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a b s t r a c t

Squares are strings of the form ww where w is any nonempty string. Two squares ww and
w′w′ are of different types if and only if w ≠ w′. Fraenkel and Simpson [Avieri S. Fraenkel,
Jamie Simpson, How many squares can a string contain? Journal of Combinatorial Theory,
Series A 82 (1998) 112–120] proved that the number of square types contained in a string
of length n is bounded by O(n). The set of all different square types contained in a string
is called the vocabulary of the string. If a square can be obtained by a series of successive
right-rotations from another square, then we say the latter covers the former. A square is
called a c-square if no square with a smaller index can cover it and it is not a trivial square.
The set containing all c-squares is called the covering set. Note that every string has a unique
covering set. Furthermore, the vocabulary of the covering set are called c-vocabulary. In this
paper, we prove that the cardinality of c-vocabulary in a string is less than 14

3 N , where N
is the number of runs in this string.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Let x = x1x2 · · · xn be a string of length n and xi ∈ Σ where Σ is the alphabet with constant number of symbols. A square
ww is an immediately repeated nonempty string w, such as ‘‘aa’’, ‘‘abab’’, or ‘‘xyzxyz’’. An occurrence of square ww in string
x can be indicated by (p, 2|w|) where p and 2|w| are the starting position and the length, respectively, of this square. Thus,
(p, 2|w|) is called the occurrence form of the indicated square. For convenience, we use w1 and w2 to represent the first and
the second occurrences of w in a square respectively. A straightforward implementation would take O(n3) time to find all
squares within a string by inspecting all possible substrings. Adapting KMP’s failure function [9], the time complexity can
be reduced to O(n2) (for more details, please see [1,2]). Note that the total number of occurrences of squares in an is θ(n2),
which implies that anO(n2)-time algorithm is optimal if one needs to enumerate all occurrences.Main and Lorentz observed
that many squares in a string are related [10–12]. As a consequence, it is possible to report a family of squares in constant
time. Accordingly, they extended their previous algorithm for searching for one square [10] to an algorithm for searching
for all squares [11] in O(n log n) time. Based on their results, Liu et al. proposed an algorithm for finding the positions of all
squares within a run-length encoded string in O(N logN) time where N is the number of runs in the string [8].

If ww is a square, we say w is its square type. Two squares ww and w′w′ are of different types if and only if w ≠ w′.
The set of all different square types contained in a string is called the vocabulary of the string. For example, the vocabularies
of the string ‘‘abaab

5
aaded

10
edbaa

15
baabd

20
edeaa

25
baaba

30
’’ are {‘‘abaaba’’, ‘‘baabaa’’, ‘‘aa’’, ‘‘dede’’, ‘‘eded’’, ‘‘aabaab’’}. Note that the

set of all square occurrences in the string is {(1, 6), (2, 6), (3, 2), (6, 2), (8, 4), (9, 4), (13, 6), (14, 2), (14, 6), (17, 2), (20, 4),
(24, 2), (24, 6), (25, 6), (27, 2)}. Fraenkel and Simpson proved that the number of vocabularies contained in a string of
length n is bounded by O(n) [4]. Ilie gave a very short proof of this bound [6] and improve this bound to 2n − Θ(log n) [7].
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Fig. 1. Two squares of the same length starting within the same run.

In 2004, Gusfield and Stoye [5] presented anO(n)-time algorithm for finding all vocabularies and anO(n+z)-time algorithm
for locating all square occurrences where z is the number of squares.

Let a ∈ Σ be a single letter and w ∈ Σ∗ a non-empty string. If two squares (p, 2|w1|) and (p + 1, 2|w2|) have the
same length, i.e., |w1| = |w2|, then (p + 1, 2|w2|) is called the right-rotation of (p, 2|w1|). Note that, assuming (p, 2|w1|)
is aw, thus (p + 1, 2|w2|) is wa. If (i, 2|w|), (i + 1, 2|w|), (i + 2, 2|w|), . . ., (j, 2|w|) are all squares, then we say that
(i, 2|w|) covers (j, 2|w|). A square (p, 2|w|) is called a c-square if no square (q, 2|w|) with q < p can cover it and (p, 2|w|)
is not a trivial square. This means that (p, 2|w|) ≠ a2|w|. The set containing all c-squares is called the covering set. Note
that every string has a unique covering set while a covering set may contain different occurrences having the same square
type. Furthermore, the different square types in the covering set are called c-vocabulary. The set containing all c-squares
of different square types is called the rc-set. In addition, if more than one c-square has the same square type, then only
the last occurrence is contained in the rc-set. Accordingly, an occurrence in the rc-set is called an rc-occurrence. In this
paper, we prove that the number of rc-occurrences in a string of N runs is less than 14

3 N . Furthermore, this result also
implies that the cardinality of the c-vocabulary is less than 14

3 N . For instance, in the previous example, the covering set
is {(1, 6), (8, 4), (13, 6), (20, 4), (24, 6)} and its corresponding c-vocabularies are {‘‘abaaba’’, ‘‘baabaa’’, ‘‘dede’’, ‘‘aabaab’’}.
Notice that square occurrences (2, 6), (9, 4), (14, 6), and (25, 6) can be covered by (1, 6), (8, 4), (13, 6), and (24, 6),
respectively, and (3, 2), (6, 2), (14, 2), (17, 2), (24, 2), and (27, 2) are all trivial squares. Furthermore, squares (8, 4) and
(20, 4) are c-squares and they form the same square type, i.e., dede. We use the last occurrence form (20, 4) to represent
the c-vocabulary dede. Hence, the rc-set is {(1, 6), (13, 6), (20, 4), (24, 6)}. Note that, an rc-occurrence is not necessarily the
last occurrence of square type in x. For instance, squares (1, 6) and (25, 6) are the same square type, i.e., abaaba. However,
(1, 6) is a c-square and (25, 6) is not since (24, 6) covers (25, 6). Thus, c-vocabulary abaaba is represented by (1, 6).

The remaining part of this paper is organized as follows. In Section 2, we introduce some properties of rc-occurrences.
Using these properties, the cardinality of c-vocabulary can be obtained in Section 3. Conclusions and open problems are
given in Section 4.

2. Some Properties of rc-occurrences

For a string x = x1x2 . . . xn where xi’s are letters, we use X = rℓ1
1 rℓ2

2 . . . rℓN
N to denote its corresponding run-length

encoded stringwhere ri are letterswith ri ≠ ri+1 and rℓi
i means a run of ℓi copies of the letter ri.We also use x[i..j] to represent

xixi+1 . . . xj, where 1 ⩽ i ⩽ j ⩽ n. Similarly, X[i,j] represents r
ℓi
i rℓi+1

i+1 . . . r
ℓj
j where i ≤ j ≤ N . Let |X[i,j]| = ℓi + ℓi+1 + · · · + ℓj.

It is clear that |X[1,N]| = n. For any substring S, r(S) denotes the number of runs in S. Thus, r(x) = N .
Lemma 1. If there exist two squares (i, 2|w1|) and (j, 2|w2|) starting within the same run, say rℓu

u , where i < j and |w1| = |w2|,
then (j, 2|w2|) must be covered by (i, 2|w1|).
Proof. Let m = i + |w1|, o = j + |w2|, p = i + 2|w1|, and q = j + 2|w2| (see Fig. 1 for an illustration). Since (i, 2|w1|) and
(j, 2|w2|) are squares, x[i,j−1] = x[m,o−1] = x[p,q−1] and x[j,m−1] = x[o,p−1]. Assume that ru = a and let k = |x[i,j−1]| = j − i.
Therefore, square (i, 2|w1|) is akx[j,p−1] and (j, 2|w2|) is x[j,p−1]ak, for k > 0. It is clear that (j, 2|w2|) can be covered by
(i, 2|w1|). �

Lemma 2. If two distinct rc-occurrences (i, 2|w1|) and (j, 2|w2|) with i < j and |w1| > |w2| start within the same run, say rℓu
u ,

then j + 2|w2| − 1 > |X[1,u]| + |w1|.
Proof. Let r be the ending position of w2

2 , i.e., r = j + 2|w2| − 1. Then, we have two cases to consider.
Case 1. r ≤ i + |w1| − 1 (see Fig. 2(a) and (b)).
There exists another square say (d, 2|w2|) for d > j, which appears within w2

1 since w1
1 = w2

1 . Thus, (d, 2|w2|) is not a
c-square and can be covered by (d − 1, 2|w2|) since (j, 2|w2|) is an rc-occurrence. However, this implies that (j − 1, 2|w2|)
covers (j, 2|w2|). This contradicts the assumption that (j, 2|w2|) is an rc-occurrence.

Case 2. i + |w1| ≤ r ≤ |X[1,u]| + |w1| (see Fig. 2(c) and (d)).
This means that xj−1 = xj+|w2|−1 = xr . Thus, square (j, 2|w2|) can be covered by (j− 1, 2|w2|) after a right-rotation. This

establishes the lemma. �

Lemma 3. If two distinct rc-occurrences (i, 2|w1|) and (j, 2|w2|) with i < j and |w1| > |w2| start from the same run, say rℓu
u ,

then |X[1,u]| + |w2| + 1 < i + |w1| < |X[1,u]| + |w1| < j + 2|w2| − 1.
Proof. Let p and r be the starting and ending positions, respectively, of w2

2 , i.e. p = j + |w2| and r = j + 2|w2| − 1, and
let q = |X[1,u]| + |w2| + 1. By Lemma 2, r > |X[1,u]| + |w1|. Thus, the inequality for the last two terms holds. It is obvious
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Fig. 2. Two squares starting at the same run with different lengths.

that the inequality holds for the second and the third terms. Therefore, we only need to consider the possible positions of
the first term, namely q, in the inequality. If q ≥ |X[1,u]| + |w1| + 1, we would have, by the definition of q that |w2| > |w1|

contradicting the assumptions of the lemma, so we have q < |X[1,u]| + |w1| + 1. Hence, i + |w1| ≤ q ≤ |X[1,u]| + |w1| (see
Fig. 2(f)–(i)). In this case, xq and xq−1 are located in the same run. This implies that x|X[1,u]| = x|X[1,u]|+1, a contradiction.

Therefore, if there exist two rc-occurrences (i, 2|w1|) and (j, 2|w2|) starting at the same run with i < j and |w1| > |w2|,
then q < i + |w1| < |X[1,u]| + |w1| < r (see Fig. 2(e)). �

We know that a run may have more than two rc-occurrences. In the following lemma, we describe a property between
two rc-occurrences in the same run.

Lemma 4. For any rc-occurrence (i, 2|w1|), there is at most one rc-occurrence (j, 2|w2|) starting within the same run, say rℓu
u ,

with i < j and |w1| > |w2|.

Proof. Assume on the contrary that there exist another two rc-occurrences, say (j, 2|w2|) and (k, 2|w3|), such that |w3| <
|w1|, |w2| < |w1|, and |X[1,u−1]| < i < j < k ≤ |X[1,u]|. Note that the above inequalities and Lemma 3 imply that both w1

2
and w1

3 are substrings of w1
1 . We consider the following three cases.

Case 1. |w2| = |w3|.
By Lemma 1, (k, 2|w3|) must be covered by (j, 2|w2|). Thus, this case is impossible.

Case 2. |w2| > |w3|.
Since w1

3 is a substring of w1
2 which is a substring of w1

1 by Lemma 3, w3 is also a substring of both w2
2 and w2

1 . We use
w3B and w3C to denote the instances of w3 appearing in w2

2 and w2
1 , respectively, and w2

3 is denoted by w3A (see Fig. 3(a) for
an illustration).

Let α = x[i..j − 1], β = x[j..k − 1], and γ = x[k..|X[1,u]|], where |α|, |β|, and |γ | are all larger than 0. We must have
|w1| < 2|w3| + α + β as otherwise square (k, 2|w3|) would appear later, contradicting the assumption that (k, 2|w3|) is
the last occurrence. Put w2 = βw3δ and assume that ru = a. We consider the following two subcases.

Subcase 2.1. |δ| ≤ |γ |.
In this case, δβ is a prefix ofw3. The overlap betweenw3A andw3B gives that δβ repeatedly appears as a prefix ofw3 until

the last one only contains a prefix of δβ . Therefore, w3 can be represented as (δβ)q(δβ)′ where y′ denotes some prefix of y.
Since ru = a, w3 = ah, for some integer h. However, x|X[1,u]| ≠ x|X[1,u]|+1 and the statement ‘‘w3 = ah’’ is a contradiction.

Subcase 2.2. |δ| > |γ |.
Let δ = γ τ , where the first letter of τ is not equal to a. The overlap betweenw3A andw3B gives thatw3 = (γ τβ)q(γ τβ)′.

Since w3 = w3A, w3A = (γ τβ)q(γ τβ)′. The overlap between w2
1 and w3A starts at αβγ τ . It implies that |τ | > |α|, τ = τ ′α,

and the last |α| letters of τ are a|α|. With square (j, 2|w2|) = βw3γ τ ′αβw3γ τ ′α which can be found through (i, 2|w2|) after
|α| right-rotations, a contradiction occurs.
Case 3. |w2| < |w3|.

Let w2 = βw′′

2 , where y′′ denotes some suffix of y. Since w′′

2 is a substring of w1
3 and w2 is a substring of w1

1 , we use
w′′

2B and w2C to denote the instances of w′′

2 and w2 appearing in w2
3 and w2

1 , respectively, and w2
2 also expressed as w2A (see

Fig. 3(b) for an illustration).
Let α = x[i..j − 1], β = x[j..k − 1], and γ = x[k..|X[1,u]|], where |α|, |β|, and |γ | are all larger than 0. We must have

|w1| < 2|w2| + α as otherwise square (j, 2|w2|) would appear later. It contradicts that (j, 2|w2|) is the last occurrence. Put
w3 = w′′

2βδ. We consider the following two subcases.



4238 J.J. Liu / Theoretical Computer Science 411 (2010) 4235–4241

(a) |w2| > |w3|.

(b) |w2| < |w3|.

Fig. 3. Three squares start at the same run.

Fig. 4. Two squares start at the same run with different lengths.

Subcase 3.1. |δ| ≤ |γ |.
In this case, βδ is a prefix of w2. The overlap between w2A and w′′

2B gives that δ repeatedly appears in w3 until the last
one only contains a prefix of δ. Therefore, w3 can be represented as β(δ)q(δ)′. This implies that w3 = ah for some integer h.
Since x|X[1,u]| ≠ x|X[1,u]|+1, the statement ‘‘w3 = ah’’ is a contradiction.

Subcase 3.2. |δ| > |γ |.
Let δ = γ τ , where the first letter of τ is not equal to a. The overlap between w2A and w′′

2B gives that w2 = β(γ τ)q(γ τ)′.
Since w2 = w2A, w2A = β(γ τ)q(γ τ)′. The overlap between w2

1 and w2A starts at αβγ τ . This implies that |τ | > |α| + |β|,
τ = τ ′αβ , and the last |α| + |β| letters of τ are a|α|+|β|. With square (k, 2|w3|) = w′′

2βγ τ ′αβw′′

2βγ τ ′αβ which can be
found through (i, 2|w3|) after |α| + |β| right-rotations, a contradiction occurs. Therefore, the lemma follows. �

Now, we discuss the properties of two rc-occurrences (i, 2|w1|) and (j, 2|w2|) starting within the same run, for j < i and
|w1| > |w2|.

Lemma 5. If there exist two rc-occurrences (i, 2|w1|) and (j, 2|w2|) starting within the same run, say rℓu
u , where j < i and

|w1| > |w2|, then |X[1,u]| + |w2| < i + |w1| − 1.

Proof. Let ru = a. Clearly, if |X[1,u]|+ |w2| ≥ i+|w1|− 1 (see Fig. 4(a) and (b)), then the last i− j letters of w1 are ai−j. Thus,
square (i, 2|w1|) can be found through (j, 2|w1|) after i − j right-rotations, a contradiction. �

For convenience, if there exist two rc-occurrences (i, 2|w1|) and (j, 2|w2|) starting within the same run, say rℓu
u , where

j < i and |w1| > |w2|, then we say that (i, 2|w1|) backwardly dominates (j, 2|w2|), denoted as (i, 2|w1|)
b
≻ (j, 2|w2|). Now,

we prove the following auxiliary lemma.

Lemma 6. Let Γ be the substring x[|X[1,u−1]| + 1..im + 2|wm| − 1] and γ = r(Γ ). If there exist m rc-occurrences in Γ such

that (im, 2|wm|)
b
≻ (im−1, 2|wm−1|) · · ·

b
≻ (i1, 2|w1|), where i1, i2, . . . , and im are all within the same run rℓu

u and m ≥ 1, then
γ ≥ 3m + 1.
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(a) (ih+1, 2|wh+1|)
b
≻ (ih, 2|wh|) in Case 1. (b) (ih+1, 2|wh+1|)

b
≻ (ih, 2|wh|) in Case 2.

(c) (ih+1, 2|wh+1|)
b
≻ (ih, 2|wh|) in Case 3. (d) (ih+1, 2|wh+1|)

b
≻ (ih, 2|wh|) in Case 4.

(e) (ih+1, 2|wh+1|)
b
≻ (ih, 2|wh|) in Case 5.

Fig. 5. Two consecutive rc-occurrences (ih+1, 2|wh+1|)
b
≻ (ih, 2|wh|).

Proof. Let w1
j (respectively, w2

j ) denote the first (respectively, second) occurrence of wj in (ij, 2|wj|), for j = 1, 2, . . . ,m.
Let γj stand for the smallest possible value of γ , i.e., γ ≥ γj, while m = j. If this statement γm ≥ 3m + 1 is true, then
this lemma follows. We prove this statement by induction on m. If m = 1 then Γ contains a run of the form rku , at least
one run in x[X[1,u−1] + 1..i1 + w1], a copy of the suffix of rℓu

u in x[i1 + w1 + 1..X[1,u]] and at least one more run in the rest
of Γ . Thus γ1 = 4 ≥ 3m + 1. For m > 1, assume that γh ≥ 3h + 1. Thus, we consider two consecutive rc-occurrences

(ih+1, 2|wh+1|)
b
≻ (ih, 2|wh|), where 1 ≤ h < m. Let p = |X[1,u]| + |wh| + 1, q = ih + 2|wh| − 1, and ru = a. In addition, S[1]

denotes the first letter in string S. Thus, all the possible situations are formalized as follows :
Case 1: p < ih+1 + |wh+1| < |X[1,u]| + |wh+1| < q (see Fig. 5(a) for illustration)

Let α1 = x[ih..ih+1 − 1] and α2 = x[ih+1..|X[1,u]|]. Then, in this case, the rc-occurrence (ih+1, 2|wh+1|) is of the form
(α2Aα2Bα1α2A)2 and (ih, 2|wh|) is (α1α2Aα2B)2, where A ∈ Σ∗, B = (Aα2)

hC, h ≥ 0, C is a prefix of Aα2, and
A[1] ≠ a. Thus, γh+1 ≥ γh + 3 ≥ 3(h + 1) + 1.
Case 2: p < ih+1 + |wh+1| < |X[1,u]| + |wh+1| = q (see Fig. 5(b) for illustration)

In this case, the rc-occurrence (ih+1, 2|wh+1|) is of the form (α2Aα2α1α2A)2 and (ih, 2|wh|) is (α1α2Aα2)
2, where

A ∈ Σ∗ and A[1] ≠ a. Thus, γh+1 ≥ γh + 3 ≥ 3(h + 1) + 1.
Case 3: p < ih+1 + |wh+1| < q < |X[1,u]| + |wh+1| (see Fig. 5(c) for illustration)

In this case, the rc-occurrence (ih+1, 2|wh+1|) is of the form (α2Aα3α1α2A)2 and (ih, 2|wh|) is (α1α2Aα3)
2, where

A ∈ Σ∗, A[1] ≠ a, and |α3| < |α2|. Thus, γh+1 ≥ γh + 3 ≥ 3(h + 1) + 1.
Case 4: q = ih+1 + |wh+1| − 1 (see Fig. 5(d) for illustration)

In this case, the rc-occurrence (ih+1, 2|wh+1|) is of the form (α2Aα1α2A)2 and (ih, 2|wh|) is (α1α2A)2, where A ∈ Σ∗

and A[1] ≠ a. Thus, γh+1 ≥ γh + 3 ≥ 3(h + 1) + 1.
Case 5: q < ih+1 + |wh+1| − 1 (see Fig. 5(e) for illustration)

In this case, the rc-occurrence (ih+1, 2|wh+1|) is of the form (α2Aα1α2AB)2 and (ih, 2|wh|) is (α1α2A)2, where A ∈ Σ∗

and A[1] ≠ a. Thus, γh+1 ≥ γh + 3 ≥ 3(h + 1) + 1.
According to the above results, we can obtain that γh+1 ≥ γh +3 ≥ 3(h+1)+1 for h = 1, 2, . . . ,m−1, and this lemma

holds. �
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3. The number of rc-occurrences

In this section, we prove that the number of rc-occurrences in a string of N runs is less than 14
3 N . Let S be a substring of

x[i..j]. We use IR(S) to represent the set of the rc-occurrences in S and use |IR(S)| to denote the number of rc-occurrences
in S. Given an rc-occurrence t = (u, 2|w|), IR(t) can be separated into ‘‘cross rc-occurrences’’ and ‘‘right rc-occurrences’’.
The right rc-occurrence (c, 2|d|) means the set of rc-occurrences in the second occurrence of w, i.e., (c, 2|d|) ∈ IR(w2). An
rc-occurrence (c, 2|d|) is called a cross rc-occurrence of t if u < c < u + |w| < c + 2|d| < u + 2|w|. Let cross(t) denote
the set of cross rc-occurrences (c, 2|d|) of t . We also use |cross(t)| to denote the number of cross rc-occurrences in t . Hence,
|IR(t)| = |cross(t)| + |IR(w2)|.
Theorem 1 ([8]). Suppose that a string x of length n is partitioned into two nonempty strings u of length p and v of length q,
where p + q = n and up ≠ v1. The number of c-squares in x such that each one starts in u and ends in v is less than or equal to
r(x).
Proof. We say that a square starting in u and ending in v is a cross square in x. In [8], cross squares in x can be grouped
so that each group can be uniquely specified by two parameters (I, ℓ), i.e., and interval I of starting positions of squares
together with the common length ℓ of every square. For instance, let u = ‘‘daabc ’’ and v = ‘‘bcbaabcbcba’’. Squares
{(2, 7), (3, 7), (4, 2), (5, 2)} are cross squares in x and those can be grouped by ([15, 16], 7) and ([7, 8], 2). Since the number
of groupswith respect to u and v is bounded by r(x) and each group can be obtained in constant time, all groupswith respect
to u and v can be calculated by O(r(x)). However, each group has just one c-square, i.e., the first square in this group. Thus,
one sees easily that the number of c-squares in x such that each one starts in u and ends in v is less than or equal to r(x). �

Let t = w1w2 be a nontrivial square, aℓ1
1 aℓ2

2 . . . aℓM
M be its corresponding run-length encoded string, and |w1| = |w2| = m.

From Theorem 1, we know that if w1
m ≠ w2

1 , then the number of c-squares in t such that each one starts in w1 and ends in
w2 is less than or equal to r(t). On the other hand, if w1

m = w2
1 , then it implies that w1

m and w2
1 are within the same run,

say ru. Let ρ (respectively, ρ1 and ρ2) denote the set of c-squares in t such that each one starts in w1 (respectively, T[1,u−1]
and T[1,u]) and ends in w2 (respectively, T[u,M] and T[u+1,M]). Since each c-square of t is either in ρ1 or in ρ2, ρ ⊆ (ρ1 ∪ ρ2).
Since the number of c-squares in ρ1 (respectively, ρ2) is less than or equal to r(t), the number of c-squares in ρ is less than
or equal to 2r(t). By definition, rc-set is a subset of c-vocabulary. Therefore, we have proven the following lemma.
Lemma 7. Let t = w1w2 be a nontrivial square. The number of c-squares that starts in w1 and finishes in w2 is at most 2r(t).

Now, we are at a position to mention the number of rc-occurrences in a string.
Theorem 2. For any string x of N runs, |IR(x)| < 14

3 N.
Proof. Let λt denote a string of t runs, for 1 ≤ t ≤ N . We prove this theorem by induction on t . If t = 1, string λt is trivial,
i.e., λt = ak for some integer k where a ∈ Σ . Thus, |IR(λt)| = 0. For t ≥ 2, assume that |IR(λt)| ≤

14
3 t is true. Now, we

consider the number of rc-occurrences in λt+1.
Let λt+1 = ru · λt , where ru is a newly added run (see Fig. 6). If there is no rc-occurrence starting within ru, then

|IR(λt+1)| = |IR(λt)| ≤
14
3 t . On the other hand, if there are m rc-occurrences starting within ru, then let us denote the

longest one by T1 = (i1, 2|w1|). Let r(T1) = γ , γ ≤ t + 1. The overlap between w1
1 and ru is denoted by α, thus, w1

1 = αw′.
In addition, λt can be partitioned into w′ and λt − w′. Thus, r(λt − w′) ≤ t −

1
2γ . By the property of Lemma 4, there is at

most one rc-occurrence (j, 2|w|) starting within the same run ru, with i1 < j and |w1| > |w|. Then, assume that there exist
m rc-occurrences begin at j ≤ i1 (included T1). So, by Lemma 6, γ ≥ 3m + 1 and som ≤ (γ − 1)/3. Therefore,

|IR(λt+1)| ≤ m + 1 + |cross(T1)| + |IR(λt − w′)|

≤
1
3
(γ − 1) + 1 + |cross(T1)| + |IR(λt − w′)| (by Lemma 6)

≤
1
3
(γ + 2) + 2γ + |IR(λt − w′)| (by Lemma 7)

<
1
3
(γ + 2) + 2γ +

14
3


t −

1
2
γ


=

1
6
(2γ + 4 + 12γ + 28t − 14γ )

=
1
6
(28t + 4)

<
14
3

(t + 1).

By induction, since |IR(λt+1)| < 14
3 (t + 1), this theorem follows. �

Theorem 3. For any string x of N runs, the cardinality of c-vocabulary is less than 14
3 N.
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Fig. 6. An illustration for xt+1 .

Proof. By the definition of c-vocabulary, the cardinality of c-vocabulary is equal to the number of rc-occurrences. According
to Theorem 2, the number of rc-occurrences in a string of N runs is less than 14

3 N . Thus, this completes the proof. �

4. Concluding remarks

Fraenkel and Simpson proved that the number of vocabularies contained in a string of length n is bounded byO(n) [4]. Ilie
gave a very short proof of this bound [6]. Furthermore, Gusfield and Stoye [5] presented an O(n)-time algorithm for finding
out all vocabularies and an O(n + z)-time algorithm for locating all square occurrences where z is the number of squares.

A period of a string x is an integer p, 0 < p ≤ |x|, such that xi = xi+p for all i ∈ {1, 2, . . . , |x| − p}. Let p(x) denote the
size of the smaller period of x. We say that a string x is periodic if and only if p(x) ≤

|x|
2 . In [2], the authors defined that a run

in a string x is an interval [i..j] such that x[i..j] is a periodic and this period is not extendable to the left or the right of [i..j].
Comparing with the definition of c-square, a c-square (u, 2|p|) is in a run [u..v], where u + 2|p| ≤ v. The number of runs
in a string x is equal to the number of c-squares in a string x except a run [i..j] with x[i..j] = ak for some integer k. In [3],
the upper bound on the maximum number of runs in a string is 1.6n. Main [12] gave a linear-time algorithm for finding all
leftmost occurrences of runs.

In this paper, we find that all squares can be represented by c-vocabulary, and prove that the cardinality of c-vocabulary
is less than 14

3 N . Thus, it ensures the possibility for identifying all c-vocabulary in O(N) time. Accordingly, all squares in a
run-length encoded string (respectively, all leftmost occurrences of runs) can be reported inO(N+z), where z is the number
of squares (respectively, z is the number of runs). This is our future work.
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