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a b s t r a c t

Squares are strings of the form ww where w is any nonempty string. Main and Lorentz
proposed an O(n log n)-time algorithm for finding the positions of all squares in a string
of length n. Based on their result, we show how to find the positions of all squares in a
run-length encoded string in time O(N logN)where N is the number of runs in this string,
provided that we do not explicitly compute at all ‘‘trivial squares’’ occurring within runs.
The algorithm is optimal and its time complexity is independent of the length of the original
uncompressed string.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

A recent trend in stringology deals with string manipulations on compressed texts directly [17]. It is evident that data
compression can reduce space for storing data significantly in a computer. The ordinary approach inflates the compressed
data before using it, but this causes additional overheads on efficiency. However, data compression should not always be
harmful to efficiency. In many applications, strings can be manipulated directly in the compressed form. Since compressed
text usually uses less storage space, an algorithm for it is more efficient even if its time complexity takes the same order of
magnitude when compared with an algorithm for the original uncompressed text. As a result, efficiency for both time and
space is improved. In this paper, we consider a recognition problem on run-length encoded strings. We show how to locate
the positions of all squares in a run-length encoded string in time O(N logN) where N is the number of runs in the string,
provided that we do not explicitly compute at all ‘‘trivial squares’’ occurring within runs.
A square is an immediately repeated nonempty string, such as aa, abab, or xyzxyz. The interest in squares within strings

has attracted the attention of researchers in diverse fields for a long time. In 1906, Thue discussed the construction of
square-free infinite sequences [21]. In recent years, identifying occurrences of squares plays an important role in formal
language theory, data compression, and computational molecular biology [1,8]. For a string of length n, a straightforward
implementation would take O(n3)-time to find all squares within this string by inspecting all possible substrings. Adapting
KMP’s failure function [10], the time complexity can be reduced to O(n2) (for more details, see [5]).
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Table 1
Squares occurring within a run.

String ak for k ≥ 2
Squares a` for 2 ≤ ` ≤ k and even, i.e., ([`, k], `)
Example String a6

Squares Five a2s, three a4s, and one a6
(I, `) ([2, 6], 2), ([4, 6], 4), ([6, 6], 6)

We remark that the total number of occurrences of squares in an isΘ(n2), which indicates that an O(n2)-time algorithm
is optimal if one needs to enumerate one occurrence at a time. However, this observation does not block developing other
faster algorithms for this problem. Main and Lorentz first observed that many squares in a string are related [13,14]. These
related squares occur consecutively and all are with an equal length. Note that a square in a string can be uniquely specified
by its length and ending position. And thus, they can also be parameterized as a whole unit by listing the interval I of
their ending positions, together with the common length ` of every square, i.e., (I, `). See Table 1 for an example. Note
that, in Table 1, ([2, 6], 2) means that there are five squares of length two and their ending positions are 2, 3, . . ., and
6, respectively. Furthermore, two consecutive squares of the same length are not necessary to have the same pattern. For
example, in string babaaabaaa, ([9, 10], 8) contains squares abaaabaa and baaabaaa. As a consequence, it is possible to report
a family of squares in constant time. They then extended their previous algorithm for searching for one square [13] to an
algorithm for searching for all squares [14] in time O(n log n).
Different notions for representing squares have been developed. A square is called primitive if and only if it cannot be

expressed as wk for some string w and k > 2. Searching for all primitive squares can be done in O(n log n)-time [2,3,20],
which achieves the optimality in Fibonacci words [3]. A substring is called a maximal repetition if and only if its period is
increased while extending to either direction. Recall that the period of a stringw = a1a2 . . . an is the smallest integer p such
that ai = ai+p for all i, provided 1 ≤ i, i + p ≤ n. Maximal repetitions in a string can be identified in linear time under
different settings: ‘distinct’ in [19], ‘left-most’ in [16], and ‘all’ in [11]. We remark that the result of [11] also implies an
O(n+ S)-time algorithm to report all squares in a string, where S is the output size.
A seemingly much simpler problem is to determine if a string is square-free, which can be done in linear time [4,5,15].

A surprising fact is that a string of length n can have at most O(n) distinct squares and all of them can also be located in
O(n)-time [9]. Online detection of squares is also discussed in [12], with time complexity O(h log2 h) where h is the length
of the longest prefix that is square-free. Delacourt et al. [6] and Garcia et al. [7] gave algorithms for detecting repetitions on
multi-computers.
Run-length encoding uses a simple idea to compress strings. It divides a string into runs, each run consists of identical

letters, and then represents the string by consecutive pairs of the representative letter and the length of the corresponding
run. For example, the run-length encoded string of bdcccaaaaaa is b1d1c3a6. For more details, please see [18].
In this paper, inspired by [14], we show how to find the positions of all squares that use at least two distinct symbols

in a run-length encoded string in time O(N logN) where N is the number of runs in this string. Like Main and Lorentz’s
result in [14], squares compressed in run-length can also be grouped so that each group can be uniquely specified by two
parameters (I, `), i.e., an interval I of ending positions of squares together with the common length ` of every square. This
allows our algorithm to ‘report all squares’ in sub-quadratic time. As for trivial squares occurring within runs, our algorithm
simply reports their existence by mathematical expressions. Those squares can be trivially extracted by a supplementary
computation in time O(n). The time complexity of our result is optimal under the character-comparison model, and it is
independent of the length of the original uncompressed string. In Section 2, we briefly introduce Main and Lorentz’s idea in
[14] onhow to locate the positions of all squares in a string by applying the divide-and-conquer technique. It takesO(n log n)-
time where n is the length of the string. Then, we modify their algorithm and propose an O(N logN)-time algorithm for
run-length encoded strings in Section 3.

2. Main and Lorentz’s idea

Main and Lorentz in [14] applied divide-and-conquer to locate the positions of all squares in a string. Suppose that a
string x is divided into two nonempty strings u and v. Ifww is a square of x, then clearly eitherww occurs in u or in v, or as
the concatenation of a suffix of u and a prefix of v. Therefore, if we can handle the last case well, squares in u and v can be
found recursively by applying divide-and-conquer. More precisely, let

square(uv) = square(u) ∪ square(v) ∪ cross(u, v) for u, v nonempty; (1)
square(y) = ∅ if |y| ≤ 1. (2)

Here square(x) is the locations of all squares occurring in x and cross(u, v) records squares such that each one starts
in u and ends in v. Clearly, we have to adjust the locations of squares in square(u), square(v), and cross(u, v) when
combining their results to obtain square(uv). In order to evaluate cross(u, v) efficiently, we need the following arrays:

• LP(v, j): the length of the longest substring of v that starts at position j (for 2 ≤ j ≤ |v|) and matches a prefix of v;
• LS(u, v, j): the length of the longest substring of v that ends at position j (for 1 ≤ j ≤ |v|) and matches a suffix of u.
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(a) LP(v, 5) = 2. (b) LS(u, v, 4) = 3.

(c) A square with length 8 (boxed)
ending at position 5 of v.

(d) A square with length 8 (boxed)
ending at position 6 of v.

Fig. 1. An illustration for identifying squares in uv in Example 1 where u = baba and v = aabaaa are separated by a vertical dashed line.

Both arrays LP and LS can be computed in time O(|uv|) by using the algorithms in [14,16], which are similar to the
preprocessing procedure for the KMP algorithm described in [10]. The following lemma gives the algorithmic condition
for detecting squares in cross(u, v)whose center is at v by using arrays LP and LS.

Lemma 1 (Repetition Lemma, [14]). Let j and k be integers with 1 ≤ j ≤ |v| and j ≤ k < 2j. There is a square of length 2j in uv
ending at position k of v if and only if 2j− LS(u, v, j) ≤ k ≤ j+ LP(v, j+ 1).

The meaning of Lemma 1 can be understood by observing the following fact. The condition LS(u, v, j)+ LP(v, j+ 1) ≥ j for
some position j in v implies that a prefix of length LP(v, j+1) in v connects to a suffix of length LS(u, v, j) ending at position
j. Furthermore, there are

min{LP(v, j+ 1), j− 1} + LS(u, v, j)− j+ 1 (3)

squares ending at consecutive positions of vwith length 2j. Recall that those squares can be reported by showing the interval
of their ending positions and their common length, namely

([|u| + 2j− LS(u, v, j), |u| + j+min {LP(v, j+ 1), j− 1}] , 2j) . (4)

Symmetrically, reversing string uv, squares centered at u can also be computed inO(|uv|)-time. Thus, according to the above
discussion, cross(u, v) can be implemented in O(|uv|)-time.

Example 1. Consider u = baba and v = a
1
a
2
b
3
a
4
a
5
a
6
. Let j = 4. Then, LP(v, 5) = 2 (in Fig. 1(a)) and LS(u, v, 4) = 3

(in Fig. 1(b)). Two squares (LS(u, v, 4) + LP(v, 5) − j + 1 = 2) of uv with length 8 ending at positions 5 and 6 (i.e.
2 × 4 − 3 = 5 ≤ k ≤ 6 = 4 + 2) in v are identified (see Fig. 1(c) and (d), respectively). This family of squares can be
specified by ([5, 6], 8). Clearly, it will be adjusted to ([9, 10], 8), i.e., by adding |u| to the two endpoints of interval [5, 6], in
order to obtain their corresponding positions in uv. This result can also be obtained from Eq. (4) by the above setting.

As for a string x of length n, the standard divide-and-conquer technique can be applied to identify all occurrences of
squares by breaking x into u and v with nearly equal length, as shown in Eqs. (1) and (2). Hence, the time complexity of
square(x) can be obtained by solving T (n) = T (b n2c) + T (d

n
2e) + O(n). Thus, square(x) takes O(n log n)-time to locate

the positions of all squares in x.

3. Coping with run-length encoding

Recall that in run-length encoding, a string x is represented by ar11 a
r2
2 . . . a

rN
N where ai and ai+1 are different symbols, for

1 ≤ i < N . When implementations are taken into consideration, a new symbol σ(ar) = (a, r) ∈ Σ×N replaces each run ar .
Thus, string x of N runs is represented by σ(x) = (a1, r1)(a2, r2) · · · (aN , rN). Conversely, given X = σ(x), define σ−(X) = x.
Our algorithm computes the positions of all squares of x from σ(x) and its time complexity is independent of the length of
each run. For X = σ(x), we denote (ai, ri) by X[i], i.e., the ith run, and call ai the base character of X[i] and ri the exponent of
X[i].
Next, we establish a correspondence of indices between x and σ(x). Define ρ : Σ∗×N→ Q, for indices of x to indices of

σ(x), as follows. Let Rk =
∑k
i=1 ri. If i indicates the sth character of run t in x, that is i = s+ Rt−1, then ρ(x, i) = t − 1+

s
rt
;

otherwise, leave ρ(x, i) undefined when i < 0 or i > |x|. We can also define the inverse of ρ, denoted by ρ−, from indices
of X ∈ (Σ × N)∗ to indices of x = σ−(X), as ρ−(X, i) = i′ if and only if there exists i′ such that ρ(x, i′) = i, and otherwise
leave ρ−(X, i) undefined.
Main and Lorentz’s algorithm cannot be applied directly to find all squares inside σ(x) because some squares aremissing

by using their algorithm. For example, let x = a2b3. Then, σ(x) = (a, 2)(b, 3) and no square can be found by usingMain and
Lorentz’s algorithm (since (a, 2) and (b, 3) are different symbols). However, it is easy to see that a2 and b2 are squares in x. The
situation may become more complicated when strings are more complex. For example, let σ(x) = (a, 2)(b, 3)(a, 1)(b, 5),
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(a) LP(V , 4) = 1 and TL(V , 4) = 2/3. (b) LS(U, V , 3) = 1 and HD(U, V , 3) = 1/3.
Fig. 2. An illustration of identifying squares in UV for j = 3 in Example 2 where U = (b, 1)(d, 4) and V = (a, 2)(b, 3)(d, 4)(a, 2)(b, 2) are separated by a
vertical dashed line.

then square a1b3a1b3 cannot be found. In the following paragraphs, we will show how to modify Main and Lorentz’s
algorithm so that the positions of all squares can still be found.
Observe that a square of x either occurs entirely within a run or overlaps with at least two consecutive runs (in the latter

case in fact it has to span at least four runs). All squares in the former case can be identified inO(N)-time as follows. There are
O(k2) squares in ak and their positions can be expressed as ([2, k], 2), ([4, k], 4), . . . , ([2× bk/2c, k], 2× bk/2c). Actually,
there is a more compact way to represent these positions, namely ([2t, k], 2t)|t=[1,bk/2c], in which we use another interval
to describe the range of t , namely t = [1, bk/2c]. Thus, these O(k2) positions can be implicitly expressed by a mathematical
expression in O(1) time. As for the latter case when the divide-and-conquer technique is applied on X , we only need to
handle the following situation.

D1: X = UV and neither U nor V is empty.
D2: We want to identify each square that overlaps both u = σ−(U) and v = σ−(V ). Let ww be such a square. Then, ww

can be further divided into three cases:
Case A: centered at the junction of u and v;
Case B: centered at v;
Case C: centered at u.

Let U = (u1, µ1)(u2, µ2) · · · (uP , µP) and V = (v1, ν1)(v2, ν2) · · · (vQ , νQ ). Since divide-and-conquer is always applied on
the boundary of runs, Condition D1 implies P,Q > 0 and uP is different from v1.
It is clear that LP(V , i) and LS(U, V , j) for 2 ≤ i ≤ Q and 1 ≤ j ≤ Q can be evaluated in time O(P + Q ) by

Main and Lorentz’s algorithm as described in Section 2. However, LP(V , i) might not be equal to ρ(v, LP(v, i′)) where
i′ = ρ−(V , i − 1) + 1. For example, let v = a2b2a2b3 and V = (a, 2)(b, 2)(a, 2)(b, 3). The fifth character in v is in the
third run of V , i.e., i′ = 5 and i = 3. Then, LP(v, i′) = LP(v, 5) = 4, i.e., the length of a2b2. However, LP(V , i) = LP(V , 3) = 1
which reveals only the prefix a2 of the actually matched a2b2 in LP(v, 5) and truncates the tail b2.
The insufficiency for LP and LS to determine squares in UV can be supplemented by two additional tables TL and HD

which are defined as follows. Let k1 = LP(V , i). If k1 ≤ Q − i, then by the definition of LP , we have V [1+k1] 6= V [i+k1]. Let
X[αi] = (vαi , ναi) = V [1+k1] and X[βi] = (vβi , νβi) = V [i+k1].When vαi is the same as vβi , let TL(V , i) bemin{ναi , νβi}/ναi .
In other cases, let TL(V , i) = 0. Then, it is not difficult to see that

LP(V , i)+ TL(V , i) = ρ(v, LP(v, i′)) where i′ = ρ−(V , i− 1)+ 1. (5)
Similarly, define HD(U, V , j) to compensate the truncated head of LS(u, v, j′) where j′ = ρ−(V , j) as follows. Let k2 =
LS(U, V , j). If k2 < min{P, j}, then by the definition of LS, we have U[P− k2] 6= V [j− k2]. Let X[γj] = (uγj , µγj) = U[P− k2]
and X[δj] = (vδj , νδj) = V [j − k2]. When uγj is the same as vδj , let HD(U, V , j) be min{µγj , νδj}/νδj and otherwise
HD(U, V , j) = 0. Then, it is not difficult to see that

j− LS(U, V , j)− HD(U, V , j) = ρ(v, j′ − LS(u, v, j′)) where j′ = ρ−(V , j). (6)

Example 2. Consider U = (b, 1)(d, 4) and V = (a, 2)
1
(b, 3)
2
(d, 4)
3
(a, 2)
4
(b, 2)
5
. Let j = 3 and i = j + 1 = 4. Then,

k1 = LP(V , 4) = 1, X[α4] = (vα4 , να4) = V [1+ k1] = V [2], and X[β4] = (vβ4 , νβ4) = V [i+ k1] = V [5]. Thus, TL(V , 4) =
min{να4 , νβ4}/να4 = min{ν2, ν5}/ν2 = min{3, 2}/3 = 2/3 (see Fig. 2(a)). We can also find that k2 = LS(U, V , 3) = 1,
X[γ3] = (uγ3 , µγ3) = U[P − k2] = U[2 − 1] = U[1], and X[δ3] = (vδ3 , νδ3) = V [j − k2] = V [3 − 1] = V [2]. Hence,
HD(U, V , 3) = min{µγ3 , νδ3}/νδ3 = min{µ1, ν2}/ν2 = min{1, 3}/3 = 1/3 (see Fig. 2(b)).
We have the analog of Lemma 1 for run-length encoded strings as follows.

Lemma 2. Let u and v be two nonempty strings overΣ such that the last character of u is different from the first character of v.
Let U = σ(u), V = σ(v), p = |u|, and q = |v|. Then, there exists a position j′ on v with 1 ≤ j′ ≤ q− 1 such that

LS(u, v, j′)+ LP(v, j′ + 1) ≥ j′, (7)
LS(u, v, j′) > 0 and LP(v, j′ + 1) > 0 (8)

if and only if there exists j = ρ(v, j′) such that

LS(U, V , j)+ HD(U, V , j)+ LP(V , j+ 1)+ TL(V , j+ 1) ≥ j, (9)
LS(U, V , j)+ HD(U, V , j) > 0 and LP(V , j+ 1)+ TL(V , j+ 1) > 0. (10)

Moreover, V [1 . . . j] = σ(v[1 . . . j′]) and V [j+ 1 . . .Q ] = σ(v[j′ + 1 . . . q]).
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Fig. 3. An illustration for the case where min{µP−k2 , νj−k2 } = µP−k2 and min{ν1+k1 , νj+1+k1 } = νj+1+k1 .

Fig. 4. A squareww of UV centered at V .

Proof. First, observe that Eq. (8) implies v[j′] = u[p] and v[j′ + 1] = v[1]. By the assumption that u[p] 6= v[1], we have
v[j′] 6= v[j′+1]. That is, v[j′] and v[j′+1] are on different runs. Since j = ρ(v, j′), we conclude thatV [1 . . . j] andV [j+1 . . .Q ]
are the run-length encoded strings of v[1 . . . j′] and v[j′ + 1 . . . q], respectively.
We then show that Eqs. (8) and (10) are equivalent. From the identity LP(V , j+1)+TL(V , j+1) = ρ(v, LP(v, j′+1)), we

establish that LP(v, j′+1) > 0 if and only if LP(V , j+1)+TL(V , j+1) > 0. From the identity j−LS(U, V , j)−HD(U, V , j) =
ρ(v, j′ − LS(u, v, j′)), we get that j′ − LS(u, v, j′) < j′ if and only if j− LS(U, V , j)− HD(U, V , j) < j, which is equivalent to
LS(u, v, j′) > 0 if and only if LS(U, V , j)+ HD(U, V , j) > 0.
Next, we prove the equivalence of Eqs. (7) and (9). Now assume Eq. (7) holds and LS(U, V , j) + LP(V , j + 1) < j

(otherwise Eq. (9) holds trivially). In this case, let k1 = LP(V , j + 1) and k2 = LS(U, V , j). Hence, X[αj+1] = V [1 + k1],
X[βj+1] = V [j+1+k1], X[γj] = U[P−k2], and X[δj] = V [j−k2]. Furthermore, X[αj+1] 6= X[βj+1] and X[γj] 6= X[δj]. Observe
that X[αj+1] and X[δj]must be the same run, otherwise LS(u, v, j′)+LP(v, j′+1) < j′. Therefore, LS(U, V , j)+LP(V , j+1) =
j − 1. The part which yet remains to be proved is HD(U, V , j) + TL(V , j + 1) ≥ 1. Note that X[γj] = (uP−k2 , µP−k2),
X[δj] = (vj−k2 , νj−k2), X[αj+1] = (v1+k1 , ν1+k1), and X[βj+1] = (vj+1+k1 , νj+1+k1). Since (v1+k1 , ν1+k1) and (vj−k2 , νj−k2) are
the same run, uP−k2 , v1+k1 , and vj+1+k1 are the same character. Summing HD and TL together yields

HD(U, V , j)+ TL(V , j+ 1) = min{µγj , νδj}/νδj +min{ναj+1 , νβj+1}/ναj+1
= min{µP−k2 , νj−k2}/νj−k2 +min{ν1+k1 , νj+1+k1}/ν1+k1
= (min{µP−k2 , νj−k2} +min{ν1+k1 , νj+1+k1})/ν1+k1
= (min{µP−k2 , ν1+k1} +min{ν1+k1 , νj+1+k1})/ν1+k1 . (11)

Now we prove that min{µP−k2 , ν1+k1} +min{ν1+k1 , νj+1+k1} ≥ ν1+k1 . If ν1+k1 ≤ µP−k2 or ν1+k1 ≤ νj+1+k1 , then the above
inequality holds directly. Thus, we only need to consider the case where ν1+k1 > µP−k2 and ν1+k1 > νj+1+k1 . Since Eq. (7)
holds, µP−k2 ≥ ν1+k1 − νj+1+k1 . Thus,

min{µP−k2 , ν1+k1} +min{ν1+k1 , νj+1+k1} = µP−k2 + νj+1+k1
≥ ν1+k1 − νj+1+k1 + νj+1+k1
= ν1+k1 . (12)

By combining Eqs. (11) and (12), therefore, HD(U, V , j)+ TL(V , j+ 1) ≥ 1 (see Fig. 3 for an illustration). The only-if part
is proved. Conversely, it follows similarly that Eq. (9) implies Eq. (7) and we omit the proof. Q.E.D.
Let us return to the discussion of Condition D2.We consider Case B. In Fig. 4, a squareww is divided into A1B1A2B2 where

A1 is a suffix of u, B1 is a prefix of v, A1 = A2, and B1 = B2. Main and Lorentz’s result (cf. Lemma 1) identifies the end point
of A2 (call it j′) such that Eqs. (7) and (8) in Lemma 2 hold. However, we have shown that Eqs. (7) and (8) are equivalent to
Eqs. (9) and (10). Therefore, we can replace the testing of Eqs. (7) and (8) by Eqs. (9) and (10). Hence, all squares in Case B
can also be identified. By reversing U and V , Case C can be handled similarly. That is, we can apply Lemma 2 to locate the
positions of all squares centered at UR and across V R and UR.
For example, let u = a3b2 and v = c2d2a2b2c2d3. We consider j′ = 8. Then, LS(u, v, 8) + LP(v, 9) = 4 + 4 ≥ 8 so that

Eqs. (7) and (8) hold for j′ = 8. As for Eqs. (9) and (10), let j = 4, and then

LS(U, V , 4)+ HD(U, V , 4)+ LP(V , 5)+ TL(V , 5) = 1+
2
2
+ 1+

2
2
≥ 4.

The following example shows how fractional values can occur in computation. Let u = a2b2 and v = a4b2a3. We consider
j′ = 6. From Eq. (7), we have LS(u, v, 6)+ LP(v, 7) = 4+ 3 = 7 ≥ 6. And from Eq. (9),

LS(U, V , 2)+ HD(U, V , 2)+ LP(V , 3)+ TL(V , 3) = 1+
2
4
+ 0+

3
4
≥ 2
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Fig. 5. Testing a square centered at the boundary of U and V .

also holds.
Case A requires to find a suffix of uwhich is also a prefix of v. This is equivalent to testing whether LS(u, v, j′) is equal to

j′ for some j′ with 1 ≤ j′ ≤ q. Again, testing whether LS(U, V , j) is equal to j for some 1 ≤ j ≤ Q is not enough. For example,
let U = (b, 3)(c, 5)(a, 2) and V = (b, 2)(c, 5)(a, 3). Then, LS(U, V , j) 6= j for j = 1, 2, 3. Lemma 3 gives the correct test.
Note that, in Lemma 3, we use U − U[i] to denote the run-length encoded string by removing U[i], i.e., the ith run, from U .

Lemma 3. Let U ′ = U − U[P] and V ′ = V − V [1]. There is a square centered at the boundary of u = σ−(U) and v = σ−(V ) if
and only if there exists j with 0 ≤ j ≤ min{P − 2,Q − 2} such that

1. LS(U ′, V ′, j) equals to j;
2. uP−1−j = v1, uP = v2+j, ν1 ≤ µP−1−j, and µ2 ≤ ν2+j.

Proof. (If-part) Let j satisfy LS(U ′, V ′, j) = j, uP−1−j = v1, uP = v2+j, ν1 ≤ µP−1−j, and µ2 ≤ ν2+j. See Fig. 5 for an
illustration. Then, σ−

(
(uP−1−j, ν1)U[P − j] . . .U[P]

)
is a suffix of u and σ−

(
V [1] . . . V [1+ j](v2+j, µP)

)
is a prefix of v, and

these two substrings are equal. Thus, this is a square centered at the boundary of u and v.

(Only-if-part) Suppose there is a square ww centered at the boundary of u and v. Since w is a suffix of u, we can always
expressw as σ−

(
(uP−1−j, `)U[P − j] . . .U[P]

)
for some jwith 0 ≤ j ≤ min{P−2,Q −2} and some `with 1 ≤ ` ≤ µP−1−j.

Similarly, w is a prefix of v, and thus, it can be expressed as σ−
(
V [1] . . . V [1+ j](v2+j, `)

)
for the same j and `. Therefore,

(uP−1−j, `)must equal to V [1], and thus, ν1 = ` ≤ µP−1−j and uP−1−j = v1. Similarly, uP = v2+j and µP ≤ ν2+j. Q.E.D.

We summarize the above discussion by Algorithm SQUARES. The initial call is triggered by applying SQUARES(X , 0,
N). Since Steps 5 and 6 are based on Lemmas 3 and 2, respectively, we also used the terms defined in these two lemmas.
Furthermore, for clarity, the positions of all squares are still expressed as their original positions in an uncompressed string.

Algorithm SQUARES(X ′, f , K )

Input: A run-length encoded substring X ′ = (a′1, r
′

1)(a
′

2, r
′

2) · · · (a
′

K , r
′

K ) of X . Note that σ
−(X ′) occurs at the position f + 1 of σ−(X).

Output: The positions of all squares of σ−(X ′)with respect to σ−(X).
begin

Step 1. If there are less than four runs in X ′ ,
then for each run X ′[i] = (a′i, r

′

i ) in X
′ with r ′i > 1,

output ([f + 2k, f + r ′i ], 2k)|k=[1,br ′i /2c] and return.
Step 2. Break X ′ evenly into U and V such that X ′ = UV .

Let R0 = 0. For i = 1 to K do Ri = Ri−1 + r ′i .
Step 3. SQUARES(U , f , |U|).
Step 4. SQUARES(V , f + R|U| , |V |).
Step 5. // Find the positions of all squares centered at the junction of U and V.

For j = 0, 1, . . . ,min{P − 2,Q − 2},
if LS(U ′, V ′, j) = j, uP−1−j = v1 , uP = v2+j , ν1 ≤ µP−1−j , and µ2 ≤ ν2+j ,
then output ([f + k, f + k], 2(k− R|U|))where k = R|U|+j+1 + µP .

Step 6. // Find the positions of all squares centered at V and overlapping U.
For j = 1, 2, . . . ,Q ,
Substep 6.1. Compute LS(U, V , j) for 2 ≤ j ≤ Q − 1 and LP(V , i) for 3 ≤ i ≤ Q .
Substep 6.2. Based on the above two arrays, compute HD(U, V , j) and TL(V , i).
Substep 6.3. If LS(U, V , j)+ HD(U, V , j) > 0, LP(V , j+ 1)+ TL(V , j+ 1) > 0,

and LS(U, V , j)+ HD(U, V , j)+ LP(V , j+ 1)+ TL(V , j+ 1) ≥ j, then
output

([
f + R|U| + j′ + ρ−(V , j− t2), f + R|U| + j′ +min{ρ−(V , t1), j′ − 1}

]
, 2j′

)
where j′ = ρ−(V , j), t1 = LP(V , j+ 1)+ TL(V , j+ 1),
and t2 = LS(U, V , j)+ HD(U, V , j).

Step 7. Reverse U and V . Then, by using a similar process as Step 6, we can find the
positions of all squares centered at U and overlapping V .

end

Theorem 1. The positions of all squares occurring in a run-length encoded string with N runs can be reported in O(N logN)-time
by using Algorithm SQUARES if one does not explicitly compute at all trivial squares occurring within runs.

Proof. The correctness of this algorithm is described as below. A square occurring in X ′ = UV can only fall into one of
the cases: (1) within a run; (2) entirely in U or V ; (3) overlapping with U and V . Squares in the first case are handled by
Step 1 of this algorithm. Squares in the second case are recursively reported in Steps 3 and 4. Squares in the third case are
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considered in Steps 5, 6, and 7. By Lemmas 2 and 3, the positions of all squares in the third case are also reported. This
proves the correctness of Algorithm SQUARES. We remark that the formula for the output of Substep 6.3 can be derived
from Eqs. (4)–(6).
The time complexity is analyzed. Step 1 of Algorithm SQUARES takes O(1)-time. Step 2 can be done in O(N)-time. Let

T (N) be the time-complexity for solving SQUARES(X). Therefore, each of Steps 3 and 4 needs T (N/2) time. By using the
algorithms in [14,16], both arrays LP and LS can be computed in time O(|UV |). Thus, arrays HD and TL can also be computed
in time O(N) after LP and LS are obtained. Thus, Steps 5, 6, and 7 can be done in time O(N). Therefore, the time complexity
of Algorithm SQUARES can be obtained by solving T (N) = T (bN2 c) + T (d

N
2 e) + O(N), which is O(N logN). The optimality

also comes from Main and Lorentz’s result: assume that all characters in the alphabet can only be distinguished by doing
character comparisons. This completes the proof. Q.E.D.

4. Conclusion

Main and Lorentz [14] developed an O(n log n)-time algorithm to locate all occurrences of squares in a string over an
unbounded alphabet. In this paper,we successfully applied their idea to run-length encoded strings, and obtained an optimal
algorithm in time O(N logN) where N is the number of runs in a string, provided that we do not explicitly compute at all
trivial squares occurring within runs. The time complexity is independent of the lengths of runs, and thus it is beneficial
especially when many characters in a string are duplicate in a consecutive way. It is known that all distinct squares can be
identified in O(n)-time [9]. However, we do not know whether all distinct squares in a run-length encoded string can still
be reported in O(N)-time.
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