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Review
Using next-generation sequencing technologies it is
possible to resequence entire plant genomes or sample
entire transcriptomes more efficiently and economically
and in greater depth than ever before. Rather than
sequencing individual genomes, we envision the
sequencing of hundreds or even thousands of related
genomes to sample genetic diversity within and be-
tween germplasm pools. Identification and tracking of
genetic variation are now so efficient and precise that
thousands of variants can be tracked within large popu-
lations. In this review, we outline some important areas
such as the large-scale development of molecular mar-
kers for linkage mapping, association mapping, wide
crosses and alien introgression, epigenetic modifi-
cations, transcript profiling, population genetics and
de novo genome/organellar genome assembly for which
these technologies are expected to advance crop
genetics and breeding, leading to crop improvement.

Introduction
The detection and exploitation of genetic variation have
always been an integral part of plant breeding. DNA-based
molecular markers are useful for detecting the genetic
variation available in germplasm collections and/or breed-
ing lines. During the past two decades, many different
molecular markers have been developed for most major
crop species. Thesemarkers have been used extensively for
the development of saturated molecular genetic and
physical maps and for the identification of genes or quan-
titative trait loci (QTLs) controlling traits of economic
importance for marker-assisted selection (MAS) [1,2]. In
addition to traditional trait or QTL mapping using bipar-
ental populations, new approaches such as association
mapping [3], advanced back-cross QTL analysis [4], func-
tional genomics [5], genetical genomics [6], allele mining
[1], TILLING and EcoTILLING [7] have become available
in recent years. Genomics-assisted breeding is a holistic
approach using different genomic strategies and tools [1].
The prediction of phenotype from genotype using different
genomic tools and strategies is the basis of genomics-
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assisted breeding [2]. By improving the precision and
efficiency of predicting phenotypes from genotypes, the
development of improved cultivars with enhanced resist-
ance or tolerance to biotic and/or abiotic stresses and
higher agronomic performance can be greatly accelerated.
Indeed, successful examples of genomics-assisted breeding
have been demonstrated for several cereals [2,8].

Genomics-assisted breeding approaches have greatly
advanced with the increasing availability of genome and
transcriptome sequence data for several model plant and
crop species. Complete and/or draft genome sequences
have become available for several plant species such as
rice [9–12], sorghum (http://www.phytozome.net/sorghum)
[13,14], poplar (http://www.phytozome.net/poplar.php)
[15], grape (http://www.phytozome.net/grape.php) [16],
papaya [17], Medicago (http://www.medicago.org/genome)
and soybean (http://www.phytozome.net/soybean). Whole-
genome or gene-space sequencing is in progress for several
other crops such as maize (http://www.maizegenome.org),
wheat (http://www.wheatgenome.org), barley (http://
www.public.iastate.edu/�imagefpc/IBSC%20Webpage/
IBSC%20Template-home.html), tomato (http://sgn.cornell.
edu/about/tomato_sequencing/) and foxtail millet (http://
www.jgi.doe.gov/sequencing/why/99178.html). Comp-
lementary to genome sequencing is the widespread appli-
cation of transcriptome sampling strategies, which has
resulted in large collections of expressed sequence tags
(ESTs) for nearly all economically important plant species
(http://www.ncbi.nlm.nih.gov/dbEST/dbEST_summary.
html). Previously, most genome and transcriptome sequen-
cing projects used Sanger sequencing methodology [18].
However, owing to growing interest in human genome
resequencing, a new generation of sequencing technologies
has emerged. These next-generation sequencing (NGS)
technologies are able to generate DNA sequence data
inexpensively and at a rate that is several orders of mag-
nitude faster than that of traditional technologies.
Advances in sequencing technologies are driving down
sequencing costs and increasing sequence capacity at an
unprecedented rate, making whole-genome resequencing
by individual laboratories possible [19–21]. As a result,
genomics-assisted breeding should gain momentum, with
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Glossary

Advanced backcross qualitative trait locus (AB-QTL) analysis: method for

simultaneous identification and transfer of favorable QTL alleles from

unadapted donor lines (e.g. land races and wild species) to elite lines for

variety development. Following this strategy, QTL analysis is delayed until the

second or third backcross generation and, during the development of these

populations, negative selection is exercised to reduce the frequency of

deleterious donor alleles. Near isogenic lines (NILs) for QTL of interest can

be derived from advanced backcross populations in one or two additional

generations and used to verify QTL activity and can be released as a

commercial line.

Allele mining: identification of allelic variation of relevant traits within genetic

resource collections such as germplasm collections, ecotypes and patho-

types.

Association mapping: also known as linkage disequilibrium (LD) mapping or

association analysis, this is a population-based survey used to identify trait–

marker relationships based on LD. The technique takes into account all the

historic recombination events in a diverse population of individuals to

generate higher resolution genetic maps and is needed to complement current

map-based cloning methods.

Bacterial artificial chromosome (BAC): a DNA construct, based on a fertility

plasmid, used for transforming and cloning in bacteria. BACs are typically 150–

350 kbp long, but can be more than 700 kbp. They are often used to sequence

the genome of an organism by amplifying its DNA as inserts, which are

sequenced before being rearranged in silico, to give the genome sequence of

the organism.

Genetic map: illustrates the order of genes/marker loci on a chromosome and

their relative distances in terms of recombination frequency. Marker loci placed

close to each other have a lower recombination frequency than markers placed

apart from each other. Molecular markers (see below) can be used to

determine the genetic distance between each other and are measured in

terms of a genetic map unit or centimorgan.

Genome resequencing: sequencing of a genome for which prior sequence

information is available. Owing to large multiples of coverage, resequencing

facilitates identification of sequence variants, mutations, structural variations,

copy number variations and rearrangements.

Marker-assisted selection (MAS): a method that uses molecular markers

associated with the traits of interest to select plants at the seedling stage,

thus speeding up the process of conventional plant breeding and reducing

the cost involved in maintaining fields. MAS facilitates improvement

of traits that cannot easily be selected using conventional breeding

methods.

Molecular markers: a set of DNA-based markers that can detect DNA

polymorphism at the level of specific loci and at the whole genome level.

There are many types of molecular markers: the earliest to be developed were

RFLPs (restriction fragment length polymorphisms) and others include RAPDs

(random amplification of polymorphic DNAs), CAPS (cleaved amplified

polymorphic sites), SSRs (simple sequence repeats) and AFLPs (amplified

fragment length polymorphisms). The latest molecular markers developed

include SNPs (single nucleotide polymorphisms) and SFPs (single feature

polymorphisms).

Physical map: chromosome map of a species that shows the specific physical

locations of its genes and/or markers on each chromosome.

Polonies: short for polymerase colonies, these are clonally identical DNA

molecules attached to either a single bead or a localized region on a solid

support. Polonies can be generated using techniques that include solid-phase

PCR in polyacrylamide gels by bridge amplification. They are also referred to

as clusters.

Quantitative trait locus (QTL): a region of DNA associated with a particular

phenotypic trait. A trait can be controlled by many genes, each having only a

small effect, or by a few genes with large effect. QTLs can be used to identify

candidate genes underlying a trait.

Reference genome sequences: ideally referred to as genome-wide sequence

data obtained by BAC-by-BAC clone sequencing and/or whole genome

shotgun sequencing. These sequences give the physical framework of the

genome of a particular individual. In cases for which prior genomic information

is not available for the species being studied, transcript sequence data

(transcript assembly) or BAC-end sequence data or genome sequences of

phylogenetically related species can be considered as the reference genome

for analyzing NGS data.

TILLING (and EcoTILLING): targeting-induced local lesions in genomes

(TILLING) is a reverse genetic method that searches the genomes of

mutagenized organisms for mutations in a chosen gene with PCR-based

screening of the genes of interest. By comparing the phenotypes of isogenic

genotypes differing in single sequence motifs, TILLING provides direct proof of

function of both induced and natural polymorphisms without the use of

transgenic modifications. A variation of this technique (EcoTILLING) can

be used to determine the extent of natural variation in selected genes in

crops. EcoTILLING is a cost-effective approach for haplotyping and SNP

discovery.
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the potential for significant improvements in the precision
and efficiency for predicting phenotypes from genotypes.
This review article discusses the concept and potential
implications of NGS technologies for crop genetics and
breeding.

NGS technologies
Sanger dideoxy sequencing [18] and its modifications [22–

24] dominated the DNA sequencing field for nearly 30
years and in the past 10 years the length of Sanger
sequence reads has increased from 450 bases to more than
1 kb.

The limitations of Sanger sequencing are: (i) the neces-
sity to separate elongation products by size before scan-
ning, requiring one capillary or gel lane per sample; and (ii)
the need to produce clonal populations of DNA using
Escherichia coli, which is labor-, robotics- and space-inten-
sive for large-scale operations. The latter requirement
could potentially be reduced by using PCR-based methods
(although currently E. coli cloning is still used for whole-
genome sequencing projects). Individual reaction costs can
be reduced by performing the sequencing reactions in
reduced reaction volumes [25], but the fundamental
restrictions on reducing the cost of Sanger sequencing
are at their technological limits.

With advances made in the fields of microfluidics, nano-
technology and informatics, alternative technologies to
increase the rapidity and/or throughput of DNA sequen-
cing have recently emerged. The term NGS is used to
collectively describe technologies other than Sanger
sequencing that have the potential to sequence the human
genome in coming years for US$1000 [26] and such tech-
nologies are either already commercially available or in
development [27,28]. Commercially available NGS tech-
nologies such as Roche/454 (http://www.454.com/), Solexa/
Illumina (http://www.illumina.com/) and AB SOLiD
(http://www3.appliedbiosystems.com/AB_Home/applica-
tionstechnologies/SOLiDSystemSequencing/index.htm)
have already demonstrated the potential to circumvent the
limiting factors of Sanger sequencing. For example,
sequencing can be multiplexed to a much greater extent
by many parallel reactions at a greatly reduced cost [19].
Themethodology and key features of the NGS technologies
are presented in Box 1.

Currently, Roche/454, Solexa and AB SOLiD are the
technologies that are predominantly used in crop genetics
and breeding applications. Although Roche/454 is superior
to Solexa and AB SOLiD in terms of obtaining longer
sequence reads, maximum data output is higher for both
Solexa and AB SOLiD [21,29]. In terms of costs per run or
sequence data generation, Roche/454 is more expensive
than either the Solexa or AB SOLiD technologies. All the
technologies can be used in the different applications dis-
cussed in later sections of the article.

Bioinformatics tools for analyzing NGS data
Sequence reads generated from NGS technologies are
shorter than traditional Sanger sequences, which makes
assembly and analysis of NGS data challenging. In
addition to short DNA sequence reads, these technologies
can generate terabyte-sized data files with each instru-
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Box 1. Key features of NGS technologies

Amplification-dependent DNA sequencing methods

Roche/454-sequencing is based on polony sequencing and pyrose-

quencing. The release of pyrophosphate produces light due to

cleavage of oxyluciferin by luciferase [66–68]. This method has

significant advantages over Sanger sequencing because it requires

no electrophoresis step to separate extension products and base

incorporation can be detected in real time. The precision of Roche/454

sequencing technology in handling homopolymers (short stretches of

the same contiguous nucleotides) suffers in comparison with other

NGS technologies.

Illumina/Solexa sequencing is similar to the Sanger-based methods

because it uses terminator nucleotides incorporated by a DNA

polymerase. However, Solexa terminators are reversible, allowing

continuation of polymerization after fluorophore detection and deacti-

vation. With this technology, sheared DNA fragments are immobilized

on a solid surface (flow cell channel) and solid-phase amplification is

performed. The DNA sequence is determined by synthesis using

reversible terminator chemistry and four-channel fluorescent scanning.

Unlike Roche/454 sequencing, Solexa has no problems in sequencing

homopolymeric regions, but has shorter reads; however, the accuracy

is comparable to or better than that of Roche/454 and the output is

significantly increased. For each base position sequenced, the Solexa

platform requires incorporation, imaging and cleavage of the reversible

terminators, thus limiting the read length of Solexa sequences. Owing

to the short reads, de novo genome sequencing for large plant

genomes is problematic because of the difficulty of accurately

assembling shorter reads. However, if a nearly identical genome or

reference genome sequence is available, this can be used to assemble

and/or align individual sequence reads.

AB SOLiD technology is sequencing by oligonucleotide ligation and

detection (SOLiD), also known as supported oligonucleotide detec-

tion. It depends on ligation-based chemistry with di-base labeled

probes and uses minimal starting material. Sequences are obtained

by measuring serial ligation of an oligonucleotide to the sequencing

primer by a DNA ligase enzyme.

Amplification-independent (single molecule) sequencing methods

Single molecule sequencing (SMS) technology is based on sequencing

a single DNA molecule, which can significantly increase the through-

put [29]. Apart from the commercially available tSMS (true SMS)

launched by Helicos Biosciences (http://www.helicosbio.com/), SMS

development is underway at several academic laboratories and

companies such as Biotage (http://www.biotage.com/), Li-COR Bios-

ciences (http://www.licor.com/), Nanogen (http://www.nanagen.com/),

Network Biosystems (http://www.networkbiosystems.com/) and Visi-

Gen Biotechnologies Inc. (http://visigenbio.com/). Pacific Biosciences

(http://www.pacificbiosciences.com/) has recently reported real-time

sequencing [69]. It is noteworthy that all NGS technologies are

constantly improving, with the goal to reduce error rates and to

increase the sequence read length and read number.
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ment run, greatly increasing the computer resource
requirements of sequencing laboratories. Although several
bioinformatics tools and algorithms are currently available
(Box 2), efforts are underway to improve the accuracy of
alignment of NGS data in several laboratories (e.g. [30]).
Most of these technologies include software packages that
Box 2. Important bioinformatics tools for analysis of NGS data

Alignment, assembly and visualization tools

Velvet (http://www.ebi.ac.uk/~zerbino/velvet/): tool for de novo

assembly of short and paired reads [70].

EULER (http://euler-assembler.ucsd.edu/portal/): tool to generate

short-read assembly and facilitate assembly of combined reads of

NGS and Sanger sequencing [71].

GMAP (http://www.gene.com/share/gmap/): program to map and

align cDNA sequences to genome sequence using minimal time and

memory, facilitates batch processing [72].

MOSAIK (http://bioinformatics.bc.edu/marthlab/Mosaik): tool for

pairwise alignment of NGS data to reference sequences.

RMAP (http://rulai.cshl.edu/rmap/): tool to align short reads to a

reference genome [30].

SHARCGS (http://sharcgs.molgen.mpg.de/): tool for de novo as-

sembly of short reads [73].

SOAP (http://soap.genomics.org.cn/): program for gapped and

ungapped alignment of short reads to reference sequences, facilitates

single or pair-end resequencing, smRNA discovery and mRNA tag

sequence mapping [74].

VCAKE (https://sourceforge.net/projects/vcake): tool for de novo

assembly of short reads with robust error detection [75].

Zoom (http://www.bioinformaticssolutions.com/products/zoom/in-

dex.php): tool to map millions of short reads to reference genomes

and carry out post-analysis [76].

EagleView (http://bioinformatics.bc.edu/marthlab/EagleView): dis-

play tool for visually inspecting the quality of genome assembly and

validating polymorphism candidate sites [77].

JMP1 Genomics (http://www.jmp.com/software/genomics/): tool

for NGS data visualization and statistical analysis from SAS.

Sequence variant discovery tools

SNPsniffer (http://bioinformatics.bc.edu/marthlab/Polymorphism_

Discovery_in_Next-Generation_Sequence_Data): tool for SNP discov-

ery specifically designed for Roche/454 sequences.
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accommodate limited assembly and analyses. However,
because NGS technologies are particularly suited for rese-
quencing for single nucleotide polymorphism (SNP) and
variation discovery, the software available is biased
toward this application. Other applications have been
developed, such as the web-based cyber infrastructure
Atlas-SNP (http://code.google.com/p/atlas-snp/): tool for SNP and

indel discovery from genome resequencing using NGS technologies

[78].

SeqMap (http://biogibbs.stanford.edu/~jiangh/SeqMap/): tool to

map short sequences to a reference genome and detect multiple

substitutions and indels [79].

ssahaSNP (http://www.sanger.ac.uk/Software/analysis/ssahaSNP/):

tool to detect homozygous SNPs and indels.

Integrated tools

AlpheusTM (http://alpheus.ncgr.org/): web-based cyber infrastructure

platform for pipelining, visualization and analysis of gigabase-scale

NGS data and internet-accessible software for variant discovery and

isoform identification [31].

MAQ (http://maq.sourceforge.net/): program for mapping and

assembly of short reads. It can also report SNPs and indels using a

simple assembly visualizer (Maqview) [80].

NextGENeTM (http://www.softgenetics.com/NextGENe.html): soft-

ware to analyze NGS data for de novo assembly, SNP and indel

detection and transcriptome analysis.

SeqMan genome analyzer (http://www.dnastar.com/products/

SMGA.php): software with capacity to align NGS and Sanger data

and detect SNPs; also facilitates visualization.

CLCbio Genomics Workbench (http://www.clcbio.com): tool for de

novo and reference assembly of Sanger and NGS sequence data, SNP

detection and browsing.

PanGEA (http://www.kofler.or.at/Bioinformatics/PanGEA/

index.html): tool to map NGS data to whole genomes, with SNP

detection and display capabilities [81].
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Figure 1. Overview of NGS applications in crop genetics and breeding. NGS technologies have several potential applications in crop genetics and breeding, including the

generation of genomic resources, marker development and QTL mapping, wide crosses and alien gene introgression, expression analysis, association genetics and

population biology, as shown here. For instance, sequencing of genomic DNA including bacterial artificial chromosomes (BACs), reduced representation of genome (RRG)

or cDNA from the reference genotypes using NGS technologies can provide genomic resources such as ESTs, gene space and genome assembly. These resources have a

direct impact on understanding the genome architecture for crop genetics. Another application of NGS is in parental genotyping of mapping populations or of wild

relatives, which can accelerate the development of molecular markers, e.g. simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) markers. These

markers can be used to construct genetic maps, to identify QTLs and to monitor alien genome introgression in the case of wide crosses. These QTL-associated markers for a

trait of interest can then be used in selecting progenies carrying favorable alleles via marker-assisted selection (MAS). To develop the functional or perfect gene-based

marker, NGS of cDNAs of contrasting genotypes for the trait of interest can be used to identify candidate genes involved in or associated with the trait. The expression

mapping of these candidate genes, together with phenotyping of the segregating populations developed from the contrasting genotypes, will provide expression QTLs

(eQTLs) and markers associated with these eQTLs should thus serve as the perfect markers for MAS in crop breeding. Another important application of NGS is in

association genetics or population biology, where either genomes or pools of PCR products of thousands of candidate genes can be sequenced in hundreds of individuals

using barcodes. The sequence data obtained could then be used to identify SNPs or haplotypes across genes or genomes for use in association genetics and/or population

biology.
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platform Alpheus (http://alpheus.ncgr.org/) [31], which is
useful for pipelining, visualization and analysis of giga-
base-scale sequence data for identification of SNPs and
expression analysis. However, there is still a need for the
development of improved bioinformatics tools, pipelines or
platforms to facilitate sequence analysis of NGS data in an
efficient, reliable and user-friendly manner.

Applications of NGS technologies
NGS technologies have already been used for a variety of
applications, such as developing SNP-based markers in a
number of plant species both where a reference genome is
available (Arabidopsis [32] and Medicago [33]) and where
it is not (maize [34] and Eucalyptus [35]). Where reference
genome sequences are not available, NGS technologies can
be used for draft sequencing via other methods, including
pools of bacterial artificial chromosomes (BACs) clones,
that can facilitate quick genome assembly, as shown for
barley [36]. Interestingly, NGS technologies are proving
useful for rapid and efficient development of genomic
resources for minor or so-called orphan crop species [37].
NGS technologies are also fast becoming the method of
choice for gene expression analysis, particularly for species
for which reference genome sequences are already avail-
able [32,33]. Efforts are also underway to use NGS tech-
nologies for association mapping, wide crosses and alien
introgression, epigenetic modifications and population
biology. An overview of NGS applications that are relevant
to crop genetics and breeding is shown in Figure 1 and
some important applications are detailed in the following
sections.

Genome variation and molecular markers for marker-

assisted selection

Finding and exploiting the DNA sequence variation within
a genome is of utmost importance for crop genetics and
breeding. Genetic variation can be assayed using a variety
of molecular markers. Once molecular markers have been
linked to a trait of interest, these markers can be used to
select desired lines from a large-scale population through
marker-assisted selection (MAS), which saves both costs
and time. Furthermore, the availability of gene and tran-
script sequence data in the public domain [38] has made it
possible to develop molecular markers from genes, which
have been designated genic molecular markers (GMMs)
[39] or functional markers [40]. The development and
525
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Table 1. Applications of NGS technologies in plant genetics and breeding

Species Details Refs

Arabidopsis Among 541 852 ESTs generated through pyrosequencing, 16 000 were novel.

This study suggested that two runs were sufficient to detect 90% of all

transcripts and found �9687 novel ESTs. Gene expression studies

(digital northerns) obtained from sequence analysis were comparable

with earlier studies on microarrays

[32]

Arabidopsis Solexa sequencing of natural variants of three Arabidopsis accessions yielded 120

million–173 million reads that were aligned to a Arabidopsis reference genome

sequence. Solexa sequence analysis yielded 823 325 unique SNPs.

[42]

Barley 574 Mbp of Solexa sequences were generated and used to generate a mathematically

defined repeat index to identify and mark repetitive regions and putative gene spaces

[82]

Chickpea Transcriptome assembly derived from Solexa tags of root tissues of a drought-tolerant

(ICC 4958) and a drought-sensitive (ICC 1882) genotype yielded 5.2 and 3.6 million

sequence reads, respectively and �500 SNPs could be identified

(http://www.intl-pag.org/16/abstracts/PAG16_P05f_385.html). This study

demonstrated the usefulness of NGS for less-characterized species

Eucalyptus Assembly of 148 Mbp of Roche/454 ESTs obtained for multiple genotypes

was aligned and 23 742 SNPs were found in uncharacterized, less-studied

species such as Eucalyptus

[35]

Maize Roche/454 sequencing generated 261 000 ESTs from shoot apical meristem,

of which 30% were novel; �400 unique ESTs were also identified,

for which 27 genes were validated using RT-PCR

[83]

Maize Transcriptomes of shoot apical meristem from two inbred lines, B73 (260,000 ESTs)

and Mo 17 (280,000 ESTs): >7000 SNPs found, 85% of which were successfully

validated by Sanger sequencing

[34]

Medicago Generated 292 465 ESTs comprising 184 599 unique sequences; �20% novel sequences

and 400 SSRs could be identified

[33]

Pinus Sequencing of the plastome of Pinus assemblies to estimate �88–94% of the complete

chloroplast genome

[61]

Wheat Roche/454 ESTs for two hexaploid wheat lines generated an assembly of 11 700 and

8700 contigs, which were compared with sequences for ancestors of polyploid wheat;

2500 contig assemblies were assigned to one of the homeologous wheat genomes and

�1000 SNPs were found (http://www.intl-pag.org/17/abstracts/P03e_PAGXVII_144.html).

The study demonstrates that NGS could be utilized for SNP discovery in polyploidy crops
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application of such GMMs is gaining momentum because
their discovery is inexpensive and putative functions can
often be deduced by homology searches. Because these
markers represent functional units, they are useful for
assaying functional diversity in natural populations or
germplasm collections and are valuable anchor markers
for comparative mapping, evolutionary studies and for
MAS [1,8].

Trait mapping and the use of markers, at least for
selected traits, have become routine for major crop species,
including wheat, maize, rice and soybean. However, for the
majority of crop species, particularly less-studied crops
such as pearl millet, rye, pigeonpea, cowpea and chickpea,
sufficient molecular markers are not available for trait
mapping andMAS. NGSmethods for developingmolecular
markers forMAS in crop breeding can be effectively used in
two scenarios: (i) in major crop species for which genome,
gene space and/or transcriptome sequence data already
exist and (ii) in less-characterized species with no or lim-
ited genome resources [41], as discussed below.

Resequencing in well-characterized species In species
for which genome or EST sequence data are available,
genotypes of interest to breeders, such as parental
genotypes of mapping populations, can be sequenced by
NGS technologies and genome-wide markers can be
discovered using NGS sequence data, either from cDNA
populations or from genomic DNA of different genotypes
(obtained from entire genomes or a reduced representative
genome). The sequence data generated can then be aligned
526
to a reference genome (genome or transcriptome assembly)
so that variants between genotypes can be identified either
on a genome-wide scale or by comparison to the reference
genotype. For instance, generation of 15- to 25-fold Solexa
sequence data for theArabidopsis reference accession (Col-
0) and two divergent accessions (Bur-0 and Tsu-1) and
subsequent sequence alignment led to the identification of
823 325 unique SNPs and 79 961 unique 1–3-bp insertion/
deletion polymorphisms (indels) [42]. In cases for which
complete genome sequence data are not available,
alignment of shorter reads (obtained by Solexa or AB
SOLiD) with partial genome or transcriptome assembly
is challenging. However, several bioinformatics tools and
pipelines have recently been developed to address this
issue (Box 2). Some examples of the use of NGS for
marker discovery for constructing genetic maps and trait
mapping for MAS are given in Table 1.

De novo sequencing of crop species without reference

sequences Although NGS technologies are ideal for
resequencing, de novo sequencing can also be undertaken
using these sequencing technologies. Generation of a whole
genome sequence assembly by alignment of small sequence
fragments without the availability of a reference genome is
tedious, if not impossible, at present. However, more than
one genotype can be used to generate sequence data using
NGS technologies and alignment of these data can be
facilitated by: (i) genome or transcriptome sequence data
formodel ormajor crop species closely related to the species;
or (ii) whole transcriptome or reduced representative
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genome sequence data for the species of interest, generated
using Roche/454 sequence technology. Aligning sequence
data formore than twogenotypes fromasingle speciesusing
one of the above approaches provides confidence in
alignments of short sequences and the detection of
sequence variants. This approach has also been used for
marker discovery in some crop species. For instance, using
Roche/454 sequencing, 443 969 ESTs for chickpea and
495 286 ESTs for pigeonpea have been generated at
International Crops Research Institute for the Semi-Arid
Tropics (ICRISAT), India in collaboration with the J. Craig
Venter Institute (JCVI), USA. Furthermore, a collaborative
project among ICRISAT, NCGR and UC-Davis (USA) has
been instigated to align Solexa sequence data generated for
parental genotypes of mapping populations of chickpea and
pigeonpea with the transcript assemblies defined based on
above-mentioned-Roche/454 tags to identify SNPs between
parental genotypesofmappingpopulations.TheSNPs could
then be used to develop markers in these marker-deficient
crops for trait mapping for MAS. Several other examples of
marker discovery in other plant species are presented in
Table 1.

Association mapping using natural populations

Association mapping uses one of two approaches, candi-
date gene sequencing (CGS) or whole genome scanning
(WGS) of natural populations [43]. Population surveys for
haplotypes identified based on either CGS orWGS can take
advantage of past recombination events to identify trait–
marker relationships on the basis of linkage disequili-
brium (LD). NGS technology has the potential, although
not yet demonstrated in the form of publications, to accel-
erate both CGS- and WGS-based association mapping
approaches [44].

In general, CGS-based approaches involve Sanger
sequencing of PCR amplicons for selected candidate genes
across hundreds of genotypes of the natural population,
which is time-intensive and expensive. NGS approaches, in
particular Solexa approach, offer the possibility to
sequence pools of PCR amplicons for a larger number of
candidate genes generated for several hundred genotypes
of the natural population with the help of barcodes. Thus,
in a single Solexa run, sequence data (SNPs and haplo-
types) will be available for a larger number of candidate
genes in the natural population within a short time and at
considerably lower cost compared to Sanger sequencing.
By contrast, WGS approaches require the screening of
natural populations with a large set of genome-wide mar-
kers, which is not possible in many crop species. However,
as mentioned above, NGS technologies can facilitate the
rapid development of genome-wide markers [34,42] that
could be subsequently used for WGS approaches to associ-
ation mapping [44].

Wide crosses and alien introgression

The use of genes from wild crop relatives to improve crop
performance is well established, in particular for crops that
have a narrow genetic base [45]. The use of NGS for wild
germplasm is anticipated to have a profound affect because
additional molecular markers could be rapidly developed
on a genome-wide scale and help to target more narrowly
defined genome regions to trace introgression and selection
cycles. Sequence-based analysis of the genomes of related
germplasm would also reveal information regarding pat-
terns of LD and genome structure, which might make it
possible to determine the efficiency of a genome segment
introgression. For example, if a genome segment is within
a region of high LD, it is less likely to be broken up. Thus,
such a genomic drag might be relevant for genes with
deleterious effects that are carried together with the gene
of interest.

In allopolyploid crops, such as Brassica, cotton, tobacco
andwheat, SNP identification is challenging because SNPs
occurring between genomes have to be discriminated from
those present within a genome. For instance, in the paleo-
polyploid soybean, NGS was successfully used to locate
SNPs between several accessions and cultivars and the
sequenced reference genome (http://acs.confex.com/crops/
2008am/webprogram/Paper45068.html, P.B. Cregan,
personal communication). For SNP identification in poly-
ploid crop species, the use of NGS on low-complexity DNA,
e.g. restriction-digested DNA samples or cDNA, should be
the preferred approach. Although there are bioinformatics
analysis issues associated with the analysis of NGS data
from polyploid crops, it should be possible to distinguish
between duplicated genes (paralogs) in NGS data as
opposed to Sanger sequence data. For species without a
reference genome, this task is more difficult but not insur-
mountable because ESTs can be used in the first instance
as a reference for SNPs by assigning NGS reads to specific
paralogs computationally.

Expression and nucleotide polymorphisms in

transcriptomes

Sequence data from RNA samples can be used to detect
new RNA species or to measure levels of gene expression
and thus to determine the transcriptional state of different
cells or tissues [46,47]. Previous studies on high-through-
put analysis of the transcriptome relied on microarray
analysis and/or serial analysis of gene expression (SAGE),
whereas NGS technologies are now used routinely for
transcript profiling (Table 1). Unlike microarrays, NGS
technologies are not limited to sequenced genomes because
they generate tags independently of knowledge of gene
annotation, but have the disadvantage that they require
extensive sequencing and a reference genome to determine
gene identity. Indeed, in several model species such as
Arabidopsis [32], Helicobacter [48], salmon [49] and Cae-
norhabditis elegans [50], NGS was used to demonstrate
that deep coverage sequencing with an unbiased repres-
entation of transcripts, capturing several rare transcripts,
is important for gene discovery and gene expression
analysis [51,52].

Population genetics and evolutionary biology

Using NGS technologies, DNA from whole populations can
be sequenced rather than just from individuals, thus help-
ing to further our understanding of population genetics.
This is commonly referred to as metagenomics [53], a field
that is rapidly expanding because of the falling costs of
DNA sequencing. Indeed, identifying a species within a
given population by its highly conserved sequences, such as
527
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single-stranded rRNA, initiated the era of metagenomics
[54]. Metagenomics has been successful in furthering our
understanding of microbial populations and the com-
munity structure and composition of varied environmental
conditions, including deep seas [55,56], soil [57] and deep
mines [58]. NGS technologies can enhance the power of
metagenomic sequencing approaches to resolve rare
species [56,59]. It is anticipated that genome resequencing
using NGS technologies for species with reference genome
sequences will revolutionize the study of population-level
plant diversity [19]. One example of this approach in
plants is the 1001 genomes Arabidopsis project (http://
1001genomes.org/index.html), in which sequencing of
1001 accessions of the model plant Arabidopsis is being
undertaken using Solexa, Roche/454 and AB SOLiD tech-
nologies. The resulting information is expected to provide
genome-wide LD structures and haplotype data that might
have broad implications for evolutionary sciences and
plant breeding.

Organellar and genome-wide assembly

In the past, the genomes of organelles, such as chloroplasts
and mitochondria, were sequenced using Sanger technol-
ogy to study cytoplasmic inheritance. For instance, male
sterility genes, which are important for hybrid crops, are
present inmitochondria and therefore sequence analysis of
the mitochondrial genome could help to improve hybrid
crop production. NGS technologies have increased the
availability of organellar genomes, such as for mitochon-
dria [60] and chloroplasts [61], with further increases
anticipated in the near future.

The use of NGS technologies for de novo assembly of
whole genomes has been much anticipated [62]. However,
assembly of whole genomes of plant species from sequences
generated by NGS technologies is difficult because most
plant or crop genomes are large and full of repetitive DNA
sequences. The short reads inherent to NGS technologies
cannot be assembled using current informatics technology
because the repetitive sequences present are longer than
the reads and thus many or most reads cannot be unam-
biguously assigned, resulting in very short sequence scaf-
folds. Even for relatively simple genomes, such as bacteria
and Arabidopsis, NGS has not resulted in complete chro-
mosomal or even chromosomal-arm scaffolds. For instance,
to test the efficacy of NGS for BAC sequencing in barley (a
large and complex genome species), Wicker et al. [36]
compared Roche/454 sequencing with Sanger sequencing
for four BAC clones. They found that although Roche/454
sequencing covered all gene-containing regions efficiently,
the method exhibited problems in the sequencing of repeti-
tive DNA sequences. Thus, a combination of approaches is
being considered to sequence crop genomes using NGS
technologies to capitalize on cost savings. One approach
is to reduce the complexity of the genome by sequencing
BAC clones either from a pre-assembled physical map or in
the absence of a physical map. The idea is that BAC clones,
each of �100–150 kb, would be easier to assemble indivi-
dually than an entire genome. Cost-saving measures such
as BAC pooling, barcoding of clones and others are being
tested. Another approach is to combine NGS technologies
with some Sanger sequencing. Using paired ends of larger
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insert clones sequenced via Sanger, the rest of the genome
could theoretically be filled in by producing a massive
amount of NGS sequence data. This approach remains
largely untested at present, but considerable research
efforts are underway in several species, including pigeon-
pea and wheat, among others.

Epigenetic modifications

Epigenetics is the study of heritable gene regulation. Epi-
genetic changes do not involve theDNA sequence itself, but
modification by DNA methylation or post-translational
modification of histone tails, which are known to play a
key role in gene expression and in plant development
under stress. The DNA–protein interactions that underlie
this type of regulation of gene expression are frequently
determined by chromatin immunoprecipitation (ChIP).
The most prominent genomic approaches for analyzing
epigenetic changes have used ChIP followed by microarray
hybridization, the so-called ChIP-chip. More recently, NGS
technologies have replaced ChIP-chip with so-called ChIP
sequencing, which entails conventional ChIP followed by
direct sequencing. This method offers superior data com-
pared with ChIP-chip, with less noise and higher resol-
ution. ChIP sequencing is already well established for
human genome analysis [63], but only a few reports are
available for plant systems. For instance, in Arabidopsis
the cytosine methylome (methylC-seq), transcriptome
(mRNA-seq), and small RNA transcriptome (smRNA-
seq) were directly sequenced using Solexa technology,
which led to the generation of highly integrated epigenome
maps for wild-type Arabidopsis and for mutants defective
in either DNA methyltransferase or demethylase activity.
Moreover, previously undetected DNA methylations could
be identified at the single nucleotide level. Deep sequen-
cing of smRNAs also showed perturbation of smRNA bio-
genesis upon loss of CpG DNA, thereby establishing a
potential link between epigenetics and smRNA regulation
[64].

Prospects for crop improvement
As evident from the above examples, NGS can have sig-
nificant implications for crop genetics and breeding. The
development of large-scale genomic resources, including
transcript and sequence data, molecular markers and
genetic and physical maps, is significant, in addition to
other potential applications. Transcriptome and genome
sequencing (both resequencing and de novo) using NGS
technology is increasing for crop plants. The use of NGS
technologies has already led to a quantum leap in the
amount of genomic data available for crops for which not
many genomic resourceswere previously available, such as
chickpea and pigeonpea [37]. Moreover, the availability of
large numbers of genetic markers developed through NGS
technologies is facilitating trait mapping and making mar-
ker-assisted breeding more feasible. For instance, large-
scale development of molecular markers using NGS can
facilitate linkage mapping and WGS-based association
genetics that are of practical use for MAS in marker-
deficient crops. Metagenomics approaches and the sequen-
cing of pooled amplicons generated for a large number of
candidate genes across large populations offer possibilities
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to better understand population biology and to study gen-
ome-wide association genetics. Another important appli-
cation of NGS is in gene expression studies, for which NGS
has the potential to replace microarray experiments in the
near future; in contrast to other gene expression
approaches such as microarray and real-time PCR, NGS
technologies can provide insights into the spatial and
temporal control of gene expression owing to their ability
to identify all RNA transcripts produced at a specific time
[65].

Although the initial aim of NGS technologies was rese-
quencing, they are currently being used to explore de novo
genome sequencing in several crop species, including
wheat, pigeonpea and common bean. If the ongoing revolu-
tion in NGS technologies can reduce the cost for resequen-
cing the genome to only a few hundred US dollars, genome
sequencing/resequencing will not be limited to model plant
and major crop species and could be extended to parental
and progeny lines of mapping populations and of germ-
plasm lines currently present in different germplasm repo-
sitories. On one hand, genome-wide sequence data should
greatly facilitate our understanding of complex phenom-
ena, such as heterosis and epigenetics, which have implica-
tions for crop genetics and breeding. On the other hand,
these genomics data will also enable breeders to visualize
which fragment of a chromosome is derived from which
parent in the progeny line, thereby identifying clear cross-
over events occurring in every progeny line and placing
markers on genetic and physical maps without ambiguity.
Eventually, this will help in introducing specific chromo-
some regions from one cultivar to another. Therefore, it can
be anticipated that NGS technologies will be particularly
useful for developing and confirming introgression lines for
a trait of interest. In addition to facilitating genomics-
assisted breeding, NGS can also accelerate the develop-
ment of transformation technologies for crops because it
will become easier to modify genes with the increasing
availability of genomic data. Although large-scale NGS
data analysis remains a challenge at present, significant
progress is being made in improving existing tools and in
developing new approaches for this task.

In summary, we envisage an exponential increase in the
use of NGS technologies, not only for major crop species,
but also for so-called orphan crops. The results of these
efforts will have a profound impact on crop breeding.
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