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The Bayesian Hierarchical Classifier (BHC)
and Its Application to Short Vegetation Using
Multifrequency Polarimetric SAR
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Abstract—Given an image of a scene comprised of a number
of distinct terrain classes, the optimum Bayesian classifier (OBC)
provides the highest possible classification accuracy of the imaged
scene, provided we have a priori knowledge of the probability den-
sity function (pdf) of the sensor’s output for each terrain class.
If the imaging sensor consists of multiple channels, application of
OBC requires knowledge of the joint pdf of the observations made
by all the channels. In practice, the volume of data needed in order
to generate an accurate multidimensional pdf far exceeds the size
of available datasets. The data-size requirement may be relaxed by
assuming the pdfs to be Gaussian in form, but such an assump-
tion leads to suboptimum classification performance. This paper
addresses the data size issue by 1) taking advantage of the max-
imum-entropy density estimation (MEDE) technique introduced
in a companion paper and 2) using marginal pdfs in a hierarchical
approach. Using multidate synthetic aperture radar observations,
it was shown that the Bayesian hierarchical classifier introduced
in this paper can classify short vegetation classes with an accuracy
of 93%, without retraining, compared with an accuracy of 84%
for the maximum-likelihood estimator (with Gaussian assumption)
and only 74% with ISODATA.

Index Terms—Adaptive estiamtion, image classification, max-
imum-entropy methods, probability.

I. INTRODUCTION

N THE CONTEXT of remote sensing, level-1 terrain clas-

sification involves the use of remotely sensed images to es-
tablish the general-class identity of every pixel of the imaged
scene. When the imaging sensor is a synthetic aperture radar
(SAR), level-1 classes typically include urban, water, bare soil,
tall vegetation (trees) and short vegetation (usually less than 3
m in height). The classification process involves the use of an
algorithm, and at level 1, the classification accuracies of avail-
able algorithms are quite high for both multichannel optical
imagery and for multipolarized SAR observations. The much
more daunting challenge is that of level-2 classification, par-
ticularly of short vegetation. In that case, the goal is to sep-
arate different vegetation types from each other, which is in-
herently difficult because of the fact that short vegetation is a
dynamic medium whose scattering properties vary widely over
the growing season. To illustrate what we mean, let us examine
data displayed in Fig. 1 which shows the range of values mea-
sured by an airborne radar for o2, for one field each of corn,
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Fig. 1. Wheat, alfalfa, corn, and soybean radar measurements over four
different days. Vertical bars indicate the dynamic range of measurements
within a single field. This plot does not include the noise due to fading, which
would increase the vertical bars significantly.

wheat, soybeans, and alfalfa. The quantity CT%HV corresponds
to the signal intensity that is reflected per unit area of ground
for a single polarimetric channel (HV) at C-band, and is chosen
here because it is useful for classification purposes and repre-
sents the characteristics of the typical radar measurement. A
more in-depth discussion of the different quantities measured
by the radar which are used for classification follows in Sec-
tion II-A. These four fields are part of a test site that was im-
aged on six different occasions between May 31 and July 14, in
1995. The range of values for each date and crop type, portrayed
in the form of a vertical line in Fig. 1, is associated primarily
with spatial variations of the biophysical properties over nine
spatially different segments of that field, each approximately 30
m X 30 m in size. Each data point contained in that interval is
the average of 75 independent samples (produced by applying
multilook SAR processing and subsequently spatially averaging
homogeneous groups of 25 pixels together). This averaging was
performed to reduce speckle related variations down to an in-
significant level. As we can see from the data in Fig. 1, several
of the vertical bars for a given date overlap each other, making
discrimination error prone, and if we were to include vertical
bars for data measured in all fields for a particular crop type (in-
stead of for only one field), then the vertical bars would overlap
further and degrade classification accuracy. Using multiple SAR
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Fig. 2. SAR image of the test site at the Kellogg Biological Station. The square plots of homogeneous vegetation in the lower right of the image are 100 m on a

side.

channels, there is a reasonable chance of developing a classifier
through supervised training that will yield good classification
accuracies when applied to independent fields observed in the
same image on the same day. It is far more challenging to be
able to develop an algorithm that can be applied to imagery ac-
quired on any day during the growing season and still produce
good accuracies, without retraining. That challenge is the very
goal of the present study. That is, we seek to develop an algo-
rithm that, subsequent to training, can be applied “blindly” to
SAR imagery acquired in May, June, or July, or in the general
case, at any time.

II. EXPERIMENTAL DATASET

Before we proceed with our stated task, we should provide
more information on the sensor we have in mind and the dataset
we plan to use. The sensor is a combined L- and C-band po-
larimetric radar imager similar to the SIR-C system that flew
aboard the space shuttle. The data we plan to use was acquired
by an airborne version of SIR-C, called AirSAR [1], mounted on
a Jet Propulsion Laboratory aircraft. The AirSAR was used in
1995 to acquire SAR imagery of a site at the Kellogg Biological
Station, located near Kalamazoo, MI, on six different dates ex-
tending over a six-week long period during the growing season.
A sample image for one of the six dates is shown in Fig. 2. This

image shows several rectangular plots in the lower right and the
upper middle that will be used in this study.

A. SAR Measurement Channels

For each frequency band (L-band at A = 23 cm and C-band
at A = 6 cm), the polarimetric SAR processor produces a two-
dimensional (2-D) calibrated image in which each 5 m X 5 m
pixel is characterized by a complex scattering matrix .S, defined
by

Ebackscattered — 1 SVV SVH
471'7"2 SHV SHH

) Eincident (1)

where the four scattering matrix elements refer to the four com-
binations of linear polarization for the transmit and receive oper-
ations: v g refers to vertical polarization received and horizontal
polarization transmitted. Each element is complex, in order to
represent both amplitude and phase of the backscattered electric
field.

To effectively remove speckle noise [12], [13], [23], [24], the
boundaries of each agricultural field in the test site were de-
lineated and then the field was partitioned into sections such
that each section comprised on the order of 25 pixels. Upon av-
eraging the 25 pixels in a section, thereby increasing the total
number of independent samples to 75, signal fluctuations that
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TABLE 1
DATA SUMMARY

Dates in 1995: May 31, June 2, June 4, July 10, July 12, July 14
Sensor: JPL AirSAR

Site: Kellog Biological Station, Kalamazoo, MI, U.S.A.
Channcls: L and C band, polarimetric data

Independent samples per data point: 70

Vegetation Vegetation Volumetric Soil
Crop # Points Heights Biomass Moisture
Alfalfa 1845 10-60cm  0.01-5.6 kg/m? 0.14-0.33 cm?/cm?
Corn 864  93-118cm  1.3-2.0 kg/m?  0.11-0.17 cm?/cm?®
Wheat 1260  49-103cm  1.6-3.1 kg/m?  0.14-0.35 cm?/cm?®
Bare 909 Ocm 0 kg/m? 0.15-0.18 em?®/cm?
Soy 360 * * *

manifest themselves in the form of a speckled appearance in the
image were essentially filtered out. The averaging process was
performed on the elements of the covariance matrix of S which
were then used to generate the following five quantities:
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where A is the pixel area. The first three quantities are the
linearly polarized scattering coefficients, which measure the
overall strength of the electromagnetic reflection for that
polarization combination and for that pixel, while the last two
describe the statistics of the phase of the reflected wave for that
pixel, giving the mean and the spread of the phase statistics.
The quantity « is known as the copolarized phase correlation
coefficient, while ( is the mean value of the copolarized
phase difference [19]. Examination of these five quantities
revealed that { offered little, if any, discriminating power in the
crop-classification problem. The measured scattering matrices
can not only be used as above to generate estimates of o and ¢
using the combination of a copolarized scattering amplitude,
such as Sy, but also can be used to compute the cross polar-
ized scattering amplitude using Sy . These cross-polarized
phase attributes were also found to offer no discrimination
power for vegetation classes. Hence, only the three scattering
coefficients and the phase correlation coefficient @ were used
in the algorithm development. Thus, our measurement data
vector consists of four dimensions per band, or a total of eight
dimensions altogether.

B. Test Site Data

Table I provides a summary of the in situ measurements made
in the field in support of the six overflights. For each cover
type the entry labeled “# points” refers to the number of 5 m
x 5 m sections for which radar data was extracted over the six
flights and for which (in most cases) in sifu measurements were
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Fig. 3. Difference between unsupervised and supervised classifiers.

recorded. The following are the key points we should under-
score.

1) Our available database of over 5000 ground sections is
very large by the standard of any crop classification study
conducted to date.

2) Those ground sections consist of five classes (four crop
covers and bare soil) each of which spans a wide range
of biophysical parameters and underlying soil-surface
properties.

III. OVERVIEW OF CLASSIFIER TECHNIQUES

The literature for radar-based classifiers usually categorizes
classification algorithms into two different types: supervised
and unsupervised [6]. An unsupervised classifier is given raw
data, and the classification algorithm separates data into clus-
ters, without any extra information. Each cluster must subse-
quently be identified as a class by hand. A supervised classifier
requires more preparation; it must be given a set of data with
corresponding classes (usually called training data) with which
it tries to “learn” the character of that particular class. After this
step, it uses what it learned and applies it to classifying any other
data that it is given. This is diagrammed in Fig. 3

There are a wide variety of approaches to the classification
problem, and a varied set of tools that have been developed to
aid in different parts of the solution. Examples of some common
tools and techniques that have been used for classification are:
the method of principal components, Markov random field
models, maximum-likelihood estimation (MLE), maximum
a posteriori estimation (MAP), optimal Bayesian classifi-
cation, minimum-distance classification, and parallelepiped
classification. Classification algorithms are frequently built on
combinations of these (or similar) tools.

Existing literature includes techniques based on different
characteristics of covariance matrix elements [3], [11], [18],
Markov random field models [21], unsupervised or partially
supervised clustering techniques [2], [4], [7], neural networks
[5], measures of texture [14], and polarimetric filtering [15],
[20], [22], [25].
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Fig. 4. First step of a multidimensional hierarchical decision rule is to select
the pair of dimensions that provides the maximum separability, between the
specific crop class and all the other classes.

Some successful ideas, such as neural networks and optimal
polarization, are excellent for certain types of classification
problems, but do not work well on the problem at hand. Both
techniques have difficulties because they do not adequately
take into account the variation in measurements that we see
over time for a single vegetation type. Other techniques, such
as using texture measures and Markov random field models,
are useful because they use the spatial information available in
an image to help solve the classification problem. However, our
investigation focuses only on the electromagnetic scattering
characteristics of each pixel in isolation, so we will not try to
exploit information about the spatial correlation information of
the data.

Supervised methods in the literature are particularly useful
because once trained, they are capable of producing completely
automated classifications. Unsupervised methods require
human intervention after the clustering phase, and, thus, are
less desirable. In addition, methods such as ISODATA [2]
have poor accuracy when applied to classification of short
vegetation because they incorrectly group the clusters together,
erroneously lumping one class within another.

Our goal is to develop an automatic supervised classifier ca-
pable of operating with multidimensional data and then to use
it to generate accurate maps of vegetation classes at any time in
the growing season, without retraining.

IV. REVIEW OF THE HIERARCHICAL CLASSIFIER

As described in [8], [10], and [16], the hierarchical classi-
fier uses sequential decision rules based on training data, with
each decision rule involving two of the eight available channels
at a time. Instead of dealing with all of the classes simultane-
ously, the classifier deals with each vegetation class in a separate
process. The process begins by examining all possible combi-
nations of vegetation classes and channel-pairs in the form of
2-D scatter plots similar to that shown in Fig. 4, with the data in
each belonging to only two categories, namely one of the veg-
etation classes as one of the categories and all the other classes
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Fig.5. Second step is to draw boundaries separating points that are exclusively
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Fig. 6. Third step is to discard data that are in the region of exclusively
noncorn. Note that the remaining data still include data from other classes
mixed in with the corn data.

as the second. From among these possibilities, we choose the
vegetation type and specific channel combination that appears
to separate that class from all others with the least confusion
(overlap). In the present example, the combination of HV and
HH polarizations, both at L-band, provided better separation for
corn from the other six categories (short alfalfa, full alfalfa, bare
soil, soybeans, early wheat, and late wheat) than any other com-
bination of channels did for corn or for any of the other vegeta-
tion classes.

Next, we draw a boundary, such that on one side of the
boundary all of the data are definitely not corn. The data points
that remain on the other side of the boundary are a mixture of
both corn, as well as data from the other vegetation classes.
Fig. 5 shows the boundary we have drawn, and in Fig. 6, the
data points to the left of the boundary have been discarded,
which we know are not corn. The data that remain in Fig. 6
are then reprojected onto two different dimensions, and the
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Fig. 7. Fourth step is to reproject the remaining data onto a new set of
dimensions. This exposes noncorn regions and allows us to draw a new set of

boundaries.
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Fig. 8. Fifth step is to discard measurements in the exclsively noncorn region

of the plot. This process can be repeated with as many projections as are useful.

process is repeated. Reprojecting our data into different pairs
of dimensions is akin to looking at the multidimensional
clouds of data from different angles. Each additional view we
get can give us new information. Fig. 7 shows the results of
reprojecting the radar measurements from Fig. 6 onto two new
dimensions, namely « at C-band and the cross-polarized o° at
C-band, and drawing a second set of boundaries. In Fig. 8, the
noncorn side of the boundary is discarded. What remains after
we are done is the set of points that are always in the region of
our higher dimensional measurement space that contains our
class of interest (in this case, corn). We have, piece by piece,
defined a multidimensional boundary.

In the preceding paragraphs, we have described the process of
drawing boundaries and how this allows us to separate corn from
other classes. This process is repeated on the noncorn data that
remains, for each additional vegetation class we wish to identify,
and the resulting boundaries are applied to independent dataset.
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TABLE 1I
ACCURACY OF HIERARCHICAL CLASSIFICATION USING
INDEPENDENT TESTING DATA
Classified As

True Class | Alfalfa ’ Bare Soil‘ Corn ‘ Soybeans ’\N"hemm ‘ Wheat(")
Alfalfa®™ 88.4 1.7 2.2 32 0.2 43
Alfalfal® 81.4 8.3 0.0 0.3 4.2 5.8
Bare 6.2 80.9 4.5 0.0 6.9 1.5
Corn 0.0 3.8 94.8 0.0 1.3 0.2
Soy 12.0 0.0 0.0 86.5 0.0 1.5
Wheat!£) 0.7 3.0 3.0 0.0 86.3 7.0
Wheat ") 14.5 2.5 0.4 1.3 2.0 79.3

The results are presented in Table II as a confusion matrix. Each
entry in the confusion matrix is a percentage value, indicating
what percent of the data in the class labeled on the left side of
the row was classified with the label in the column above. This
is the convention we use for all of the confusion matrices in this
text.

The accuracy measure that we present with the confusion ma-
trices is known in the literature as user accuracy, which for a par-
ticular class C; measures what percentage of the data identified
as class C; indeed belong to class C;. This measure should not
be confused with producer accuracy, which for class C; mea-
sures what percentage of the data from class C; was correctly
classified, or overall accuracy, which is the percentage of all data
that were correctly classified.

V. BHC

The natural extension of the hierarchical classifier would be
to find an automated method of smoothly defining the multi-
dimensional boundaries that contain each dataset. Because the
regions in which the data are contained are probabilistic, we
could improve our representation further if, instead of multidi-
mensional shells, we used a multidimensional probability den-
sity function (pdf) to represent the region of data in each class.
Once one has the pdfs representing the statistical variation of the
vegetation class in measurement space, optimal Bayesian clas-
sification is the provably optimal method of classification [17].
OBC is usually formulated as

_ [(=|C;)P(Cy)
P(Cylz) = >, F(=[C;)P(Cy)

where P(C;|z) is the probability that we are measuring the ith
class, C; if the value of our measurement is £. We can com-
pute this probability if we know f(z|C;), the probability that
we measure Z if we know we are looking at class C;. We may
also assume that we have no additional knowledge about the
frequency of the classes (with N classes, that would mean that
P(C;) = (1/N).

The reason no one has applied OBC to this problem is that it
is difficult to accurately estimate a probability density function
for an arbitrary dataset in multiple dimensions. We will address
this difficulty in three ways: 1) we will use the the maximum-en-
tropy density estimation (MEDE) technique, which works well
with very sparse datasets; 2) we will construct this conditional

(N
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density with marginals, assuming that they are uncorrelated;
and 3) we will use (7) in a hierarchical fashion similar to what
was presented in Section IV, identifying one class at a time as
opposed to all the classes at once. Using marginals allows us
to perform density estimation on a subset of the eight dimen-
sions, while still preserving important higher dimensional cor-
relations needed to classify the data with high accuracy. We call
this approach the Bayesian hierarchical classification (BHC)
technique.

A. MEDE

MEDE (described in [9]) is based on the fact that using infor-
mation theory, one can derive a parsimonious functional form
for expressing density functions.

B. Classifier Implementation

The first step is training the classifier, and we begin by
finding, for each class of interest (denoted C};), marginal pdfs
with which to approximate the overall conditional pdf. When
combined into a single conditional pdf by taking their product,
these marginals should be such that they best separate the class
of interest from all the others. In our case, we can express a
single data point as £ = (z1, 2, ..., zs). If C; denotes the jth
class, then we would like to express the conditional pdf that the
sensor measures &, given that the sensor is observing a member
of class C; as

f<x|0j):f(xa7$b7$c|0j)'f(xd7‘T€7‘Tf|Oj) ) f($g7xfl|cj)

(®)
where the set (z,,p,...,z,) maps on-to-one onto the set
(z1,%2,...,28), with the exact mapping being determined by
the procedure below. The dimensionality of the marginal pdfs
must be chosen so that the available density of data is sufficient
to perform the density estimates using the MEDE technique.
In the case of this paper, the data volume listed in Table I is
sufficient to generate three-dimensional (3-D) pdfs for all of
the crop types listed in the table, and only marginally so for
soybeans.

Approximating the density f(z|C;) as the product of three
marginal pdfs requires statistical independence between the
groups of channels comprising the three marginal pdfs. The
reality is that none of these channels, or groups of channels,
is independent of the others. We can choose which channels
to group together in each of the marginal pdfs such that the
correlation between the groups is minimal, but that is not the
approach we adopted in this paper. We decided instead to take a
pragmatic approach as described in the procedure that follows.

We now turn our attention to the procedure for selecting the
values of a, b, ¢, d, e, f, and g from among the set (1,. .., 8), for
each stage of the classification process. One can write out the
steps as a cookbook procedure.

1) Use the training data and the MEDE to generate pdf es-
timates for each combination of three channels, for each
class of data. For L channels and M classes, and d dimen-
sions in each pdf, this corresponds to generating a total of
N = M (%) pdfs. In our case, N = 280 3-D pdfs.

TABLE III
CONFUSION MATRIX FOR SHORT VEGETATION PRODUCED WITH THE BHC.
THE DATASET INCLUDED ALL SIX IMAGES THAT SPAN THE GROWING SEASON

Classified As
True Class | Alfalfa | Bare ‘ Corn ‘ Soy ‘ Wheat
Alfalfa 90 3 0 2 5
Bare 4 90 3 0 3
Corn 0 0 99 0 1
Soy 4 0 0 93 3
Wheat 4 1 0 2 93

2) Perform classification using (7) N times, once for each
combinations of three channels, and for each class, noting
the resulting classification accuracy.

3) Choose the combination of three channels and the class
(callit C;) which yield the highest classification accuracy.
This defines a, b, and c. Classification accuracy is defined
as the average of user and producer accuracies for that
category.

4) For C;, choose the next most accurate combination of
three channels that does not contain any of the first three
channels. This defines d, e, and f.

5) Finally, the remaining two channels are grouped together,
defining g and h.

6) Steps 1)-5) are then repeated sequentially for the re-
maining classes.

It is worth noting that for the training data provided to the
classifier, wheat was divided into two subclasses: early wheat
and late wheat. Similarly, alfalfa was divided into short and tall
alfalfa. The accuracies in step two were computed on the basis
of separate pdfs for each subclass, but after this step and during
testing, the distinction of the subclasses was not used.

Once trained, the classifier is used in a hierarchical fashion,
based on the approach described in Section IV. Starting from the
first class of interest, (7) is used to with the appropriate set of
marginals that best separates that class of interest from all the
rest. Data points identified as the class of interest are so labeled.
The next set of marginals is then applied to (7) to separate the
second class of interest from the rest, using the remaining data.
This process is repeated until all of the data have been classified.

C. Results and Discussion

In this section, we will carefully evaluate the BHC using three
different measures of accuracy, namely: user accuracy, producer
accuracy, and overall accuracy. For each evaluation of accuracy
for the BHC, we divided our dataset into two sets: a training
dataset and a testing dataset. We used the training dataset to es-
timate the densities involved in our classification, and we used
the testing dataset as an independent dataset with which to eval-
uate the performance of the classifier.

To begin our evaluation of classifier accuracy, we present in
Table III a confusion matrix evaluating the performance of the
BHC for the dataset we have available. Note that the number
at the top of the confusion matrix is the producer accuracy av-
eraged over all the classes, which gives an unbiased metric of
classifier performance. For purposes of comparison, we classi-
fied the same data with ISODATA [2] and with an MLE clas-
sifier that assumes all data pdfs to be Gaussian in shape. The
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TABLE IV
CONFUSION MATRIX BASED ON THE ISODATA UNSUPERVISED CLASSIFIER

Classified As
True Class | Alfalfa ‘ Bare ‘ Corn ‘ Soy ‘ Wheat
Alfalfa 62 8 0 2 28
Bare 10 73 7 0 10
Corn 1 16 81 0 3
Soy 4 1 0 74 22
Wheat 15 1 0 1 82

TABLE V
CONFUSION MATRIX BASED ON THE MLE CLASSIFIER
WITH GAUSSIAN ASSUMPTION

Classified As
True Class | Alfalfa ‘ Bare ‘ Corn l Soy l Wheat
Alfalfa 76 2 2 5 16
Bare 9 68 17 0 7
Corn 0 6 92 0 2
Soy 3 0 0 96 0
Wheat 9 2 0 0 88
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Fig. 9. User accuracy for alfalfa. The horizontal axis is the percent of data
used for training, and the statistics were gathered over 50 independent trials.
The vertical bars extend between the maximum and minimum accuracies, with
the marks representing the mean accuracy.

results are summarized in Tables IV and V, respectively. The
comparison clearly demonstrates that the BHC is superior to
the other classification methods, offering results with an average
producer accuracy on the order of 10% higher than the results
from the MLE classifier, and 20% higher than those associated
with ISODATA. Note that while six images from throughout the
growing season were used, the current method is not a multitem-
poral classifier: each image was classified independent of all the
others and without knowledge of its acquisition date.

D. Classifier Accuracy Versus Size of Training Dataset

Because the results of the classifier depend heavily on the
data used to train it, we randomized the selection of training
and testing sets of data. The entire classification procedure, from
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Fig. 10. (a) Ground cover information, (b) classification using ISODATA, and
(c) classification using the BHC.

training and density estimation to classification of the indepen-
dent dataset, was performed 100 times. No data were used for
both training and testing.

The results of these trials are summarized in Fig. 9 for alfalfa.
In general, while the mean value of the user accuracy remained
consistent, as the percentage of data used for training was in-
creased between 60% and 80%, the range of values (minimum
to maximum) of producer accuracy increased. This is attributed
to the small size of the testing data. Similar trends were noted
for the other vegetation classes.
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E. Image Domain

Another evaluation of classifier accuracy was performed by
examining results in the image domain. We applied the BHC to
the radar image recorded on July 12, 1995, and we also applied
ISODATA, an unsupervised clustering technique commonly
found in the literature to classify the same image. The ground
truth and the resulting classifications are compared in Fig. 10.
Although neither classification is perfect, the reader will note
the relative lack of accuracy in the ISODATA classification,
which confuses wheat with alfalfa in many instances in the
lower right corner of the image. In general, the homogeneous
field sites are classified as random mixtures by ISOCLUS and
as nearly homogeneous by our technique, as desired.

VI. CONCLUSION

Using eight channels of SAR data taken over a test site in
Michigan, the Bayesian hierarchical classifier introduced in
this paper was shown to correctly identify five vegetation cover
classes with an accuracy of 93%. It is particularly noteworthy
that once trained, the BHC was applied to classify images
observed on six different dates covering a time span of six
weeks, without retraining. Both the vegetation covers and the
underlying soil moisture conditions varied widely over this
time period.

The realized high classification accuracy is a tribute to both
the new classification technique as well as to multifrequency
multipolarization SAR as an effective mapper of terrain.
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