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Abstract 

 The focus of this paper is the problem of finding all nested common intervals of two general 

sequences. Blin, Faye, and Stoye introduced three models to define nested common intervals of two 

sequences: the uniqueness, the free-inclusion, and the bijection models. We consider all the three 

models. For the uniqueness and the bijection models, we give O(n + Nout)-time algorithms, where 

Nout denotes the size of the output. For the free-inclusion model, we give an O(n1+ε + Nout)-time 

algorithm, where ε > 0 is an arbitrarily small constant. We also present an upper bound on the size 

of the output for each model. For the uniqueness and the free-inclusion models, we show that Nout = 

O(n2). Consequently, our algorithms for the uniqueness and the free-inclusion models improve the 

previous O(n3)-time algorithms by Blin, Faye, and Stoye. Let C = ∑α∈Σ o1(α)o2(α), where Σ is the 

set of distinct genes, and o1(α) and o2(α) are, respectively, the numbers of copies of α in the two 

given sequences. For the bijection model, we show that Nout = O(Cn). As compared with Blin, Faye, 

and Stoye's O(n3)-time algorithm, our new algorithm is more practical, as C is likely to be much 

smaller than n2 in practice. 
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1. Introduction 

Identifying conserved gene clusters of two or more genomes is a fundamental problem in 

computational comparative genomics [8, 11, 17, 18, 20, 24]. It is a delicate task to define gene 

cluster properties that are biologically meaningful. In recent years, several formal models have been 

developed to capture the essential biological features of a conserved gene cluster [1, 4, 6, 10, 12, 19, 

22, 25, 26]. Please refer to [3] for an excellent survey. One important example is the common 

interval model introduced by Uno and Yagiura [25], in which a genome sequence is considered as a 

permutation of distinct genes and a common interval is defined to be a set of genes that appear 

consecutively, possibly in different orders, in two given permutations. Uno and Yagiura had an 

algorithm that finds all common intervals of two permutations of n genes in O(n + Nout) time, using 

O(n) space, where Nout denotes the size of the output. Heber and Stoye [13] extended this work to 

find all common intervals of k permutations in O(kn + Nout) time, using O(kn) space. In addition, 

Didier [9] extended this model to include paralogs by considering a sequence definition more 

general than a strict permutation, and gave an algorithm that finds all common intervals of two 

sequences in O(n2log n) time, using O(n) space, on the extended model. Later, Schmidt and Stoye 

[23] improved this result to O(n2) time. Schmidt and Stoye's algorithm can be extended to find all 

common intervals of k sequences in O(kn2) time, using O(n2) additional space. 

 For genome comparison, one cluster property that is generally not considered explicitly, but 

may be assumed implicitly, is nestedness [14]. A gene cluster of size s is nested if either s = 2 or it 

contains a nested cluster of size s − 1. Kurzik-Dumke and Zengerle [16] observed this property 

early in 1996. In this paper, we focus on the nested common interval model, in which a cluster is 

defined to be a common interval with the nestedness property. Hoberman and Duran [14] proposed 

this model and presented an O(n2)-time simple algorithm for finding all nested common intervals of 

two permutations. Recently, Blin, Faye, and Stoye [5] studied the problem of finding nested 

common intervals comprehensively. For permutations, they gave an improved algorithm that 

requires O(n + Nout) time. A nested common interval of size s is maximal if it is not contained in a 

nested common interval of size s + 1. Blin, Faye, and Stoye showed that the number of maximal 

nested common intervals of two permutations is O(n) and gave a linear time algorithm to find all 

maximal nested common intervals. For sequences, the definition of nestedness is subtle. Depending 
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on the treatment one wants to apply to duplicate genes, Blin, Faye, and Stoye proposed three 

models to define nested common intervals of two sequences. The models are called, respectively, 

the uniqueness, the free-inclusion, and the bijection models in this paper. Formal definitions of these 

models are given in Section 2. On each of the models, Blin, Faye, and Stoye gave an O(n3)-time 

algorithm for finding all nested common intervals of two sequences. An approximate nested 

common interval is a nested common interval with at most δ gaps. Blin, Faye, and Stoye also 

studied the problem of finding all maximal approximate nested common intervals. For permutations, 

they had an O(n3δ)-time algorithm. For sequences, they had O(n315δ)-time algorithms for the 

uniqueness and the free-inclusion models. 

 In this paper, we study the problem of finding all nested common intervals of two sequences. 

Efficient algorithms are presented for all the three models defined in [5]. More specifically, for the 

uniqueness and the bijection models, we give O(n + Nout)-time algorithms; and for the free-inclusion 

model, we give an O(n1+ε + Nout)-time algorithm, where ε > 0 is an arbitrarily small constant. We 

also present an upper bound on the size of the output for each model. For the uniqueness and the 

free-inclusion models, we show that Nout = O(n2). Consequently, our algorithms for the uniqueness 

and the free-inclusion models improve the previous O(n3)-time algorithms in [5]. Let C = ∑α∈Σ 

o1(α)o2(α), where Σ is the set of distinct genes, and o1(α) and o2(α) are, respectively, the numbers 

of copies of α in the two given sequences. For the bijection model, we show that Nout = O(Cn). In 

the worst case, C = n2 and thus the worst-case time complexity of our algorithm on the bijection 

model is O(n3). Since the best-case time complexity of the O(n3)-time algorithm in [5] is the same 

as the worst case, Blin, Faye, and Stoye suggested developing an more efficient algorithm for the 

bijection model as a future work. As compared with their algorithm, our new algorithm is more 

practical, as C is likely to be much smaller than n2 in practice [27]. Moreover, our algorithm is 

output-sensitive. In many practical cases, the number of (nested) common intervals is small [5, 25]. 

 The remainder of this paper is organized as follows. Section 2 introduces notation and 

definitions that are used throughout this paper. Section 3 presents algorithms for the problem of 

finding all nested common intervals of two sequences on the uniqueness, the free-inclusion, and the 

bijection models. Finally, Section 4 concludes this paper. 
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2. Notation and definitions 

 A genome is model as a string over an alphabet Σ of homology families. A string is a 

permutation if each element in Σ appears exactly once, otherwise it is a sequence. Let S be a string 

with length |S|. We use Σ(S) to denote the set of homology families which appear in S. The i th 

element of S is denoted by S[i], where 1 ≤ i ≤ |S|. For any indices i and j such that 1 ≤ i ≤ j ≤ |S|, the 

substring of S consisting of S[i], S[i + 1], …, and S[j] is denoted by S[i, j]. For each α ∈ Σ, let occ(α, 

S) be the number of copies of α in S. For example, let S = (d1, e2, d3, f4, d5, a6, e7, g8, e9), where the 

letters represent homology families and the numbers in the subscript denote indices. In this example, 

we have S[2, 6] = (e2, d3, f4, d5, a6), Σ(S) = {a, d, e, f, g}, and occ(e, S) = 3. 

 For any integers i and j, where i ≤ j, we use interval [i, j] to denote the set of all integers in the 

range i to j. The common intervals and nested common intervals of two permutations S1 and S2 are 

defined as follows. A pair of intervals ([i1, j1], [i2, j2]), where 1 ≤ i1 < j1 ≤ n and 1 ≤ i2 < j2 ≤ n, is a 

common interval of S1 and S2 if Σ(S1[i1, j1]) = Σ(S2[i2, j2]). Note that this definition excludes 

common intervals of size one, since they are not considered in the definition of a nested common 

interval. A common interval ([i1, j1], [i2, j2]) of S1 and S2 is called a nested common interval if either 

(1) |[i1, j1]| = |[i2, j2]| = 2, or (2) [i1, j1] contains a sub-interval X1 and [i2, j2] contains a sub-interval 

X2 such that (X1, X2) is a nested common interval of size |X1| = |[i1, j1]| − 1. Clearly, in this definition, 

X1 is either [i1 + 1, j1] or [i1, j1 − 1], and X2 is either [i2 + 1, j2] or [i2, j2 −1]. For example, consider 

S1 = (a1, b2, c3, d4, e5, f6, g7, h8) and S2 = (e1, g2, f3, h4, b5, d6, a7, c8). In this example, ([6, 7], [2, 3]), 

([5, 7], [1, 3]), ([5, 8], [1, 4]) are, respectively, nested common intervals of sizes 2, 3, and 4; and ([1, 

4], [5, 8]) is a common interval, but is not a nested common interval. 

 It is easy to extend the definition of a common interval to sequences. However, since several 

copies of a gene may appear in a substring, the definition of nestedness in sequences is subtle. A 

nested common interval of size s could be extended to produce a nested common interval of size s + 

1. Depending on the treatment one wants to apply when, during the extension of an interval, an 

element that already inside the interval is met once again, Blin, Faye, and Stoye [5] proposed the 

following three models to define a nested common interval of two sequences S1 and S2. 
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(1) It is forbidden to include a second copy of a gene in a nested common interval, which is called 

the uniqueness model in this paper. 

(2) We can extend a nested common interval to include a gene that is already inside it "for free", 

caring about only the "innermost occurrence". We call this model the free-inclusion model. 

More precisely, in this model, a common interval ([i1, j1], [i2, j2]) is a nested common interval if 

either (1) |Σ(S1[i1, j1])| = |Σ(S2[i2, j2])| = 2, or (2) [i1, j1] contains a sub-interval [i'1, j'1] and [i2, j2] 

contains a sub-interval [i'2, j'2] such that ([i'1, j'1], [i'2, j'2]) is a nested common interval of size 

|Σ(S1[i'1, j'1])| = |Σ(S1[i1, j1])| − 1. 

(3) If ([i1, j1], [i2, j2]) is a nested common interval, each gene in S1[i1, j1] must match a unique gene 

of the same family in S2[i2, j2]. We call this model the bijection model. More formally, in this 

model, a common interval ([i1, j1], [i2, j2]) is a nested common interval if either (1) |[i1, j1]| = |[i2, 

j2]| = 2, or (2) there exist x ∈ { i1, j1} and y ∈ { i2, j2} such that S1[x] = S2[y] and ([i1, j1] \ { x}, [ i2, 

j2] \ { y}) is a nested common interval. 

 

For example, consider two sequences S1 = (a1, b2, a3, e4, a5, a6, d7, c8) and S2 = (d1, a2, c3, b4, a5, a6, 

b7, e8). The common interval ([2, 5], [5, 8]) is nested on the bijection model, but is not on the 

uniqueness model, since the family "a" occurs more than once. The common interval ([1, 6], [4, 8]) 

is nested on the free-inclusion model, but is not on the bijection model, since we can not find a 

bijection, from the genes in S1[1, 6] to the genes in S2[4, 8], to satisfy the nestedness property. 

 For the first two models, we define the size of a nested common interval ([i1, j1], [i2, j2]) to be 

|Σ(S1[i1, j1])| (i.e., the number of distinct families in S1[i1, j1]); while for the last model, we define 

the size to be the length |[i1, j1]|. 

 Consider the free-inclusion model. Since an interval can freely include genes that are already 

inside, several nested common intervals may indeed refer to the same nested common interval. We 

say that a nested common interval ([i1, j1], [i2, j2]) is closed if none of S1[i1 − 1], S1[j1 + 1], S2[i2 − 1], 

S2[j2 + 1] belongs to Σ(S1[i1, j1]). For example, if S1 = (a1, c2, a3, a4, b5, b6, d7, b8) and S2 = (a1, b2, g3, 

a4, b5, b6, c7, d8), then ([3, 6], [4, 6]) is a closed nested common interval, but ([4, 6], [4, 5]) is not, 

since it can be freely extended to include S1[3] and S2[6]. By definition, if ([i1, j1], [i2, j2]) is a closed 

nested common interval, it can not be extended to any of S1[i1 − 1], S1[j1 + 1], S2[i2 − 1], S2[j2 + 1] to 
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obtain a longer nested common interval of the same size. In the bijection and the uniqueness models, 

we are interested in finding all nested common intervals. However, in the free-inclusion model, we 

are only interested in finding all closed nested common intervals. 

 

3. Finding the nested common intervals of two sequences 

 Let S1 and S2 be two sequences of length n. Section 3.1 presents an O(n + Nout)-time algorithm 

for finding all nested common intervals of S1 and S2 on the bijection model. Sections 3.2 and 3.3 

extend the algorithm in Section 3.1 to the uniqueness and the free-inclusion models, respectively. 

 

3.1 The bijection model 

 Blin, Faye, and Stoye's [5] had an O(n3)-time algorithm for finding all nested common 

intervals of S1 and S2 on the bijection model. Their algorithm is described in Section 3.1.1. Then, 

our new algorithm is presented in Section 3.1.2. 

 

3.1.1 Blin, Faye, and Stoye's algorithm 

First, a directed acyclic graph G is constructed. (Figure 1 gives an illustration, which comes 

from [5].) The vertex set of G represents all possible candidates of nested common intervals. More 

specifically, each pair of intervals ([i1, j1], [i2, j2]) is represented by a vertex (i1, j1, i2, j2), where 1 ≤ 

i1 < j1 ≤ n, 1 ≤ i2 < j2 ≤ n, and S1[i1, j1] and S2[i2, j2] contain the same multiset of families. In the 

bijection model, two intervals [i1, j1] and [i2, j2] can form a nested common interval only if |[i1, j1]| = 

|[i2, j2]|. Therefore, the number of vertices in G is O(n3). 

In G, a directed edge is drawn from a vertex v = (i1, j1, i2, j2) to a vertex v' = (i'1, j'1, i'2, j'2) if 

and only if there exist x ∈ { i1 − 1, j1 + 1} and y ∈ { i2 − 1, j2 + 1} such that S1[x] = S2[y] and ([i'1, j'1], 

[i'2, j'2]) = ([i1, j1] ∪ {x}, [ i2, j2] ∪ {y}). An edge from a vertex v to a vertex v' indicates that if v is a 

nested common interval, then v' is a nested common interval. Each vertex has an out-degree at most 

four. Thus, the number of edges in G is O(n3). 
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Figure 1. Graph G for S1 = (c1, a2, b3, c4, d5, e6, f7) and S2 = (b1, c2, a3, c4, b5, d6, f7, c8, e9). 

 

 

Let U2 be the set of vertices in G corresponding to multisets of size two. By definition, the 

vertices in U2 represent nested common intervals of size two. Each vertex in G is a nested common 

interval if and only if it can be reached from a vertex in U2. Therefore, all nested common intervals 

can be found by performing a simple graph-searching algorithm on G, starting from the vertices in 

U2. 

Blin, Faye, and Stoye showed that G can be constructed in O(n3) time. Consequently, the time 

complexity of the above algorithm is O(n3). 

 

3.1.2 An O(n + Nout)-time algorithm 

Our new algorithm is a modified version of Blin, Faye, and Stoye's. It also solves the problem 

by finding all vertices in G that can be reached from the vertices in U2. If the construction of the 

whole graph G is necessary, since the number of vertices and edges is O(n3), Blin, Faye, and Stoye's 

algorithm is optimal. Our idea is to do the finding without constructing the whole graph. 

We classify the vertices of G into two classes: essential vertices and redundant vertices. A 

vertex is essential if it is a nested common interval, otherwise it is redundant. For s ≥ 2, let Us be 

the set of essential vertices corresponding multisets of size s. Our problem is to compute all 

nonempty sets Us. The set U2 is the set of vertices in G corresponding to multisets of size two. For s 

> 2, according to the nestedness property, each vertex in Us is reachable from a vertex in Us−1. 

(1, 2, 2, 3) (3, 4, 1, 2) (1, 2, 3, 4) (3, 4, 4, 5) 

(3, 5, 4, 6) 

(1, 4, 1, 4) (2, 5, 3, 6) (1, 4, 2, 5) (4, 7, 6, 9) 

(1, 5, 2, 6) (3, 7, 5, 9) 

(1, 7, 3, 9) 

U2 

(1, 3, 1, 3) (2, 4, 1, 3) (1, 3, 3, 5) (2, 4, 3, 5) 
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Therefore, we can generate the vertices in Us by using the vertices in Us−1. Our algorithm works as 

follow. First, we find the set U2. Then, iteratively, we find the set Us by using the vertices in Us−1 for 

each s > 2. The computation of U2 is done by the following procedure. 

 

Procedure SIZETWOINTERVAL (S1, S2) 

begin 

1.  I1 ← {[ i1, i1 + 1] | 1 ≤ i1 < n}; I2 ← {[ i2, i2 + 1] | 1 ≤ i2 < n}  

2. ∆ ← {{ S1[i1], S1[i1 + 1]} | 1 ≤ i1 < n } ∪ {{ S2[i2], S2[i2 + 1]} | 1 ≤ i2 < n } 

3.  for each set M ∈ ∆ do 

4. begin 

5.  L1(M) ← a list containing the intervals [i1, i1 + 1] in I1 with {S1[i1], S1[i1 + 1]} = M 

6.  L2(M) ← a list containing the intervals [i2, i2 + 1] in I2 with {S2[i2], S2[i2 + 1]} = M 

7.  end 

8.  U2 ← {( i1, i1 + 1, i2, i2 + 1) | [i1, i1 + 1] ∈ L1(M), [i2, i2 + 1] ∈ L2(M), M ∈ ∆} 

end 

 

 Using radix sort, the intervals in I1 and I2 can be sorted to obtain ∆ and all L1(M) and L2(M) in 

O(n) time. Therefore, lines 1-7 requires linear time. Consequently, SIZETWOINTERVAL takes O(n + 

|U2|) time. 

We proceed to discuss the computation of Us for a fixed s > 2. For ease of discussion, for each 

vertex (i1, j1, i2, j2), we define its LL-, LR-, RL-, and RR-extensions, respectively, to be the vertices 

(i1 − 1, j1, i2 − 1, j2), (i1 − 1, j1, i2, j2 + 1), (i1, j1 + 1, i2 − 1, j2), and (i1, j1 + 1, i2, j2 + 1). The 

LL-extension of (i1, j1, i2, j2) is feasible if S1[i1 − 1] = S2[i2 − 1], and is infeasible otherwise. The 

feasibilities of LR-, RL-, and RR-extensions are defined similarly. For each vertex v = (i1, j1, i2, j2) 

in Us−1, the vertices in Us that are reachable from v correspond to the feasible extensions of (i1, j1, i2, 

j2). Therefore, Us is constructed as follows. First, we generate all feasible extensions of the vertices 

in Us−1 and store them in an array E. Since each vertex has at most four feasible extensions, |E| ≤ 

4|Us−1| and thus this step takes O(|Us−1|) time. Each vertex in Us is contained in E. However, since a 

vertex may appear more than once in E, we need to remove duplicates. All vertices in Us are nested 

common intervals of the same size s. Therefore, two elements (i1, j1, i2, j2) and (i'1, j'1, i'2, j'2) in E 

are the same vertex if and only if (i1, i2) = (i'1, i'2). To remove duplicates, we sort the elements (i1, j1, 
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i2, j2) in E according to the lexicographic order of (i1, i2) and then delete duplicates by a simple scan 

on the sorted sequence. After the removal, E stores the set of vertices of Us. 

The bottleneck of the above construction is to sort the elements in E. We implement this step 

by radix sort. More specifically, we sort the elements two times with a stable sort: first on i2 and 

next on i1. Since all indices i1 and i2 are integers in the range 1 to n, by counting sort, this step can 

be done in O(n + |Us−1|) time. In the following, we show that the time can be reduced to O(|Us−1|), so 

that the overall time complexity is O(n + Nout). We start with the following simple result. 

 

Lemma 1. Let K be a set of integers in the range 1 to n, where |K| < n, and let K* be the sorted 

sequence of the integers in K. Let A be a sequence of integers drawn from K. Given K*, we can 

stably sort the integers in A in O(|K| + |A|) time. 

 

Proof: The sorting is done by counting sort, with modifications, as follows. Two auxiliary arrays 

are used: the array B[1..|A|] is used to hold the sorted output, and the array C[1..n] is used to count 

the occurrences of numbers. First, we set C[K*[i]] = 0 for each i, 1 ≤ i ≤ |K* |. Next, we increase 

C[A[i]] by one for each i, 1 ≤ i ≤ |A|. Then, we compute C[K*[i]] = C[K*[i]] + C[K*[i − 1]] for i = 2, 

3, ..., |A|. Finally, for each number in A, taken in reverse order, we do the following: place A[i] into 

B[C[A[i]]] and decrease C[A[i]] by one. The above computation takes O(|K| + |A|) time. Thus, the 

lemma holds.  � 

 

For brevity, we only describe how to sort the elements in E according to i1. For s ≥ 2, an 

additional array I1(s) is maintained to store the distinct i1 indices of the vertices in Us, in increasing 

order. Clearly, I1(2) can be computed in O(n) time. Using I1(s − 1), the sorting according to i1 is 

done as follows. Let I1
−(s − 1) be the sequence obtained from I1(s − 1) by decreasing each number 

by one. Since each element in E is an extension of a vertex in Us−1, all i1 indices of the elements in 

E are integers in I1(s − 1) or I1
−(s − 1). Let I* be an array that stores the set of distinct integers in I1(s 

− 1) and I1
−(s − 1) in increasing order. By Lemma 1, given I*, we can do the sorting for i1 in O(|I1(s)| 

+ |E|) = O(|Us−1|) time. The array I* can be built in O(|I1(s − 1)|) time by merging I1(s − 1) and I1
−(s − 

1) and then removing duplicates. Therefore, given Us−1 and I1(s − 1), Us can be computed in O(|Us−1|) 



 10 

time. After sorting the elements in E according to i1, it is easy to obtain the sorted array I1(s). 

In summary, U2 can be computed in O(n + |U2|) time, and for s > 2 each set Us can computed in 

O(|Us−1|) time. Therefore, we obtain the following. 

 

Theorem 1. All nested common intervals of two sequences of length n on the bijection model can 

be found in O(n + Nout) time.  

 

 

Figure 2. A feasible LL-extension in the bijection model. 

 

 In the remainder of this section, we show that the number of output, Nout, is O(Csmax), where C 

= ∑α∈Σ occ(α, S1)occ(α, S2) and smax ≤ n is the size of the largest nested common interval. Clearly, 

each pair (S1[i1], S2[i2]) with S1[i1] = S2[i2] contributes at most four vertices to U2. Thus, the number 

of essential vertices in U2 is O(C). All other essential vertices are feasible LL-, LR-, RL-, and 

RR-extensions of vertices. Let NLL, NLR, NRL, and NRR be, respectively, the numbers of essential 

vertices that are feasible LL-, LR-, RL-, and RR-extensions of vertices. In the following, we show 

that NLL ≤ Csmax. Let v = (i1, j1, i2, j2) be an essential vertex that is the feasible LL-extension of a 

vertex. (See Figure 2.) By definition, S1[i1] = S2[i2]. Since |[i1, j1]| = |[i2, j2]|, we can write (i1, j1, i2, j2) 

as (i1, i1 + s − 1, i2, i2 + s − 1), where s = |[i1, j1]|. Thus, the feasible LL-extension of a vertex can be 

uniquely specified by a 3-tuple (i1, i2, s), where S1[i1] = S2[i2] and s ≤ smax. The number of all such 

3-tuples is at most Csmax, from which we conclude that NLL ≤ Csmax. Similarly, NLR, NRL, and NRR 

are all bounded by Csmax. Consequently, we obtain the following. 

 

Theorem 2. In the bijection model, the number of nested common intervals of two sequences of 

length n is O(Csmax). 

S1: 

S2: 

j2 

α  

i1 j1 s = |[i1, j1]| 

s = |[i2, j2]| 
match 

α  

i2 
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3.2 The uniqueness model 

 In the uniqueness model, it is forbidden to include a second copy of a gene in a nested 

common interval. We find all nested common intervals in this model by the algorithm in Section 

3.1.2 with the following modifications. 

 

1. We add the following constraint on each vertex (i1, j1, i2, j2) in Us: |Σ(S1[i1, j1])| = |[i1, j1]| = 

|Σ(S2[i2, j2])| = |[i2, j2]|. 

2. To check whether the LL-extension of a vertex (i1, j1, i2, j2) is feasible, we add the following 

constraint: S1[i1 − 1] ∉ Σ(S1[i1, j1]). The feasibilities of LR-, RL-, and RR-extensions are 

redefined similarly. 

 

 By definition, U2 = {( i1, i1 + 1, i2, i2 + 1) | S1[i1] ≠ S1[i1 + 1], S2[i2] ≠ S2[i2 + 1], {S1[i1], S1[i1 + 

1]} = { S2[i2], S2[i2 + 1]}, 1 ≤ i1, i2 < n}. Clearly, using radix sort, U2 can be computed in O(n + |U2|) 

time. To generate the feasible LL-, LR-, RL-, and RR-extensions of a vertex (i1, j1, i2, j2) in Us−1, we 

need to test whether S1[i1 − 1] (or S1[j1 + 1]) occurs in S1[i1, j1]. As indicated in [15], this test can be 

done efficiently as follows. We pre-compute two arrays Prev[1..n] and Next[1..n], where Prev[i] and 

Next[i] store, respectively, the previous and next occurrences of S1[i] in S1, 1 ≤ i ≤ n. It is easy to 

compute these two arrays in O(n) time. Then, the test for S1[i1 − 1] (or S1[j1 + 1]) is done in O(1) 

time by checking whether Next[i1 − 1] ≤ j1 (or Prev[j1 + 1] ≥ i1). 

 With the above modifications, for s > 2 each set Us can still be computed in O(|Us−1|) time. 

Therefore, we obtain the following. 

 

Theorem 3. All nested common intervals of two sequences of length n on the uniqueness model 

can be found in O(n + Nout) time.  

 



 12 

 

Figure 3. A feasible LL-extension in the uniqueness model. 

 

Let NLL, NLR, NRL, and NRR be defined the same as in Section 3.1.2. In the following, we show 

that NLL ≤ n2. Similar to the bijection model, the feasible LL-extension of a vertex can be uniquely 

specified by a 3-tuple (i1, i2, s) with S1[i1] = S2[i2] and s ≤ smax. (See Figure 3.) Moreover, since it is 

forbidden to include a second copy of a gene, s should be less than Next(i1) − i1; otherwise, j1 ≥ 

Next[i1] and S1[i1] occurs twice in S1[i1, j1]. For convenience, we call a 3-tuple (i1, i2, s) feasible if 

S1[i1] = S2[i2] and s < Next(i1) − i1. Then, our problem is to count the number of all feasible 3-tuples. 

Consider a fixed index i2 = a. Let (x1, x2, ..., xk) be the positions in S1 at which S2[a] occurs. Note 

that by definition, Next(xi) = xi+1 for 1  ≤ i < k. The set of all feasible 3-tuples (i1, i2, s) with i2 = a is 

{( x1, a, s) | 1  ≤ s < x2 − x1} ∪ {(x2, a, s) | 1  ≤ s < x3 − x2} ∪ ... ∪ {(xk, a, s) | 1  ≤ s < (n + 1) − xk}. 

Therefore, the number of all feasible 3-tuples (i1, i2, s) with i2 = a is less than (x2 − x1) + (x3 − x2) 

+ ... + ((n + 1) − xk) = n + 1 – x1 ≤ n. Consequently, the number of all feasible 3-tuples is less than n2. 

Similarly, NLR, NRL, and NRR are all smaller than n2. Therefore, we obtain the following. 

 

Theorem 4. In the uniqueness model, the number of nested common intervals of two sequences of 

length n is O(min{n2, Csmax}). 

 

3.3 The free-inclusion model 

 Recall that in the free-inclusion model, the size of a nested common interval ([i1, j1], [i2, j2]) is 

defined to be the number of distinct families in S1[i1, j1], instead of the length |[i1, j1]|. Also recall 

that a nested common interval ([i1, j1], [i2, j2]) is closed, if we can not include any of S1[i1 − 1], S1[j1 

+ 1], S2[i2 − 1], S2[j2 + 1] to obtain longer nested common intervals of the same size. For the 

problem of finding all closed nested common intervals of two sequences, Blin, Faye, and Stoye [5] 

S1: 

S2: 

j2 

α  

i1 j1 s = |[i1, j1]| 

s = |[i2, j2]| 
match 

α  

i2 

α 

Next[i1]  
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had an O(n3)-time algorithm. In this section, we gives an improved algorithm that requires O(n1+ε + 

Nout) time. 

 Section 3.3.1 gives a data structure that is useful in the extension of a nested common interval. 

Section 3.3.2 describes the improved algorithm. 

 

3.3.1. A data structure 

 To simplify notation, we assume that a string S is extended on both ends by a terminal 

character 0 ∉ Σ (i.e., S[0] = S[|S| + 1] = 0). Let S be a string of length n and [i, j] be an interval. We 

define α(S, i, j) to be the largest index k < i with S[k] ∉ Σ(S[i, j]), and define β(S, i, j) to be the 

smallest index k > j with S[k] ∉ Σ(S[i, j]). For example, if S = (a1, e2, d3, f4, d5, d6, a7, a8, f9, g10, e11), 

we have α(S, 4, 7) = 2 and β(S, 4, 7) = 10. In this section, we show that with an O(n1+ε)-time 

preprocessing, α(S, i, j) and β(S, i, j) can be found in O(1) time for any interval [i, j]. By symmetry, 

only the preprocessing for computing β(S, i, j) is described. 

 For an array A and an integer pair (i, j), define π(A, i, j) to be the smallest index k ≥ j such that 

A(k) < i. Let Prev be an array in which Prev[k] stores the previous occurrence of S[k] in S, 1 ≤ k ≤ n. 

If Prev[k] does not exist, let Prev[k] = − ∞. Then, it is easy to see that the first element in S[j + 1, n] 

that does not occur in S[i, j] is also the first element in S[j + 1, n] with Prev[k] < i. Thus, β(S, i, j) 

can be computed by finding π(Prev, i, j  + 1). Let A be an array containing n integers in the range 1 

to n. In the following, we discuss how to preprocess A so that a query π(A, i, j) with (i, j) ∈ [1, n] × 

[1, n] can be answered in O(1) time. 

 A naïve approach is to use a table to store π(A, i, j) for each (i, j) ∈ [1, n] × [1, n]. For a fixed i 

∈ [1, n], all π(A, i, j) can be computed in O(n) time as below. Initially, set a variable k = ∞. Then, 

from left to right, we check each A[j] and do the following: if A[j] < i, we update k to j; and then we 

set π(A, i, j) = k. We obtain the following. 

 

Lemma 2. We can construct a table of size O(n2) in O(n2) time for A so that each query π(A, i, j) 

with (i, j) ∈ [1, n] × [1, n] can be answered in O(1) time. 
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 Using a standard multi-level scheme [2, 21], the preprocessing time and space in Lemma 3 can 

be reduced to O(n1+ε) for any constant ε > 0. For brevity, we only show how to reduce the time and 

space to O(n1.5). We first establish the following simple result. 

 

Lemma 3. Let X be an array containing q integers in the range 1 to n, where q < n. Using O(n) 

space and O(n) preprocessing time, a query π(X, i, j) with (i, j) ∈ [1, n] × [1, q] can be reduced in 

O(1) time to a query with (i, j) ∈ [1, q] × [1, q]. 

 

Proof: Define the rank of a number a in X to be the number of elements of X that are less than or 

equal to a. We construct an array X'[1..q] in which X'[k] stores the rank of X[k] in X; and we 

construct a mapping table M[1..n] in which M[i] stores the rank of i in X. Then, a query π(X, i, j) 

with (i, j) ∈ [1, n] × [1, q] is reduced to π(X', M[i], j). Using counting sort, the above computation 

takes O(n) time. Thus, the lemma holds. � 

 

 Let q = n0.5. First, partition A into q blocks A1, A2, …, Aq of size q. Next, for each Ak, we 

perform range reduction and construct a table of size (q2) based on Lemmas 2 and 3, so that each 

query π(Ak, i, j) with (i, j) ∈ [1, n] × [1, q] can be answered in O(1) time. Let B[1..q] be an array in 

which B[k] stores the minimum in Ak. We also perform range reduction and apply the naïve 

approach to preprocess B. It is easy to check that the preprocessing time and the space requirement 

for B and all blocks Ak are O(n1.5). 

 Given a pair (i, j) ∈ [1, n] × [1, n], π(A, i, j) is reported as follows. Assume that A[j] is the xth 

element of block Ay. First, we find k = π(Ay, i, x). If k ≠ ∞, the answer is the position of Ay[k] in A. 

Otherwise, we find z = π(B, i, y + 1). If z = ∞, no element in A[j + 1..n] is less than i. Otherwise, the 

answer is in Az, which can be found by querying π(Az, i, 1). In summary, we have the following. 

 

Lemma 4. Let S be a string of length n. With an O(n1+ε)-time preprocessing, α(S, i, j) and β(S, i, j) 

can be found in O(1) time for any interval [i, j]. 

 

3.3.2 An improved algorithm 
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 To describe our algorithm, we need a few more definitions. Let S be a string and [i, j] be an 

interval. We call [i, j] a closed interval of S if neither of S[i − 1] and S[j + 1] occurs in S[i, j]. The 

size of a closed interval [i, j] of S is |Σ(S[i, j])|. We define c(S, i, j) to be the longest interval [i' , j' ] ⊇ 

[i, j] with Σ(S[i' , j' ]) = Σ(S[i, j]). Note that by definition, c(S, i, j) = [α(S, i, j) + 1, β(S, i, j) − 1] and 

c(S, i, j) is closed.  

 

Lemma 5. Let [a, b] be a closed interval of a string S. Let c(S, a − 1, b) = [a', b'] and c(S, a, b + 1) 

= [a'', b'']. Then, a'' is either a or a'. 

 

Proof: If S[a − 1] ≠ S[b + 1], we have S[a − 1] ∉ Σ(S[a, b + 1]) and thus a'' = a. If S[a − 1] = S[b + 

1], we have c(S, a − 1, b) = c(S, a, b + 1) and thus a'' = a'. Therefore, the lemma holds. � 

 

Lemma 6. Let [a, b] and [c, d] be two closed intervals of a string S that are of the same size. Let c(S, 

a − 1, b) = [a', b'] and c(S, c − 1, d) = [c', d']. If a ≤ c, we have a' ≤ c'. 

 

Proof: Let s be the size of [a, b] and [c, d]. Then, [a', b'] and [c', d'] are of size s + 1. Since S[a − 1] 

∉ Σ(S[a, b]) and S[a' − 1] ∉ Σ(S[a', b]), we have |Σ(S[a' − 1, b])| = s + 2. The two intervals [a, b] 

and [c, d] are closed intervals of the same size. Thus, from a ≤ c, it is easy to conclude that b ≤ d. 

And therefore, |Σ(S[a' − 1, d])| ≥ |Σ(S[a' − 1, b])| ≥ s + 2. If a' > c', |Σ(S[c', d'])| ≥ |Σ(S[c', d])| ≥ 

|Σ(S[a' − 1, d])| ≥ s + 2, which contradicts to |Σ(S[c', d'])| = s + 1. Therefore, a' ≤ c' and thus the 

lemma holds. � 

 

 We proceed to present an algorithm for computing all closed nested common intervals. Assume 

that S1 and S2 are preprocessed, so that α(S1, i, j), β(S1, i, j), α(S2, i, j), β(S2, i, j) can be computed in 

O(1) time for any interval [i, j]. Similar to the algorithm in Section 3.1.2, each pair of intervals ([i1, 

j1], [i2, j2]) is represented by a vertex (i1, j1, i2, j2). For s ≥ 2, let Us be the set of vertices that are 

closed nested common interval of size s. The set U2 is computed as follows. First, we compute an 

array A that stores the set {(i1, i1 + 1, i2, i2 + 1) | S1[i1] ≠ S1[i1 + 1], S2[i2] ≠ S2[i2 + 1], {S1[i1], S1[i1 + 

1]} = { S2[i2], S2[i2 + 1]}, 1 ≤ i1, i2 < n}. Note that the set stored in A is just the set U2 in the 
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uniqueness model. Next, we replace each element (i1, i1 + 1, i2, i2 + 1) in A by (c(S1, i1, i1 + 1), c(S2, 

i2, i2 + 1)). (For convenience, we write (c(S1, i1, j1), c(S2, i2, j2)) for (i'1, j'1, i'2, j2'), where [i'1, j'1] = 

c(S1, i1, j1) and [i'2, j'2] = c(S2, i2, j2).) Finally, we obtain U2 from A by removing duplicates. The 

above computation of U2 takes O(n + |U2|) time. Note that |U2| is bounded by the number of 

elements in A, which is O(C). 

 Next, we discuss the computation of Us for s > 2. Consider a vertex v = (i1, j1, i2, j2) in Us−1. By 

definition, v is a closed nested common interval and thus none of S1[i1 − 1], S1[j1 + 1], S2[i2 − 1], 

S2[j2 + 1] occurs in S1[i1, j1]. Let the LL-, LR-, RL-, and RR-extensions of v and their feasibilities be 

defined the same as in Section 3.1.2. If the LL-extension (i1 − 1, j1, i2 − 1, j2) is feasible, we further 

define the closed LL-extension of v to be (c(S1, i1 − 1, j1), c(S2, i2 − 1, j2)). The closed LR-, RL-, and 

RR-extensions of v are defined similarly. 

 For s > 2, the set Us is constructed as follows. First, we generate all closed LL-, LR-, RL-, and 

RR-extensions of the vertices in Us−1 and store them in an array E. This step takes O(|Us−1|) time. 

Next, we obtain the set Us by removing duplicates in E. Since all elements in E are closed nested 

common intervals of the same size s, it is easy to conclude that two elements (i1, j1, i2, j2) and (i'1, j'1, 

i'2, j'2) in E are the same if and only if (i1, i2) = (i'1, i'2). Therefore, similar to the bijection model, we 

can remove duplicates by simply sorting the elements (i1, j1, i2, j2) in E according to (i1, i2). 

 For brevity, we only describe how to do the sorting according to i1 in O(|Us−1|) time. The array 

E stores the closed LL-, LR-, RL-, and RR-extensions of the vertices in Us−1. For convenience, for 

each element v of E, we call the vertex in Us−1 for which v is generated the seed of v. Let v = (i1, j1, 

i2, j2) be an element of E and (a1, b1, a2, b2) be its seed. By Lemma 5, i1 is either a1 or α(S1, a1 − 1, 

b1) + 1. We classify all elements (i1, j1, i2, j2) of E into two types: an element is of type (1) if its i1 

index is the same as its seed, and is of type (2) otherwise. 

 The sorting according to i1 is done as follows. In Step 1, we sort the elements of type (1). In 

Step 2, we sort the elements of type (2). Finally, in Step 3, we merge the outputs of Steps 1 and 2 to 

obtain the whole sorted sequence. Let I1(s − 1) be defined the same as in Section 3.1.2. All i1 indices 

of the elements of type (1) are integers in I1(s − 1). Thus, by Lemma 1, Step 1 can be done in 

O(|Us−1|) time by using I1(s − 1). Consider two elements v = (i1, j1, i2, j2) and v' = (i'1, j'1, i'2, j'2) of 

type (2). Let (a1, b1, a2, b2) and (c1, d1, c2, d2) be, respectively, the seeds of v and v'. By Lemma 6, i1 
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≤ i'1 if and only if a1 ≤ c1. Thus, Step 2 can be done by sorting the elements of type (2) according to 

the i1 indices of their seeds. And therefore, Step 2 can also be done in O(|Us−1|) time by using I1(s − 

1). 

 In summary, with an O(n1+ε)-time preprocessing, for s > 2 each set Us can be constructed in 

O(|Us−1|) time. Therefore, we obtain the following. 

 

Theorem 5. All closed nested common intervals of two sequences of length n on the free-inclusion 

model can be found in O(n1+ε + Nout) time.  

 

 

Figure 4. A feasible LL-extension in the free-inclusion model, 

where α, β, χ ∉ Σ(S1[i1 + 1,  j1]). 

 

In this section, a vertex is essential if it represents a closed nested common interval of S1 and 

S2. As mentioned, the number of essential vertices in U2 is O(C). All other essential vertices are 

closed LL-, LR-, RL-, and LL-extensions of vertices. Let NLL be the number of essential vertices 

that are closed LL-extensions of vertices. In the following, we show that NLL ≤ n2. By definition, a 

closed LL-extension is obtained by extending the feasible LL-extension of an essential vertex. 

Therefore, NLL is bounded by the number of all feasible LL-extensions of essential vertices. Let (i1, 

j1, i2, j2) be the feasible LL-extension of an essential vertex v. (See Figure 4.) By definition, S1[i1] = 

S2[i2] and v = (i1 + 1, j1, i2 + 1, j2) is a closed nested common interval. Let s be the size of v. Then, 

since [i1 + 1, j1] is an s-sized closed interval of S1, j1 is the largest index j ≥ i1 + 1 with |Σ(S1[i1 + 1, 

j])| = s. Similarly, j2 is the largest index j > i2 + 1 with |Σ(S2[i2 + 1, j])| = s. Therefore, the feasible 

LL-extension (i1, j1, i2, j2) of each essential vertex can be uniquely specified by a 3-tuple (i1, i2, s), 

where S1[i1] = S2[i2] and s ≤ smax. Since [i1 + 1, j1] is a closed interval of S1, S1[i1] does not occur in 

S1: 

S2: 

j2 

α  

i1 j1 
s = |Σ(S1[i1 + 1, j1])| 

match 

α  

i2 

α 

Next[i1]  

s = |Σ(S2[i2 + 1, j2])| 

 

 

β 

χ 
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S1[i1 + 1, j1]. Thus, j1 < Next(i1). Moreover, s = |Σ(S1[i1 + 1,  j1])| ≤ j1 − i1. Consequently, similar to 

the uniqueness model, we obtain s < Next(i1) − i1. Thus, NLL is less than n2. Also, the numbers of 

essential vertices that are closed LR-, RL-, and RR-extensions of vertices are all less than n2. 

Therefore, we obtain the following. 

 

Theorem 6. In the free-inclusion model, the number of closed nested common intervals of two 

sequences of length n is O(min{n2, Csmax}). 

 

Remark 1. All nested common intervals found by the algorithm in this section are closed. If 

non-closed nested common intervals are also of interest, it is not difficult to modify our algorithm 

for the bijection model to find all nested common intervals in O(n + Nout) time. However, the 

number of all nested common intervals may be as large as O(n4). 

 

4. Concluding remarks 

 Our algorithm for finding all nested common intervals on the free-inclusion model requires an 

O(n1+ε)-time preprocessing. One direction for further study is to reduce the preprocessing time. Our 

algorithms in Section 3 find all nested common intervals. However, one may be interested in 

finding only maximal nested common intervals. Blin, Faye, and Stoye [5] had an optimal algorithm 

that finds all maximal nested common intervals of two permutations in linear time. Another 

direction for further study is to develop output-sensitive algorithms for finding all maximal nested 

common intervals of two sequences. 
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