
Vol. 24 no. 6 2008, pages 791–797
BIOINFORMATICS ORIGINAL PAPER doi:10.1093/bioinformatics/btn032

Sequence analysis

Compressed indexing and local alignment of DNA
T. W. Lam1,*, W. K. Sung2, S. L. Tam1, C. K. Wong1 and S. M. Yiu1
1Department of Computer Science, University of Hong Kong, Hong Kong, China and 2Department of Computer
Science, National University of Singapore, Singapore

Received on August 29, 2007; revised on December 8, 2007; accepted on January 22, 2008

Advance Access publication January 28, 2008

Associate Editor: Thomas Lengauer

ABSTRACT

Motivation: Recent experimental studies on compressed indexes

(BWT, CSA, FM-index) have confirmed their practicality for indexing

very long strings such as the human genome in the main memory.

For example, a BWT index for the human genome (with about 3

billion characters) occupies just around 1G bytes. However, these

indexes are designed for exact pattern matching, which is too

stringent for biological applications. The demand is often on finding

local alignments (pairs of similar substrings with gaps allowed).

Without indexing, one can use dynamic programming to find all the

local alignments between a text T and a pattern P in O(jTjjPj) time,

but this would be too slow when the text is of genome scale (e.g.

aligning a gene with the human genome would take tens to hundreds

of hours). In practice, biologists use heuristic-based software such

as BLAST, which is very efficient but does not guarantee to find all

local alignments.

Results: In this article, we show how to build a software called BWT-

SW that exploits a BWT index of a text T to speed up the dynamic

programming for finding all local alignments. Experiments reveal that

BWT-SW is very efficient (e.g. aligning a pattern of length 3 000 with

the human genome takes less than a minute). We have also analyzed

BWT-SW mathematically for a simpler similarity model (with gaps

disallowed), and we show that the expected running time is

O(jTj0.628jPj) for random strings. As far as we know, BWT-SW is

the first practical tool that can find all local alignments. Yet BWT-SW

is not meant to be a replacement of BLAST, as BLAST is still several

times faster than BWT-SW for long patterns and BLAST is indeed

accurate enough in most cases (we have used BWT-SW to check

against the accuracy of BLAST and found that only rarely BLAST

would miss some significant alignments).

Availability: www.cs.hku.hk/~ckwong3/bwtsw

Contact: twlam@cs.hku.hk

1 INTRODUCTION

The decoding of different genomes, in particular the human

genome, has triggered a lot of bioinformatics research. In many

cases, it is required to search the human genome (called the text

below) for different patterns (say, a gene of another species).

Exact matching is usually unlikely and may not make sense.

Instead, one wants to find local alignments, which are pairs of

similar substrings in the text and pattern, possibly with gaps

(see, e.g. Gusfield, 1997). Typical biological applications

require a minimum similarity of 75% (match 1 point; mismatch
�3 points) and a minimum length of 18–30 characters (see

Section 2 for details).
To find all local alignments, one can use the dynamic

programming algorithm by Smith and Waterman (1981), which
uses O(nm) time, where n and m are the length of the text and

pattern, respectively. This algorithm is, however, too slow for a

large text like the human genome. Our experiment shows that it
takes more than 15 h to align a pattern of 1000 characters

against the human genome. In real applications, patterns can be
genes or even chromosomes, ranging from a few thousand to a

few hundred million characters, and the SW algorithm would

require days to weeks. As far as we know, there does not exist
any practical solution for finding all local alignments in this

scale. At present, BLAST (Altschul et al., 1990, 1997) a
heuristic method, is widely used to find local alignments.

BLAST is very efficient (e.g. it takes 10–20 s to, align a pattern

of 1000 characters against the human genome). Yet, BLAST
does not guarantee to find all local alignments. The past few

decade has witnessed different techniques including indexing to
improve the heuristic and speed of BLAST (e.g. Burkhardt

et al., 1999; Cao et al., 2005; Giladi et al., 2002; Li et al., 2004;

Ozturk and Ferhatosmanoglu, 2003). This article, however,
revisits the problem of finding all local alignments. We attempt

to speed up the dynamic programming approach by exploiting

the recent breakthrough on text indexing.

1.1 Indexing and dynamic programming

Let T be a text of n characters and let P be a pattern of
m characters. A naive approach to finding all of their local

alignments is to examine all substrings with cm characters, where

c is a constant depending on the similarity model, and to align
them one by one with P. Obviously, we want to avoid aligning P

with the same substring at different positions of the text. A
natural way is to build a suffix tree (McCreight, 1976) (or a suffix

trie) of the text. Then, distinct substrings of T are represented by

different paths from the root of the suffix tree. We align P
against each path from the root up to cm characters using

dynamic programming. The common prefix structure of the
paths also gives a way to share the common parts of the dynamic

programming on different paths. Specifically, we perform a pre-

order traversal of the suffix tree; at each node, we maintain a
dynamic programming table (DP table) for aligning the pattern

and the path up to the node.We addmore rows to the table as we*To whom correspondence should be addressed.

� The Author 2008. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org 791

 at N
A

T
IO

N
A

L S
U

N
 Y

A
T

-S
E

N
 U

N
IV

E
R

S
IT

Y
 on A

pril 26, 2011
bioinform

atics.oxfordjournals.org
D

ow
nloaded from

http://bioinformatics.oxfordjournals.org/

go down the suffix tree, and delete the corresponding rows when

going up the tree. Note that filling a row of the table costs O(m)

time. For very short patterns, the above approach performs

dynamic programming on a few layers of nodes only and could

be very efficient; yet there are a few issues to be resolved for this

approach to be successful in general.

� Index size: The best known implementation of a suffix tree

requires 17.25n bytes for a text of length n (Kurtz, 1999).

For human genome, this is translated to 50G bytes of

memory, which far exceeds the 4G capacity of a standard

PC nowadays. An alternative is a hard-disk-based suffix

tree, which would increase the access time several order

of magnitude. In fact, even the construction of a suffix

tree on a hard disk is already very time-consuming; for

the human genome, it would need a week (Hunt et al.,

2002).

� Running time and pruning effectiveness: The above

approach requires traversing each path of the suffix tree

starting from the root up to O(m) characters, and

computing possible local alignments starting from the first

character of the path. For long patterns, this may mean

visiting many nodes of the tree, using O(nm) or more time.

Nevertheless, we can show that at an intermediate node u, if

the DP table indicates that no substring of the pattern has a

positive similarity score when aligned with the path to u,

then it is useless to further extend the path and we can prune

the subtree rooted at u. The question is, in practice, how

effective such a simple pruning strategy could be.

� DP table: Recall that we have to maintain a dynamic

programming table at each node, which is of size m� d

where d is the length of the substring represented by the

node. The worst-case memory requirement is O(m2). For

long patterns, say, even a gene with tens of thousands

characters, the table would demand several gigabytes or

more and cannot fit into the main memory.

Meek et al. [2003] have attempted to use a suffix tree in the

hard disk to speed up the dynamic programming for finding all

local alignments. As expected, success is limited to a small scale;

their experiments are based on a text of length 40M and

relatively short patterns with at most 65 characters. To alleviate

the memory requirement of suffix trees, we exploit the recent

breakthrough on compressed indexing, which reduces the space

complexity from O(n) bytes to O(n) bits, while preserving

similar searching time. FM-index (Ferragina and Manzini,

2000, 2001), CSA (Compressed Suffix Array) (Grossi and

Vitter, 2000; Sadakane, 2003), BWT (Burrow and Wheeler,

1994) are among the best known examples. In fact, empirical

studies have confirmed their practicality for indexing long

biological sequences to support very efficient exact matching on

a PC (e.g. Hon et al., 2004; Lippert, 2005). For DNA

sequences, BWT was found to be the most efficient and the

memory requirement can be as small as 0.25n bytes. For the

human genome, this requires only 1G memory and the whole

index can reside in the main memory of a PC. Moreover, the

construction time of a BWT index is shorter, our experiment

shows that it takes about an hour for the human genome.

1.2 Summary of results

Based on a BWT index in the main memory, we have built

a software called BWT-SW to find all local alignments

using dynamic programming. This article is devoted to the

details of BWT-SW. Among others, we will present how to use

a BWT index to emulate a suffix trie of the text (i.e. the tree

structure of all the suffices of the text), how to modify

the dynamic programming to allow pruning but without

jeopardizing the completeness, and how to manage the DP

tables.
BWT-SW performs well in practice, even for long patterns.

The pruning strategy is effective and terminates most of the

paths at a very early stage. We have tested BWT-SW

extensively with the human genome and random patterns of

length from 500 to a 100 million. On average, a pattern of 500

characters [resp. 5000 and 1M characters] requires at most 10 s

[resp. 1m and 2.5 h] (see Section 4.1 for more results). When

compared with the Smith–Waterman algorithm, BWT-SW is at

least 1000 times faster. As far as we know, BWT-SW is the first

software that can find all local alignments efficiently in such a

scale. We have also tested BWT-SW using different texts and

patterns (see the second table in Section 4.1). In a rough sense,

the timing figures of our experiments suggest that the time

complexity could be in the order of n0.628m. In Section 4, we will

also present the experimental findings on the memory utiliza-

tion due to the DP tables.
To better understand the efficiency of BWT-SW, we have

also analyzed BWT-SW mathematically with respect to the

pure match/mismatch model (i.e. gaps are not allowed) and

random strings. We prove that for DNA alignment, the total

number of entries filled in all the DP tables can be upper

bounded by O(n0.628 m), and hence BWT-SW takes O(n0.628 m)

time. It is probably a coincidence that the dependency on n is

found to match the above experimental result; note that the

experimental result and the mathematical analysis are dealing

with different alignment models. It is also worth-mentioning

that our analysis implies that the DP table is very sparse; in

particular, when we extend a path, the number of positive

entries also decreases exponentially and is eventually bounded

by a constant. Thus, we can save a lot of space by storing only

the entries with positive scores.
It is worth-mentioning that BWT-SW is not meant to be a

replacement of BLAST; BLAST is still several times faster than

BWT-SW for long patterns and BLAST is accurate enough

in most cases. Using BWT-SW, we found that BLAST may

miss some significant alignments (with high similarity) that

could be critical for biological research, but this occurs only

rarely. Specifically, we have conducted an experiment to align

8000 queries (selected from the NCBI database of the

chimpanzee, mouse, chicken and zebrafish mRNA) with the

human genome. These queries are of length ranging from 170 to

19 000. If all practically insignificant alignments (with E-value

less than 1� 10� 10) are ignored, BLAST only missed 0.06%

of the alignments found by BWT-SW. When we look into

individual species, we further observe that the missing

percentage is dependent on the evolutional distance

between the species and human. More details can be found in

Section 5.

T.W.Lam et al.

792

 at N
A

T
IO

N
A

L S
U

N
 Y

A
T

-S
E

N
 U

N
IV

E
R

S
IT

Y
 on A

pril 26, 2011
bioinform

atics.oxfordjournals.org
D

ow
nloaded from

http://bioinformatics.oxfordjournals.org/

2 DEFINITIONS AND BASIC CONCEPTS

In this section, we give the definitions of local alignments and

BWT.

2.1 Local alignments with affine gap penalty

Let x and y be two strings. A space is a special character not

found in these strings.

� An alignment A of x and y maps x and y respectively to

another two strings x0 and y0 that may contain spaces such

that (i) jx0j ¼ jy0j and (ii) removing spaces from x0 and y0

should get back x and y, respectively; and (iii) for any i,

x0[i] and y0[i] cannot be both spaces.

� A gap is a maximal substring of contiguous spaces in either

x0 or y0.

� An alignment A is composed of three kinds of regions.

(i) Matched pair: x0[i]¼ y0[i]; (ii) Mismatched pair:

x0[i] 6¼ y0[i] and both are not spaces; (iii) Gap: either

x0[i..j] or y0[i..j] is a gap. Only a matched pair has a positive

score a, a mismatched pair has a negative score b and a gap

of length r also has a negative score gþ rs where g, s50.

For DNA, the most common scoring scheme (e.g. used by

BLAST) makes a¼ 1, b¼ � 3, g¼ � 5 and s¼ � 2.

� The score of the alignment A is the sum of the scores for all

matched pairs, mismatched pairs and gaps. The alignment

score of x and y is defined as the maximum score among all

possible alignments of x and y.

Let T be a text of n characters and let P be a pattern of m

characters. The local alignment problem can be defined as

follows. For any 1� i� n and 1� j�m, compute the largest

possible alignment score of T [h..i] and P[k..j] where h� i and

k� j (i.e. the best alignment score of any substring of T ending at

position i and any substring of P ending at position j).

Furthermore, for biological applications, we are only interested

in those T [h..i] and P [k..j] if their alignment score attains a

threshold H.

2.2 Suffix trie and BWT

Suffix trie:Given a text T, a suffix trie for T is a tree comprising

all suffices of T such that each edge is uniquely labeled with a

character, and the concatenation of the edge labels on a path

from the root to a leaf corresponds to a unique suffix of T.

Each leaf stores the starting location of the corresponding

suffix. Note that a pre-order traversal of a suffix trie can

enumerate all suffices of T. Furthermore, if we compress every

maximal path of degree-one nodes of the suffix trie, then we

obtain the suffix tree of T.

BWT: The Burrows–Wheeler transform (BWT) (Barrow and

Wheeler, 1994) was invented as a compression technique. It was

later extended to support pattern matching by Ferragina and

Manzini (2000). Let T be a string of length n over an alphabet

�. We assume that the last character of T is a unique special

character $, which is smaller than any character in �. The suffix

array SA[0, n� 1] of T is an array of indexes such that SA[i]

stores the starting position of the i-th-lexicographically smallest

suffix. The BWT of T is a permutation of T such that

BWT [i]¼T [SA[i]� 1]. For example, if T¼ ‘acaacg$’, then
SA¼ (Altschul et al., 1990, 1997; Burkhardt et al., 1999; Burrow
and Wheeler, 1994; Cao et al., 2005; Ferragina and Manzini,
2000, 2002; Giladi et al., 2002), and BWT¼ ‘gc$aaacc’.

Given a string X, let SA[i] and SA[j] be the smallest and
largest suffices of T that have X as the prefix. The range [i, j] is
referred to as the SA range of X. Given the SA range [i, j] of X,

finding the SA range [p, q] of zX, for any character z, can be
done using the backward search technique (Ferragina and
Manzini, 2000) as follows.

LEMMA 1. Let X be a string and z be a character. Suppose that
the SA range of X and zX is [i..j] and [p..q], respectively. Then p

¼C(z)¼Occ(z, i� 1)¼ 1, and q¼C(z)¼Occ(z, j), where
C(z) is the total number of characters in T that are lexicogra-
phically smaller than z and Occ(z, i) is the total number of z’s in

BWT[0..i].

We can pre-compute C(z) for all characters z and retrieve any

entry in constant time. Using the auxiliary data structure
introduced by Ferragina and Manzini (2000), computing
Occ(z, i) also takes constant time. Then [p, q] can be calculated

from [i, j] in constant time. As a remark, BWT can be
constructed in a more efficient way than other indexes like
suffix trees. We have implemented the construction algorithm of

BWT described in Hon et al., (2007) it takes 50 min to construct
the BWTof the human genome using a PentinumD3.6GHz PC.

3 METHODS: INDEXING, DP AND PRUNING

We solve the local alignment problem in two phases.

� Phase I. For all 1� i� n, 1� j�m, and 1� h� i, compute A[h, i, j]

which equals the largest alignment score of T [h..i] and any

substring of P ending at position j.

� Phase II. For all 1� i� n, 1� j�m, return the largest among all

alignment scores A[h, i, j] for different h.

In Phase I, each combination of (h, i) defines a substring of T. Thus,

Phase I can be rephrased as follows: for every substring X of T and for

all 1� j�m, find the best alignment score of X and any substring of P

ending at position j. In the following, we will show how to use a suffix

trie of T to speed up this step. With a suffix trie, we can avoid aligning

substrings of T that are identical. That is, we exploit the common prefix

structure of a trie to avoid identical substrings to be aligned more than

once. We use a pre-order traversal of the suffix trie to generate all

distinct substrings of X. Also, we only need to consider substrings of T

of length at most cm where c is usually a constant bounded by 2. This is

because the score of a match is usually smaller than the penalty due to

a mismatch/insert/delete, and a substring of T with more than 2m

characters have at most m matches and an alignment score less than 0.

For each node u of depth d (d� cm) in the suffix trie of T, let X [1..d]

be the substring represented by this node. There may be multiple

occurrences of X in T and the starting positions of these occurrences,

say, p1, p2, . . . , pw, can be found by traversing the leaves of the subtree

rooted at u. For each 1� j�m, we compute the best possible

alignment score of X and any substring of P ending at position j, or

equivalently, we compute A[p1, p1þ d� 1, j], A[p2, p2þ d� 1, j], . . . ,

A [pw, pwþ d� 1, j].

The rest of this section is divided into three parts: Section 3.1 shows

how to make use of a BWT index to simulate a pre-order traversal of a

suffix trie. Section 3.2 gives a simple dynamic programming method to

compute, for each node u on a path of the suffix trie and for all

1� j�m, the best alignment score of the substring represented by u and

Compressed indexing and local alignment

793

 at N
A

T
IO

N
A

L S
U

N
 Y

A
T

-S
E

N
 U

N
IV

E
R

S
IT

Y
 on A

pril 26, 2011
bioinform

atics.oxfordjournals.org
D

ow
nloaded from

http://bioinformatics.oxfordjournals.org/

any substring of P ending at j. Section 3.3 shows that the dynamic

programming on a path can be terminated as soon as we realize that no

‘meaningful’ alignment can be produced.

3.1 Simulating suffix trie traversal using BWT

We can make use of the backward search technique on BWT to

simulate the pre-order traversal of a suffix trie to enumerate the

substrings. Based on Lemma 1, we have the following corollary.

COROLLARY 2. Given the SA range [i, j] of X in T, if the SA range

[p, q] of zX for a character z computed by Lemma 1 is invalid, i.e. p4q,

then zX does not exist in T.

Since we use backward search, instead of constructing the BWT for T,

we construct the BWT for the reversal of T. Consider a node u in

the suffix trie of T, which represents the substring X. To check if u has

an outgoing edge labeled with a character z, we can check if zX� 1

exists in T� 1.

We can simulate the traversal of a suffix trie and enumerate the

substrings represented by the nodes in the trie as follows. Assume that

we are at node u in the suffix trie of T that represents the substring X,

and we have already found the SA range for X� 1 in T� 1 using the

BWT. Based on the above corollary, we can check the existence of an

edge with label z from u in O(1) time by computing the SA range for

zX� 1 using the BWT of T� 1. Then, we enumerate the corresponding

substring if the edge does exist and repeat the same procedure to

traverse the tree.

3.2 Dynamic programming

Consider a path from the root of the suffix trie. Subsequently we present

a dynamic programming method to compute, for each node u on this

path and for all 1� j�m, the best possible alignment score of the

substring X [1..d] represented by u and any substring of P ending at j.

For any i� d and j�m, let Mu(i, j) be the best alignment score of

X[1..i] and any substring of P ending at position j. Let Mu
1ði, jÞ, M

u
2ði; jÞ

and Mu
3ði, jÞ be the best possible alignment score of X [1..i] and a

substring of P ending at position j with X [i] aligned with P [j], X [i]

aligned with a space and P [j] aligning with a space, respectively. The

values of Mu(d, j) shows the best alignment score of X [1..d] and a

substring of P ending at position j.

Initial conditions:

Muð0, j Þ ¼ 0 for 0 � j � m:

Mu
1ði, 0Þ ¼ �ðgþ isÞ for 1 � i � d:

Mu
2ð0, j Þ ¼ �1 for 0 � j � m:

Mu
3ði, 0Þ ¼ �1 for 1 � i � d:

Recurrences (for i41, j41):

Mu
1ði, j Þ ¼ Muði� 1, j� 1Þ þ �ðX ½ i �;P ½ j �Þ:

Mu
2ði, j Þ ¼ maxfMu

2ði� 1, j Þ � s;Muði� 1, jÞ � ðgþ sÞg:

Mu
3ði, j Þ ¼ maxfMu

3ði, j� 1Þ � s;Muði, j� 1Þ � ðgþ sÞg:

Muði, j Þ ¼ maxfMu
1ði, j Þ;M

u
2ði, jÞ;M

u
3ði, jÞg

where �(X [i],P[j])¼ a if X [i]¼P [j], otherwise �(X [i],P [j])¼ b.

(See Section 2 for definitions of a and b.)

Consider a child v of u. Denote the substring represented by v as

X[1..d]c. Note that when we extend the dynamic programming from

node u to node v, we only need to compute a new row at each dynamic

programming table of u (e.g. Muðdþ 1, jÞ,Mu
1ðdþ 1, jÞ,Mu

2ðdþ 1, jÞ,

Mu
3ðdþ 1, jÞ for all 1� j�m. If a traversal of the suffix trie would move

from node u to its parent, we erase the last row of every dynamic

programming table computed at u.

3.3 Modified dynamic programming and pruning

In this section, we show how to modify the dynamic programming to

enable an effective pruning. We first define what a meaningless

alignment is.

3.3.1 Meaningless alignment Let A be an alignment of a

substring X¼T [h..i] of T and a substring Y¼P[k..j] of P. If A aligns a

prefix X0 ¼T [h..h0] of X with a prefix Y0 ¼P [k..k0] of Y such that the

alignment score of X0 and Y0 is less than or equal to zero, A is said to be

a meaningless alignment. Otherwise, A is said to be meaningful.

LEMMA 3. Suppose that A is a meaningless alignment of a substring

X¼T[h..i] and a substring Y¼P[k..j] with a positive score C. Then

there exists a meaningful alignment for some proper suffix X0 ¼T[s..i] of

X and some proper suffix Y0 ¼P[t..j] of Y with score at least C, where

h5s� i and k5t� j.

PROOF. Suppose that A aligns a prefix X0 ¼T[h..h]0 of X with a prefix

Y0 ¼P[k..k0] of Y such that the induced alignment score C0 of X0 and Y0 is

less than or equal to zero. Let T [s] be the first character after T[h0] such

that it aligns with a character of P[k0 ¼ 1..j] in A (denote this character as

P[t]). Let D be the alignment score of T[s..i] and P[t..j] and A0 be a

corresponding alignment. Then, DþC0 �C. Since C0 � 0, D�C.

If the alignment A0 is meaningless, we repeat the same argument on T[s..i]

and P[t..j] until we obtain a suffix of X and a suffix of Y with a meaningful

alignment of score �C. Since C40, the lemma follows. g

Subsequently, we show how to modify the dynamic programming to

only compute the best possible score of meaningful alignments

(meaningful alignment score). Notice that for any two strings, the best

meaningful alignment score may not be the best alignment score.

Nevertheless, we will show that the meaningful alignment scores are

already sufficient for Phase II to report the correct answers.

3.3.2 DP for meaningful alignment score In the dynamic

programming tables, entries with values less than or equal to zero

will never be used.

Let u be a node in the suffix trie for T and X[1..d] be the string

represented by u. Let Nu(i, j) be the best possible score of a meaningful

alignment between X [1..i] and a suffix of P [1..j]. Furthermore, Nu
1ði, jÞ,

Nu
2ði, jÞ and Nu

3ði, jÞ are defined in a similar way as Mu
1ði, jÞ, M

u
2ði, jÞ and

Mu
3ði, jÞ. The recurrence equations are modified as follows. For any

i, j41,

Nu
1ði; jÞ ¼

Nuði� 1; j� 1Þþ if Nuði� 1; j� 1Þ4 0
�ðX ½i �;P ½ j �Þ
�1 otherwise

8<
:

Nu
2ði; jÞ ¼

maxfNu
2ði� 1; jÞ � s; if Nu

2ði� 1; jÞ4 0 and
Nuði� 1; jÞ � ðgþ sÞ Nuði� 1; jÞ4 0

Nu
2ði� 1; jÞ � s if only Nu

2ði� 1; jÞ4 0
Nuði� 1; jÞ � ðgþ sÞ if only Nuði� 1; jÞ4 0
�1 otherwise

8>>>><
>>>>:

Nu
3ði; jÞ ¼

maxfNu
3ði; j� 1Þ � s; if Nu

3ði; j� 1Þ4 0; and
Nuði; j� 1Þ � ðgþ sÞg Nuði; j� 1Þ4 0

Nu
3ði; j� 1Þ � s if only Nu

3ði; j� 1Þ4 0
Nuði; j� 1Þ � ðgþ sÞ if only Nuði; j� 1Þ4 0
�1 otherwise

8>>>><
>>>>:
Nuði; jÞ ¼ maxfNu

1ði; jÞ;N
u
2ði; jÞ;N

u
3ði; jÞg

Next, we show that the scores computed by the modified dynamic

programming are sufficient for Phase II to compute the correct answers,

thus solving the local alignment problem.

LEMMA 4. Let u be a node in the suffix trie for T and let X [1..d] be

the string represented by u. If Mu(d, j)¼C�H where H is the

T.W.Lam et al.

794

 at N
A

T
IO

N
A

L S
U

N
 Y

A
T

-S
E

N
 U

N
IV

E
R

S
IT

Y
 on A

pril 26, 2011
bioinform

atics.oxfordjournals.org
D

ow
nloaded from

http://bioinformatics.oxfordjournals.org/

score threshold, then, there exists h in [1, d] such that

Nv(d� h¼ 1, j)¼C where v is the node in the suffix trie representing

the string X [h..d].

PROOF. If there exists a meaningful alignment for X[1..d] and P[k..j]

with score¼C, then h¼ 1 and v¼ u. Otherwise, based on Lemma 3, there

exists h with 15h� d such that there is a meaningful alignment for

X[h..d] and P[k..j] with score at least C. Since Mu(d, j) is the best

possible score for X[1..d] and any substring of P ending at j,

Nv(d� h¼ 1, j)¼C where v is the node representing X[h..d]. g

COROLLARY 5. For any i, j, let C be the largest possible score between a

substring of T ending at i and a substring of P ending at j (i.e., C is the

answer for Phase II). Then there exists a node v representing a substring

X¼T[s..i] (s� i) of T such that Nv(i� s¼ 1, j)¼C.

3.3.3 Pruning Strategy Since we only consider meaningful align-

ments, for each node in the suffix trie, when filling the dynamic

programming tables, we ignore all entries with values less than or

equal to zero. For a node u, if there is a row with all entries in all dynamic

programming tables with values less than or equal to zero, we can stop

filling the tables since all the rows below will only contain entries with

values less than or equal to zero.Moreover, based on the same argument,

we can prune the whole subtree rooted at u.

4 EXPERIMENTAL RESULTS AND
MATHEMATICAL ANALYSIS

4.1 Efficiency of BWT-SW in practice

To see how fast BWT-SW is, we have constructed the BWT
index for the human genome (NCBI Build 35) and used BWT-
SW to align patterns of length from 100 to 100M with the
human genome. The query patterns are randomly selected from

the mouse genome except for the query of length 100M which
is the whole mouse chromosome 15. For queries of length 10K
or shorter, we have repeated the same experiment a hundred

times to get the average time. For longer patterns, we have
repeated the experiments a few dozen times. Note that DNA is
composed of double strands (i.e. two complimentary sequences

of the same length). Instead of aligning a pattern with both
strands, we align the pattern and then its reverse complement
with one strand. The time reported below is the total time for
aligning the pattern and its reverse complement. To avoid

meaningless alignment, regions of the query that are expected
to contain very little information (called low complexity regions;
e.g. a long sequence of ‘A’) are masked by a standard software

tool, DUST, before the alignment process. This is also the
default setting of existing software such as BLAST.
The following two tables show the average time required by

BWT-SW, the DP algorithm by Smith and Waterman, and
BLAST. The experiments are conducted on a Pentinum D
3.0GHz PC with 4G memory.

Query length 100 200 500 1K 2K

BWT-SW average

time (s)

1.91 4.02 9.89 18.86 35.93

Smith–Waterman

average time (K)

5.1 10.0 23.9 45.1 97.8

BLAST average time 9.7 12.58 12.52 15.23 15.82

Query length 5K 10K 100K 1M 10M 100M

BWT-SWaverage

time (s)

82 161 1.4K 8.9K 34.4K 218.2K

BLAST 19.9 29.6 93.4 775 6.7K 92.2K

For patterns with thousands of characters (which is common
in biological research), BWT-SW takes about 1–2min, which is

very reasonable. For extremely long patterns, say, a chromo-
some of 100M, it takes about 2.5 days. In the past, finding a
complete set of local alignments for such long patterns is not
feasible.

To investigate how the searching time depends on the text
size, we fix the pattern length and conduct experiments using
different texts (chromosomes) of length ranging from 100M to

3G. We have repeated the study for four different query
lengths. The following table shows the results.

Patern length Text size

114M 307M 1.04G 2.04G 3.08G

500 1.33 2.41 5.21 7.89 9.89

1K 2.55 4.59 10.05 15.14 18.86

5K 10.74 19.53 42.20 65.57 81.60

10K 21.01 38.20 83.96 128.97 161.04

Using the above figures, we roughly estimate that the time

complexity of BWT-SW is in the order of n0.628m.1 However,
our experiments are limited, and such estimation is not
conclusive. It only provides a rough explanation why BWT-

SW is a 1000 times faster than the Smith–Waterman algorithm
when aligning the human genome.

4.2 Mathematical analysis

To understand the performance of BWT-SW better, we have

studied and analyzed a simplified model in which an alignment
cannot insert spaces or gaps, and the scoring function is simply
a weighted sum of the number of matched and

mismatched pairs. We found that under this model, the
expected total number of DP cells with positive values is
upper bounded by 69n0.628m. The time required by BWT-SW is

proportional to the number of DP cells to be filled, or
equivalently, the number of cells with positive values. Thus,
our analysis suggests that BWT-SW takes O(n0.628m) time

under this model.2

We assume that strings are over an alphabet of � characters
where � is a constant. Let x, y be strings with d� 1 characters.
Suppose that x and y match in e� d positions. Define

Score(x, y)¼ e� 3(d� e) (i.e. match¼ 1, mismatch¼�3) and

1For each pattern length, we fit the above data to the function
f(n)¼ cn0.628 where c is a fixed constant. The root-mean-square errors of
the data in all four cases are within 1.21–1.63%.
2It is perhaps a coincidence that the dependency on n is found to match
the experimental result in Section 4.1. Note that Sections 4.1 and 4.2 are
based on different alignment models, one with gaps and one without.

Compressed indexing and local alignment

795

 at N
A

T
IO

N
A

L S
U

N
 Y

A
T

-S
E

N
 U

N
IV

E
R

S
IT

Y
 on A

pril 26, 2011
bioinform

atics.oxfordjournals.org
D

ow
nloaded from

http://bioinformatics.oxfordjournals.org/

define f(x) to be the number of length-d strings y such that

Score(x, y)40. Note that f(x) captures the number of ways to

modify x into strings y such that Score(x, y)40; thus f(x)¼ f(x0)

for any length-d string x0. It is useful to overload f such that the

domain of f includes integers, and f(d) is defined to be f(x),

where |x|¼ d.

LEMMA 6. f ðd Þ � k1k
d
2, where k1 ¼ ð� � 1=� � 2Þð4e=

ffiffiffiffiffiffi
2�

p
Þ,

and k2¼ (4e (�� 1))1/4.

PROOF. Let x be a string of length d. f(d) is the number of

strings of length-d that has at most bd/4c differences with x.

Using the fact that
�

d
i

�
� 1ffiffiffiffiffi

2i�
p

� �
de
i

� �i
(derived from Stirling’s

approximation), we have d
d=4b c

� �
� d

d=4d e

� �
� 1ffiffiffiffiffiffi

2d�
p

� �
de
d=4d e

� � d=4d e

� 1ffiffiffiffi
2�

p de
d=4

� �d=4þ1

¼ 4effiffiffiffi
2�

p 4eð Þ
d=4. Then,

fðdÞ �
Xd=4b c

i¼0

ð� � 1Þi
d

i

� �
�

� � 1

� � 2

� �
ð� � 1Þd=4

d

d=4
� 	

� �
¼ k1k

d
2;

where k1 ¼
��1
��2

4effiffiffiffi
2�

p and k2¼ (4e (�� 1))1/4. g

There are �d strings of length d, and the following fact follows.

FACT 1. Let x be a string of length d, for any randomly chosen

length-d string y, the probability that Score (x, y)40 is f (d)/�d.

Let T be a text of n characters and let R be the suffix trie of T.

Let P be a pattern of m characters. For any node u in R, let

X[1..d] be the string represented by u. Let Nu be the dynamic

programming table for u such that Nu(d, j) denote Score(X,P0)

where P0 is a length-d substring of P ending at position j. In the

following, we try to bound the expected total number of

positive entries Nu(d, j) for all u, d, j. Let c¼blog� nc.

LEMMA 7. The expected total number of positive entries

Nu(d, j) for all nodes u at depth d is at most mf(d), if d� c, and

m½nð f ðd Þ=�dÞ�, if d4c.

PROOF. For a substring P0 of P ending at position j with length

d, for any string X[1..d], Score(X, P0)40 if and only if the entry

Nu(d, j)40 where u is a node in R representing X. There are

m� dþ 1 substrings of P with length d. For each of these

substrings P0, there are f(d) strings X such that Score

(X, P 0)40. g

Case 1. For any d, the total number of positive entries in Nu(d,j)

for all nodes u of depth d is at most mf (d).

Case 2. For d4c, the bound for Case 1 still holds, but the

expected total number of positive entries can have a tighter

bound. Based on Fact 1, the expected number of these X strings

appearing in T is nðf ðd Þ=� dÞ. So, the expected total number of

positive entries Nu(d, j) for all nodes u at depth d is at most

m½nð f ðd Þ=� dÞ�

LEMMA 8. For any d in [1, c� 1], the expected total number of

positive entries Nu(d, j) for all nodes u of depth d is at mostPc�1
d¼1 mf ðd Þ � c1mnc2 where c1, c2 are constants and c251.

PROOF.
Pc�1

d¼1 mfðdÞ � k1m
Pc�1

d¼�1 kd2 ¼ k1m
P1

d¼1 k
�d
2

� �
kc2 ¼

ðk1m=ðk2 � 1ÞÞk
log� nb c

2 ¼ ðk1=ðk2 � 1ÞÞ mnlog� k2 ¼ c1mnc2 , where

c1 ¼
k1

k2�1 and c2¼ log�k2. g

LEMMA 9. For all d, j and node u of depth d in [c,m], the
expected total number of positive entries Nu(d, j) for all nodes at

depth d is at most
Pm

d¼cðnmf ðd Þ=�dÞ � c01mnc
0
2 where c01, c

0
2 are

constants and c0251.

PROOF. Recall that c¼blog� nc, i.e. n / �c� �.
Pm
d¼c

nm fðdÞ
�d

� k1mn
P1
d¼c

k2
�

� �d
¼ k1mn

1�k2=�
k2
�

� �c
� k1�

��k2
n
�c

� �
mk

log�
n

2 � k1�
2

��k2

mnlog� k2 ¼ c01mnc
0
2 , where c01 ¼

k1�
2

��k2
and c02¼ log� k2. g

Based on Lemmas 8 and 9, we have the following corollary.

COROLLARY 10. The expected total number of positive entries
Nu(d, j) for all u, d, j is 69 mn0.628.

PROOF. By lemmas 8 and 9, the expected total number of

positive entires Nu(d, j) is c1mnc2 þ c01mnc
0
2 . Substituting �¼ 4 for

DNA, we have approximately k1¼ 6.5066, k2¼ 2.3898,

c1¼ 4.6816, c01¼ 64.6557 and c2¼ c02¼ 0.6285, and hence
69.3373mn0.6285 positive entries. g

4.3 Memory for DP Tables

In the DP tables of Section 3.3, only the positive entries have

to be stored. We store them in a compact manner as follows.
We use a big single array B to store entries of all rows of a DP

table N. Let ni be the number of entries, say Nði, ji1 Þ,
Nði, ji2 Þ, . . . ,Nði, jn1 Þ, in the i-th row. Let ki ¼

Pi
r¼1 nr. The

entryNði, ji‘ Þ is stored atB[ki� 1þ ‘]. For each entry, we store the

coordinates ði; ji‘ Þ and the score. We also store the starting index
ofB for each row.Moving from node u at depth y of the trie to its

child v, we add a new row for v starting at B[kyþ 1]. If we go up
from node v to u, we reuse the entries in B from B[kyþ 1].

Regarding the memory required by the DP tables, it is related
to the maximum number of table entries to be maintained

throughout the whole searching process. This number is very
small in all test cases. For example, for human genome as the

text, the maximum number of entries in the DP tables are about
2600 and 22 000 for patterns of length 100K and 1M,

respectively. The actual memory required are about 20K and

10M, respectively. In fact, based on the simplified model of
Section 4.2, we can show that the expected number of DP table

entries along any path of the suffix trie is bounded by cm where
c is a constant and m is the pattern length. The memory

required for DP tables is neglectable when compared to the
memory for the BWT data structure: For a DNA sequence of n

characters, 2n bits are needed for BWT entries; 2n bits for

storing the original sequence; n bits for the auxiliary data
structures. So, altogether it translates to about 2G memory for

the human genome.

5 DISCUSSION: COMPLETENESS OF BLAST

From the biological point of view, a local alignment with a high
similarity measure is not necessarily a very significant one as it

may just occur by random. The biological community adopts a

significant measure, called Expectation value (E-value), to
evaluate each alignment. Roughly speaking, the E-value of an

alignment reflects the expected number of alignments between
the text and the pattern that have the same or even better

similarity score. The lower the E-value, the more significant the

T.W.Lam et al.

796

 at N
A

T
IO

N
A

L S
U

N
 Y

A
T

-S
E

N
 U

N
IV

E
R

S
IT

Y
 on A

pril 26, 2011
bioinform

atics.oxfordjournals.org
D

ow
nloaded from

http://bioinformatics.oxfordjournals.org/

alignment is. For the detailed calculation, one can refer
to Karlin and Altschul (1990). Usually, an alignment is
considered to be significant in practice if its E-value is less
than 1� 10�10.

It is well-known that BLAST does not guarantee to report all
alignments, but it is not clear how many answers it would miss.
With the BWT-SW, we have done some experiments to confirm

that BLAST would miss some significant alignments but only
rarely. We have conducted an experiment using a set of 8000
queries, which are constructed from 2000 mRNA from each of

the four species: chimpanzee, mouse, chicken and zebrafish.
These queries are of length ranging from 170 to 19 000, with an
average of 2700. Following the default setting of BLAST, the

low-complexity regions of the queries are masked by DUST
before the alignment. The following table shows the missing
percentage of BLAST when compared with BWT-SW.
Each row shows the figures for the alignments with E-value

less than or equal to a given value.

E-Value

�

Percentage of missing

Chimpanzee Mouse Chicken Zebrafish All Four

Species

10�16 0.00 0.03 0.05 0.06 0.01

10�15 0.00 0.03 0.05 0.06 0.02

10�14 0.00 0.04 0.06 0.06 0.02

10�13 0.00 0.03 0.07 0.14 0.02

10�12 0.01 0.04 0.10 0.17 0.03

10�11 0.02 0.05 0.11 0.28 0.05

10�10 0.02 0.07 0.13 0.39 0.06

10�9 0.03 0.09 0.16 0.60 0.08

10�8 0.05 0.11 0.25 0.77 0.12

10�7 0.10 0.19 0.31 0.81 0.18

10�6 0.17 0.31 0.45 1.08 0.28

10�5 0.32 0.47 0.70 1.45 0.45

10�4 0.57 0.88 0.99 1.81 0.75

10�3 0.99 1.36 1.25 2.25 1.17

10�2 1.69 2.11 1.68 2.61 1.84

10�1 2.70 2.97 2.33 2.86 2.76

If we focus on relatively significant alignments, say, with
E-value less than or equal to 1� 10�10, BLAST only misses
0.06% when all 8000 queries are considered together (precisely,

49 out of 81 054 alignments found by BWT-SW are missed).
We also observe that the missing percentage has a dependency
on the evolutionary distance between the species and human.

For example, for E-value less than or equal to 1� 10�10, the
missing percentages for queries derived from chimpanzee,
mouse, chicken, and zebrafish are respectively 0.02%, 0.07%,
0.13% and 0.39% (or equivalently, 10/46903, 13/19841,

15/11482 and 11/2828). In conclusion, our experiment indicates

that BLAST is accurate enough in most cases, yet the few

alignments missed could be critical for biological research.

ACKNOWLEDGEMENT

The project is partially supported by Hong Kong RGC Grant

HKU7140/064.

Conflict of Interest: none declared.

REFERENCES

Altschul,S.F. et al. (1990) Basic local alignment search tool. J. Mol. Biol., 215,

403–410.

Altschul,S.F. et al. (1997) Gapped BLAST and PSI-BLAST: A new generation of

protein database search programs. Nucl. Acids Res., 25, 3389–3402.

Burkhardt,S. et al. (1999) q-Gram based database searching using a suffix array

(quasar). RECOMB, 77–83.

Burrow,M. and Wheeler,D.J. (1994) A block-sorting lossless data compression

algorithm. Technical Report 124, Digital Equipment Corporation, California.

Cao,X. et al. (2005) Indexing DNA sequences using q-grams. DASFAA, 4–16.

Ferragina,P. and Manzini,G. (2000) Opportunistic data structures with

applications. FOCS, 390–398.

Ferragina,P. and Manzini,G. (2001) An experimental study of an opportunistic

index. SODA, 269–278.

Giladi,E. et al. (2002) SST: An algorithm for finding near-exact sequence matches

in time proportional to the logarithm of the database size. Bioinformatics, 18,

873–877.

Grossi,R. and Vitter,J.S. (2000) Compressed suffix arrays and suffix trees with

applications to text indexing and string matching. STOC, , 397–406.

Gusfield,D. (1997) Algorithms on Strings, Trees, and Sequences. Cambridge

University Press.

Healy,J. et al. (2003) Annotating large genomes with exact word matches.

Genomes Research, 13, 2306–2315.

Hon,W.K. et al. (2007) Constructing compressed suffix arrays with large

alphabets. Algorithmica, 48, 23–36.

Hon,W.K. et al. (2004) Practical aspects of compressed suffix arrays and FM-

Index in searching DNA sequences. ALENEX/ANALC, 31–38.

Hunt,E. et al. (2002) Database indexing for large DNA and protein sequence

collections. The VLDB J., 11, 256–271.

Karlin,S. and Altschul,S.F (1990) Methods for assessing the statistical

significance of molecular sequence features by using general scoring schemes.

Proceedings of the National Academy of Sciences, 87, 2264–2268.

Kurtz,S. (1999) Reducing the space requirement of suffix trees. Software -

Practice and Exp., 29, 1149–1171.

Li,M. et al. (2004) PatterHunter II: Highly sensitive and fast homology search.

J. Bioinformatics Comput. Biol., 2, 417–440.

Lippert,R. (2005) Space-efficient whole genome comparisons with Burrows-

Wheeler transforms. J. Comput. Biol., 12, 407–415.

McCreight,E.M. (1976) A space-economical suffix tree construction algorithm.

J. ACM, 23, 262–272.

Meek,C. et al. (2003) OASIS: An online and accurate technique for local-

alignment searches on biological sequences. VLDB, 910–921.

Ozturk,O. and Ferhatosmanoglu,H. (2003) Effective indexing and filtering for

similarity search in large biosequence databases. BIBE, 359–366.

Sadakane,K. (2003) New text indexing functionalities of the compressed suffix

arrays. J. Algorithms, 48, 294–313.

Smith,T.F. and Waterman,M.S. (1981) Identification of common molecular

subsequences. J. Mol. Biol., 147, 195–197.

Williams,H.E. and Zobel,J. (2002) Indexing and retrieval for genomic databases.

IEEE Trans. Knowledge Data Eng., 14, 63–78.

Compressed indexing and local alignment

797

 at N
A

T
IO

N
A

L S
U

N
 Y

A
T

-S
E

N
 U

N
IV

E
R

S
IT

Y
 on A

pril 26, 2011
bioinform

atics.oxfordjournals.org
D

ow
nloaded from

http://bioinformatics.oxfordjournals.org/

