is used to count
the occurrences of numbers. First, we Gg¢ [i]] = O for eachi, 1<i < [K'|. Next, we increase
C[A[i]] by one for each, 1<i < |A]. Then, we comput€[K [i]] = C[K'[i]] + C[K[i — 1]] fori = 2,

3, ..., Al. Finally, for each number i, taken in reverse order, we do the following: plafi] into
B[C[A[i]]] and decreas€[A[i]] by one. The above computation takegK| + ) time. Thus, the

lemma holds. O

For brevity, we only describe how to sort the elataan E according toi;. Fors = 2, an
additional arrayt1(s) is maintained to store the distingtindicesof the vertices irJg, in increasing
order. Clearly,l;(2) can be computed i@®(n) time. Usingl,(s— 1), the sorting according @ is
done as follows. Lek; (s— 1) be the sequence obtained froifs— 1) by decreasing each number
by one. Since each elementhkns an extension of a vertex h_1, all i; indices of the elements in
E are integers ily(s— 1) orl, (s— 1). Letl” be an array that stores the set of distinct imgeigd (s
- 1) andl; (s- 1) in increasing order. By Lemma 1, givenwe can do the sorting for in O(|l1(s)|
+ [E]) =O(|Us-1|) time. The array can be built irO(Jl1(s - 1)|) time by mergindn(s— 1) andl; (s -

1) and then removing duplicates. Therefore, given andl (s — 1), Us can be computed 0(|Us-1|)

9



time. After sorting the elements lhaccording ta,, it is easy to obtain the sorted artag).
In summaryU, can be computed i@(n + |U,|) time, and fos > 2 each satls can computed in

O(]Us-1|) time. Therefore, we obtain the following.

Theorem 1.All nested common intervals of two sequences ofjlen on the bijection model can

be found inO(n + Noyy) time.

1 =1l Jall o
a

Figure 2. A feasible LL-extension in the bijection model.

In the remainder of this section, we show thatrthmber of outputiNoy, iS O(CSnay), WhereC
= Yoz 0cda, Socqa, ) andsnax < n is the size of the largest nested common inte@iaarly,
each pair &i[ia], S[iz]) with S[i1] = S[i,] contributes at most four verticeslth. Thus, the number
of essential vertices i, is O(C). All other essential vertices are feasible LLR-|. RL-, and
RR-extensions of vertices. L&, Nir, Nr, andNgrgr be, respectively, the numbers of essential
vertices that are feasible LL-, LR-, RL-, and RResmsions of vertices. In the following, we show
thatN . < Csnax Letv = (i, j1, I2, J2) be an essential vertex that is the feasible Liemsion of a
vertex. (See Figure 2.) By definitio§[i1] = S[io]. Since [[1, j1]| = |[i2, J2]|, we can writeig, 1, iz, j2)
as (1,11 +s—1,ip i +s— 1), wheres = |[i1, j1]|- Thus, the feasible LL-extension of a vertex ban
uniquely specified by a 3-tuple iz, S), whereS[i1] = $[iz] ands < snax The number of all such
3-tuples is at moLsnax from which we conclude th# | < Csnax Similarly, Ni g, NrL, andNgr

are all bounded b§sna Consequently, we obtain the following.

Theorem 2.In the bijection model, the number of nested comnmbervals of two sequences of
lengthn is O(Csnay)-

10



3.2 The uniqueness model
In the unigueness model, it is forbidden to inelual second copy of a gene in a nested
common interval. We find all nested common intesvial this model by the algorithm in Section

3.1.2 with the following modifications.

1. We add the following constraint on each vertexj{, iz, j2) in Us [Z(Si[i1, ja])| = i1, jal] =
Z(Si2, 2D = [[i2, jall-

2. To check whether the LL-extension of a vertexj(, i», J2) is feasible, we add the following
constraint: §[i; — 1] O Z(S][i1, j1]). The feasibilities of LR-, RL-, and RR-extenssomre

redefined similarly.

By definition, Uz = {(ia, i1 + 1,iz, i2 + 1) [S[is] # Sii1 + 1], S[iz] # S[i> + 1], {Si[ia], Si[ix +
11} = { SJi2], S[i2 + 1]}, 1 < iy, i <n}. Clearly, using radix sortJ, can be computed @(n + |U;|)
time. To generate the feasible LL-, LR-, RL-, anid-Bxtensions of a vertex(ji, iz, j2) in Us-1, We
need to test wheth&i[i; — 1] (or §[j; + 1]) occurs ir§[is, j1]. As indicated in [15], this test can be
done efficiently as follows. We pre-compute twoagePre1..n] andNex{1..n], wherePre\i] and
Nex{i] store, respectively, the previous and next o@wes ofS[i] in S, 1<i <n. It is easy to
compute these two arrays @(n) time. Then, the test fd&[i; — 1] (or §[j1 + 1]) is done inO(1)
time by checking whethédex{i; — 1] <j; (or Pre\jj; + 1] > i4).

With the above modifications, f&r> 2 each sets can still be computed i®(JUs-1|) time.

Therefore, we obtain the following.

Theorem 3. All nested common intervals of two sequences oftlem on the uniqueness model

can be found i©(n + Noyy) time.

11



i s=|liy, jal j1 Nex{ii]
a a

match\ i s= |z jal 2
! =

Figure 3. Afeasible LL-extension in the uniqueness model.

Let N.., Nir, NrL, andNgr be defined the same as in Section 3.1.2. In thewmg, we show
thatN,,. < n®. Similar to the bijection model, the feasible Lktension of a vertex can be uniquely
specified by a 3-tupla i,, s) with §[i;] = S[io] ands < snax (See Figure 3.) Moreover, since it is
forbidden to include a second copy of a genshould be less thaNex(i;) — i;; otherwise j; >
Nexfii] and S[i;] occurs twice inS[is, j1]. For convenience, we call a 3-tupleg, (2, s) feasibleif
Si[i1] = §[iz] ands < Nex{i;) — i1. Then, our problem is to count the number ofedisible 3-tuples.
Consider a fixed indek = a. Let (i, X2, ..., Xs) be the positions i, at whichS$[a] occurs. Note
that by definitionNex{(x) = X+1 for 1 <i <k. The set of all feasible 3-tuplés, (2, S) withi, =ais
{(xp,a,9 |1<s<x-X} O{(X, a9 |1<s<xs—x%}0..0{as|lss<+1)-xd
Therefore, the number of all feasible 3-tupliesi§, s) with i, = a is less thanxg — x1) + (X3 — X2)
+...+ (0 +1)-x) =n+ 1 —x; < n. Consequently, the number of all feasible 3-tupdess tham®.

Similarly, N g, Nri, andNgg are all smaller than®. Therefore, we obtain the following.

Theorem 4.In the uniqueness model, the number of nested camntervals of two sequences of

lengthn is O(min{n? CSnax).

3.3 The free-inclusion model

Recall that in the free-inclusion model, the siz@ mested common intervai4[ji], [i2, j2]) IS
defined to be the number of distinct familiesSii4, ji1], instead of the lengthi{[ j1]|. Also recall
that a nested common intervah([1], [i2, j2]) is closedjf we can not include any &[i; — 1], S[j1
+ 1], Sfiz — 1], $[j2 + 1] to obtain longer nested common intervals hed same size. For the

problem of finding all closed nested common inte\a two sequences, Blin, Faye, and Stoye [5]
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had anO(n®)-time algorithm. In this section, we gives an imged algorithm that require®(n** +

Nout) time.
Section 3.3.1 gives a data structure that is ligefine extension of a nested common interval.

Section 3.3.2 describes the improved algorithm.

3.3.1. A data structure

To simplify notation, we assume that a striSgs extended on both ends by a terminal
character @ Z (i.e.,§0] = §|9 + 1] = 0). LetSbe a string of length and |, j] be an interval. We
definea(S i, j) to be the largest indak < i with k] O 2(i, j]), and define3(§ i, j) to be the
smallest index > with K] O Z(i, j]). For example, iS= (a, &, 4, f4, G, s, &, &, fo, G0, €11),
we havea(S 4, 7) = 2 and3(S 4, 7) = 10. In this section, we show that with @fm'*)-time
preprocessingi(S i, j) andp(S i, j) can be found i©(1) time for any intervali[ j]. By symmetry,
only the preprocessing for computii¢§ i, j) is described.

For an arrayA and an integer pair, (), definem(A, i, j) to be the smallest indée= j such that
A(K) <i. LetPrevbe an array in whicRreK] stores the previous occurrenceSi] in S 1<k<n.
If PreMk] does not exist, ldPre[k] = — «. Then, it is easy to see that the first elemeidjir 1,n]
that does not occur i, j] is also the first element ij + 1, n] with PreK] < i. Thus,B(S i, j)
can be computed by findingPrey, i, j+ 1). LetA be an array containingintegers in the range 1
to n. In the following, we discuss how to preproc@sso that a querw(A, i, j) with (i, j) O [1, n] x
[1, n] can be answered @(1) time.

A naive approach is to use a table to st@fe i, j) for each i, j) O [1, n] % [1, n]. For a fixedi
0 [1, n], all T(A, i, j) can be computed i®(n) time as below. Initially, set a variabte= «. Then,
from left to right, we check eadij] and do the following: iA[j] < i, we updaté to j; and then we

setm(A, i, j) = k. We obtain the following.

Lemma 2. We can construct a table of si@én®) in O(n) time for A so that each quemgA, i, j)

with (i, j) O [1, n] x [1, n] can be answered @(1) time.
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Using a standard multi-level scheme [2, 21], treppocessing time and space in Lemma 3 can
be reduced t®(n'*") for any constant > 0. For brevity, we only show how to reduce tineetand

space td(n™). We first establish the following simple result.

Lemma 3. Let X be an array containing integers in the range 1 t§ whereq < n. Using O(n)
space an®(n) preprocessing time, a queryX, i, j) with (i, j) O [1, n] X [1, g] can be reduced in
O(1) time to a query withi(j) O [1, q] x [1, q].

Proof: Define therank of a numbea in X to be the number of elementsXthat are less than or
equal toa. We construct an arra)'[1..q] in which X'[K] stores the rank oX[k] in X; and we
construct a mapping tabM[1..n] in which M[i] stores the rank afin X. Then, a queryt(X, i, j)
with (i, j) O [1, n] x [1, q] is reduced ta(X', M[i], j). Using counting sort, the above computation

takesO(n) time. Thus, the lemma holds. O

Let g = n%°. First, partitionA into g blocks Ay, A, ..., Aq of sizeq. Next, for eachA,, we
perform range reduction and construct a table z& §°) based on Lemmas 2 and 3, so that each
queryt(Ay, i, j) with (i, j) O [1, n] x [1, q] can be answered @(1) time. LetB[1..q] be an array in
which B[K] stores the minimum irA.. We also perform range reduction and apply therenai
approach to preproceBs It is easy to check that the preprocessing tintethe space requirement
for B and all blocksh, areO(n™).

Given a pairi(j) O [1, n] x [1, n], T(A, i, j) is reported as follows. Assume tH#f] is thex"
element of blockd. First, we findk = (A, i, X). If K# o, the answer is the position Af[K] in A.
Otherwise, we fing =1(B, i,y + 1). Ifz=00, no element iA[j + 1.n] is less than. Otherwise, the
answer is imA,, which can be found by queryingA,, i, 1). In summary, we have the following.

1+e

Lemma 4. Let Sbe a string of length. With anO(n"™)-time preprocessingi(S i, j) andB(S i, j)

can be found if©(1) time for any intervali[ j].

3.3.2 An improved algorithm
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To describe our algorithm, we need a few morenttedns. LetS be a string andi[j] be an
interval. We call [, j] a closed intervabf Sif neither of§Ji — 1] andyj + 1] occurs indi, j]. The
sizeof a closed intervali[j] of Sis (1, j])|. We definec(S i, j) to be the longest interval [j'] O
[i, j] with Z(§i', j']) = Z(Hi, j]). Note that by definitiong(S i, j) = [a(S i,]) + 1,B(S i,j) — 1] and

c(S i,]) is closed.

Lemma 5. Let [a, b] be a closed interval of a stril®y Letc(S a—-1,b) =[a, b andc(S a, b+ 1)

=[a", b"]. Then,a" is eitheraora'.

Proof: If Ja—-1]# b+ 1], we haveHa - 1] 0 2(Ja, b+ 1]) and thua" =a. If Ja- 1] =9b +

1], we havex(S a—-1,b) =c(S a, b + 1) and thug" = a'. Therefore, the lemma holds. O

Lemma 6. Let [a, b] and [c, d] be two closed intervals of a strigghat are of the same size. loé§,

a—-1,b)=[a,blandc(Sc-1,d)=]c,d]. If a<c, we havaea' <"

Proof: Let s be the size ofd, b] and [c, d]. Then, g', b and [c', d] are of sizes+ 1. SinceJa — 1]
0 2Z(Ya, b)) andJa' - 1] O £(ga', b)), we haveJ(Ja' — 1, b])| =s + 2. The two intervalsg] b]
and [, d] are closed intervals of the same size. Thus, facor, it is easy to conclude thht< d.
And therefore,3(Ja' — 1,d])| = Z(Ja' - 1,b))| =2s+ 2. Ifa' > c', (Yc', d])| = Z(Hc', d])| =
[Z(9a' - 1,d])| = s + 2, which contradicts t&(Jc', d])| =s + 1. Thereforea' < ¢' and thus the

lemma holds. O

We proceed to present an algorithm for computlhgl@sed nested common intervals. Assume
thatS, and$S; are preprocessed, so thd§,, i, j), B(S, 1, ), a(S, 1, §), B(S, 1, ]) can be computed in
O(1) time for any intervali[ j]. Similar to the algorithm in Section 3.1.2, eguir of intervals (f,
jals [i2, J2]) is represented by a verteix, (j1, iz, j2). FOrs > 2, letUs be the set of vertices that are
closed nested common interval of szé& he setJ, is computed as follows. First, we compute an
arrayA that stores the seti{(ii + 1,iz, i + 1) |S[i1] # Si[i1 + 1], S[iz] # S[iz + 1], {Si[ia], S[i1 +
11} = {S]i2], §fi2 + 1]}, 1 < iy, i2 < n}. Note that the set stored A is just the setJ, in the
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unigueness model. Next, we replace each elememnt € 1,1, i2 + 1) inA by (S, i1, 11 + 1), (S,

Ip, I2 + 1)). (For convenience, we write(&y, i1, j1), (S, iz, j2)) for ("1, |'1, I'2, J2), where [, j'1] =
c(Sy, i1, J1) and |2, j'2] = (S, 12, j2).) Finally, we obtainJ, from A by removing duplicates. The
above computation o), takesO(n + [U|) time. Note thaty,| is bounded by the number of
elements iM, which isO(C).

Next, we discuss the computationlgffor s> 2. Consider a vertex= (i, ji, iz, J2) in Us1. By
definition, v is a closed nested common interval and thus ndi&[ia — 1], S[j; + 1], S[i> — 1],
S[j2 + 1] occurs i5iy, j1]. Letthe LL-, LR-, RL-, and RR-extensions wand their feasibilities be
defined the same as in Section 3.1.2. If the Lleegion (1 — 1,1, i, — 1,]») is feasible, we further
define theclosed LL-extensioaf v to be €(S;, i1 — 1,]j1), (S, i2 — 1,]2)). Theclosed LR, RL-, and
RR-extensionsf v are defined similarly.

Fors> 2, the seUs is constructed as follows. First, we generatelaed LL-, LR-, RL-, and
RR-extensions of the vertices th-; and store them in an arr&y This step take®(|Us-41]) time.
Next, we obtain the séis by removing duplicates i&. Since all elements i& are closed nested
common intervals of the same sigaét is easy to conclude that two elememisj{, i», j2) and ('1, j'1,
I'2,]'2) in E are the same if and only ifi(i2) = ("1, i'2). Therefore, similar to the bijection model, we
can remove duplicates by simply sorting the elesént], i», j2) in E according toig, i).

For brevity, we only describe how to do the saytatcording ta; in O(|Us-1]) time. The array
E stores the closed LL-, LR-, RL-, and RR-extensiohthe vertices irtUs;. For convenience, for
each element of E, we call the vertex itJs-; for whichv is generated thgeedof v. Letv = (i, j1,
iz, J2) be an element d& and @y, by, a,, by) be its seed. By Lemma f,is eithera; or a(S, a3 — 1,

b;) + 1. We classify all elementg,(j1, i2, j2) Of E into two types: an element is of type (1) ifigs
index is the same as its seed, and is of typet(@raise.

The sorting according tq is done as follows. In Step 1, we sort the elesefhttype (1). In
Step 2, we sort the elements of type (2). Finallystep 3, we merge the outputs of Steps 1 and 2 to
obtain the whole sorted sequence. lLgf— 1) be defined the same as in Section 3.1.2i,Atidices
of the elements of type (1) are integerd4ifs— 1). Thus, by Lemma 1, Step 1 can be done in
O(JUs-1]) time by usind(s— 1). Consider two elements= (i1, j1, i2, j2) andv' = (i'y, j'1, i'2, j'2) Of
type (2). Let &, by, a, bp) and €1, di, ¢, do) be, respectively, the seedsvadndv'. By Lemma 6j;
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<i'pif and only ifa; < ¢;. Thus, Step 2 can be done by sorting the elenoénype (2) according to
thei, indices of their seeds. And therefore, Step 2atan be done i®(|Us-1|) time by usindi(s—

1).

1+e

In summary, with af©O(n"")-time preprocessing, fa > 2 each setUs can be constructed in

O(|Us-1|) time. Therefore, we obtain the following.

Theorem 5.All closed nested common intervals of two sequemdédsngthn on the free-inclusion

1+e

model can be found i@®(n"™ + Noyy) time.

iy s=RB(S[i1 + 1,ja])| i Nexfi]

S a B

a

mateh | 5= E(Sliz + Lid)l |,
S: a X

Figure 4. A feasible LL-extension in the free-inclusion maqdel
whereq, 3, x O Z(S[i1 + 1, jd).

In this section, a vertex mssentialif it represents a closed nested common inter&, @and
S. As mentioned, the number of essential verticedJns O(C). All other essential vertices are
closed LL-, LR-, RL-, and LL-extensions of verticé®t N . be the number of essential vertices
that are closed LL-extensions of vertices. In wiéofving, we show thaN,, < n°. By definition, a
closed LL-extension is obtained by extending thasitle LL-extension of an essential vertex.
Therefore N is bounded by the number of all feasible LL-exiens of essential vertices. Let,(
J1, i2, J2) be the feasible LL-extension of an essentialexert (See Figure 4 By definition, Sj[i;] =
Slio) andv = (i + 1,j1, 12 + 1,],) is a closed nested common interval. £&ie the size ob. Then,
since [; + 1,j1] is ans-sized closed interval &, j; is the largest index> i1 + 1 with E(S][i; + 1,
DI =s. Similarly, j, is the largest indek> i, + 1 with E(S[i> + 1,]j])| = s. Therefore, the feasible
LL-extension (1, 1, i2, 2) Of each essential vertex can be uniquely spekchiea 3-tupleig, io, 9),

whereS§[i1] = §[iz] ands< snax Since [1 + 1,j1] is a closed interval &, $[i;] does not occur in
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Sifi1 + 1,j1]. Thus,j; < Nex{ii). Moreovers = (S[i1 + 1, ji])| £j1 —i1. Consequently, similar to
the uniqueness model, we obtair Nex(i;) - iz. Thus,N., is less tham?. Also, the numbers of
essential vertices that are closed LR-, RL-, andeRRnsions of vertices are all less than

Therefore, we obtain the following.

Theorem 6. In the free-inclusion model, the number of closedtad common intervals of two

sequences of lengthis O(Min{n?, CSnag).

Remark 1. All nested common intervals found by the algoritimthis section are closed. If
non-closed nested common intervals are also ofesteit is not difficult to modify our algorithm
for the bijection model to find all nested commartervals inO(n + Nyy) time. However, the

number of all nested common intervals may be aglasO(n®).

4. Concluding remarks

Our algorithm for finding all nested common intdsvan the free-inclusion model requires an
O(n**®)-time preprocessing. One direction for furtherdstis to reduce the preprocessing time. Our
algorithms in Section 3 find all nested common nvdés. However, one may be interested in
finding only maximal nested common intervals. Bhaye, and Stoye [5] had an optimal algorithm
that finds all maximal nested common intervals wb tpermutations in linear time. Another
direction for further study is to develop outputisgive algorithms for finding all maximal nested

common intervals of two sequences.
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