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Abstract!

In this paper we survey the literature on the Black-Litterman model. This paper provides a complete
description of the model including full derivations from the underlying principles. The model is
derived both from Theil's Mixed Estimation model and from Bayes Theory. The various parameters of
the model are also considered, along with information on their computation or calibration. Further
consideration is given to several of the key papers, with worked examples illustrating the concepts.

Introduction

The Black-Litterman model was first published by Fischer Black and Robert Litterman of Goldman
Sachs in an internal Goldman Sachs Fixed Income document in 1990. Their paper was then published
in the Journal of Fixed Income in 1991. A longer and richer paper was published in 1992 in the
Financial Analysts Journal (FAJ). The latter article was then republished by FAJ in the mid 1990's.
Copies of the FAJ article are widely available on the Internet. It provides the rationale for the
methodology, and some information on the derivation, but does not show all the formulas or a full
derivation. It also includes a rather complex worked example based on the global equilibrium, see
Litterman (2003) for more details on the methods required to solve this problem. Unfortunately,
because of their merging the two problems, their results are difficult to reproduce.

The Black-Litterman model makes two significant contributions to the problem of asset allocation.
First, it provides an intuitive prior, the CAPM equilibrium market portfolio, as a starting point for
estimation of asset returns. Previous similar work started either with the uninformative uniform prior
distribution or with the global minimum variance portfolio. The latter method, described by Frost and
Savarino (1986), and Jorion (1986), took a shrinkage approach to improve the final asset allocation.
Neither of these methods has an intuitive connection back to the market,. The idea that one could use
'reverse optimization' to generate a stable distribution of returns from the CAPM market portfolio as a
starting point is a significant improvement to the process of return estimation.

Second, the Black-Litterman model provides a clear way to specify investors views and to blend the
investors views with prior information. The investor's views are allowed to be partial or complete, and
the views can span arbitrary and overlapping sets of assets. The model estimates expected excess
returns and covariances which can be used as input to an optimizer. Prior to their paper, nothing
similar had been published. The mixing process (Bayesian and non-Bayesian) had been studied, but
nobody had applied it to the problem of estimating returns. No research linked the process of
specifying views to the blending of the prior and the investors views. The Black-Litterman model
provides a quantitative framework for specifying the investor's views, and a clear way to combine those
investor's views with an intuitive prior to arrive at a new combined distribution.

When used as part of an asset allocation process, the Black-Litterman model leads to more stable and

1 The author gratefully acknowledges feedback and comments from Attilio Meucci and Boris Gnedenko.
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more diversified portfolios than plain mean-variance optimization. Unfortunately using this model
requires a broad variety of data, some of which may be hard to find.

First, the investor needs to identify their investable universe and find the market capitalization of each
asset class. Then, they need to identify a time series of returns for each asset class, and for the risk free
asset in order to compute a covariance matrix of excess returns. Often a proxy will be used for the asset
class, such as using a representative index, e.g. S&P 500 Index for US Domestic large cap equities.
The return on a short term sovereign bond, e.g US 13-week treasury bill, would suffice for most
United States investor's risk free rate.

Finding the market capitalization information for liquid asset classes might be a challenge for an
individual investor, but likely presents little obstacle for an institutional investor because of their access
to index information from the various providers. Given the limited availability of market capitalization
data for illiquid asset classes, e.g. real estate, private equity, commodities, even institutional investors
might have a difficult time piecing together adequate market capitalization information. Return data for
these same asset classes can also be complicated by delays and inconsistencies in reporting. Further
complicating the problem is the question of how to deal with hedge funds or absolute return managers.
The question of whether they should be considered a separate asset class is beyond the scope of this

paper.
Next, the investor needs to quantify their views so that they can be applied and new return estimates

computed. The views can be derived from quantitative or qualitative processes, and can be complete or
incomplete, or even conflicting.

Finally, the outputs from the model need to be fed into a portfolio optimizer to generate the efficient
frontier, and an efficient portfolio selected. Bevan and Winkelmann (1999) provide a description of
their asset allocation process (for international fixed income) and how they use the Black-Litterman
model within that process. This includes their approaches to calibrating the model and information on
how they compute the covariance matrices. Both Litterman, et al (2003) and Litterman and
Winkelmann (1998) provide details on the process used to compute covariance matrices at Goldman
Sachs.

The standard Black-Litterman model does not provide direct sensitivity of the prior to market factors
besides the asset returns. It is fairly simple to extend Black-Litterman to use a multi-factor model for
the prior distribution. Krishnan and Mains (2005) have provided extensions to the model which allow
adding additional cross asset class factors which are not priced in the market. Examples of such factors

are a recession, or credit, market factor. Their approach is general and could be applied to other factors
if desired.

Most of the Black-Litterman literature reports results using the closed form solution for unconstrained
optimization. They also tend to use non-extreme views in their examples. I believe this is done for
simplicity, but it is also a testament to the stability of the outputs of the Black-Litterman model that
useful results can be generated via this process. As part of a investment process, it is reasonable to
conclude that some constraints would be applied at least in terms of restricting short selling and
limiting concentration in asset classes. Lack of a budget constraint is also consistent with a Bayesian
investor who may not wish to be 100% invested in the market due to uncertainty about their beliefs in
the market. This is normally considered as part of a two step process, first compute the optimal
portfolio, and then determine position along the Capital Market Line.

For the ensuing discussion, we will describe the CAPM equilibrium distribution as the prior
distribution, and the investors views as the conditional distribution. This is consistent with the original

© Copyright 2009, Jay Walters 2

Electronic copy available at: http://ssrn.com/abstract=1314585



Black and Litterman (1992) paper. It also is consistent with our intuition about the outcome in the
absence of a conditional distribution (no views in Black-Litterman terminology.) This is the opposite
of the way most examples of Bayes Theorem are defined, they start with a non-statistical prior
distribution, and then add a sampled (statistical) distribution of new data as the conditional distribution.
The mixing model we will use, and our use of normal distributions, will bring us to the same outcome
independent of these choices.

The Reference Model

The reference model for returns is the base upon which the rest of Black-Litterman is built. It includes
the assumptions about which variables are random, and which are not. It also defines which parameters
are modeled, and which are not modeled. Most importantly, many authors of papers on the Black-
Litterman model use an alternative reference model, not the one which was initially specified in Black
and Litterman (1992), or He and Litterman (1999).

We start with normally distributed expected returns
(1) E(r)~N(u, )

The fundamental goal of the Black-Litterman model is to model these expected returns, which are
assumed to be normally distributed with mean p and variance X. Note that we will need both of these
values, the expected returns and covariance matrix later as inputs into a Mean-Variance optimization.

We define p, the mean return, as a random variable itself distributed as
p~N(m, 2,)

7 is our estimate of the mean and X, is the variance of our estimate from the mean return p. Another
way to view this simple linear relationship is shown in the formula below.

(2) =pu+e
Formula (2) may seem to be incorrect with « on the left hand side, however our estimate (m) varies
around the actual value (p) with a disturbance value (¢), so the formula is correctly specified.

¢ 1s normally distributed with mean 0 and variance X,. ¢ is assumed to be uncorrelated with p. We can
complete the reference model by defining %, as the variance of our estimate n. From formula (2) and
the assumption above that € and p are not correlated, then the formula to compute %, is

3) X=X+
Formula (3) tells us that the proper relationship between the variances is (X, > Z, Z;).

We can check the reference model at the boundary conditions to ensure that it is correct. In the absence
of estimation error, e.g. € = 0, then X, = . As our estimate gets worse, €.g. X, increases, then X,
increases as well.

The reference model for the Black-Litterman model expected return is

(4) E(r)~N(m, %))

A common misconception about the Black-Litterman reference model is that formula (1) is the
reference model, and that p is not random. We will address this model later, in the section entitled the

Alternate Reference Model. Many authors approach the problem from this point of view so we cannot
neglect it. When considering results from Black-Litterman implementations it is important to
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understand which reference model is being used in order to understand how the various parameters will
impact the results.

Computing the CAPM Equilibrium Returns

As previously discussed, the prior distribution for the Black-Litterman model is the estimated mean
excess return from the CAPM equilibrium. The process of computing the CAPM equilibrium excess
returns is straight forward.

CAPM is based on the concept that there is a linear relationship between risk (as measured by standard
deviation of returns) and return. Further, it requires returns to be normally distributed. This model is of
the form

(5) E(r)=r,+Br,+a
Where
¥, The risk free rate.

r.,.  The excess return of the market portfolio.
. . O-p
B A regression coefficient computed as B=p e

«  The residual, or asset specific (idiosyncratic) excess return.

Under the CAPM theory the idiosyncratic risk associated with an asset's a is uncorrelated with the a
from other assets and this risk can be reduced through diversification. Thus the investor is rewarded
for the systematic risk measured by [, but is not rewarded for taking idiosyncratic risk associated with
a.

The Two Fund Separation Theorem, closely related to CAPM theory states that all investors should
hold two assets, the CAPM market portfolio and the risk free asset. The line drawn in standard
deviation/return space between the risk free rate and the CAPM market portfolio is called the Capital
Market Line. Depending on their risk aversion all investors will hold a portfolio on this line, with an
arbitrary fraction of their wealth in the risky asset, and the remainder in the risk-free asset. All
investors share the same risky portfolio, the CAPM market portfolio. The CAPM market portfolio is
on the efficient frontier, and has the maximum Sharpe Ratio” of any portfolio on the efficient frontier.
All investors should hold a portfolio on this line, because they hold a mix of the risk free asset and the
market portfolio. Because all investors hold only the market portfolio for their portfolio of risky assets,
at equilibrium the market capitalizations of the various assets will determine their weights in the market
portfolio.

Since we are starting with the market portfolio, we will be starting with a set of weights which
naturally sum to 1. The market portfolio only includes risky assets, because by definition investors are
rewarded only for taking on systematic risk. In the CAPM model, the risk free asset with = 0 will not
be in the market portfolio.

We will constrain the problem by asserting that the covariance matrix of the returns, X, is known. In
practice, this covariance matrix is computed from historical return data. It could also be estimated,
however there are significant issues involved in estimating a consistent covariance matrix. There is a

2 The Sharpe Ratio is the excess return divided by the excess risk, or (E(r) — r7) / o.

© Copyright 2009, Jay Walters 4



rich body of research which claims that mean variance results are less sensitive to errors in estimating
the variance and that the population covariance is more stable over time than the returns, so relying on
historical covariance data should not introduce excessive model error. By computing it from actual
data we know that the resulting covariance matrix will be positive definite. It is possible when
estimating a covariance matrix to create one which is not positive definite, and thus not-realizable.

For the rest of this section, we will use a common notation, similar to that used in He and Litterman
(1999) for all the terms in the formulas. Note that this notation is different, and conflicts, with the
notation used in the section on Bayesian theory.

Here we derive the equations for 'reverse optimization' starting from the quadratic utility function
©  U=wI=(3)w Sw

Investors utility, this is the objective function during portfolio optimization.
Vector of weights invested in each asset

Vector of equilibrium excess returns for each asset

Risk aversion parameter of the market

Covariance matrix for the assets

Mg C

U is a concave function, so it will have a single global maxima. If we maximize the utility with no
constraints, there is a closed form solution. We find the exact solution by taking the first derivative of
(6) with respect to the weights (w) and setting it to 0.

U s55w=0
dw

Solving this for IT (the vector of excess returns) yields:
(7) II=0Zw

In order to use formula (7) we need to have a value for o , the risk aversion coefficient of the market.
Most of the authors specify the value of 6 that they used. Bevan and Winkelmann (1998) describe their
process of calibrating the returns to an average sharpe ratio based on their experience. For global fixed
income (their area of expertise) they use a sharpe ratio of 1.0. Black and Litterman (1992) use a Sharpe
ratio closer to 0.5 in the example in their paper.

We can find 6 by multiplying both sides of (7) by w' and replacing vector terms with scalar terms.
(E(r) — 1) = 80°

8) 8=(E(r)-r1)/0?
E(r) Total return on the market portfolio (E(r) = w'II + ry)

Iy Risk free rate
o’ Variance of the market portfolio (6= w'Zw)

As part of our analysis we must arrive at the terms on the right hand side of formula (8); E(r), r, and

o in order to calculate a value for . Once we have a value for 8, then we plug w, 8 and ¥ into formula
(7) and generate the set of equilibrium asset returns. Formula (7) is the closed form solution to the
reverse optimization problem for computing asset returns given an optimal mean-variance portfolio in
the absence of constraints. We can rearrange formula (7) to yield the formula for the closed form
calculation of the optimal portfolio weights in the absence of constraints.
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9) w=(sX)' 1T

If we feed I, 6, and X back into the formula (9), we can solve for the weights (w). If we instead used
historical excess returns rather than equilibrium excess returns, the results will be very sensitive to
changes in [1. With the Black-Litterman model, the weight vector is less sensitive to the reverse
optimized IT vector. This stability of the optimization process, is one of the strengths of the Black-
Litterman model.

Herold (2005) provides insights into how implied returns can be computed in the presence of simple
equality constraints such as the budget or full investment (Xw =1) constraint.

The only missing piece is the variance of our estimate of the mean. Looking back at the reference
model, we need Z,. Black and Litterman made the simplifying assumption that the structure of the
covariance matrix of the estimate is proportional to the covariance of the returns £. They created a
parameter, T, as the constant of proportionality. Given that assumption, X, = 1%, then the prior
distribution is:

(10) P(A)~N(IL, 1)

This is the prior distribution for the Black-Litterman model. It represents our estimate of the mean of
the distribution of excess returns.

Specifying the Views

This section will describe the process of specifying the investors views on the estimated mean excess
returns. We define the combination of the investors views as the conditional distribution. First, by
construction we will require each view to be unique and uncorrelated with the other views. This will
give the conditional distribution the property that the covariance matrix will be diagonal, with all off-
diagonal entries equal to 0. We constrain the problem this way in order to improve the stability of the
results and to simplify the problem. Estimating the covariances between views would be even more
complicated and error prone than estimating the view variances. Second, we will require views to be
fully invested, either the sum of weights in a view is zero (relative view) or is one (an absolute view).
We do not require a view on all assets. In addition it is actually possible for the views to conflict, the
mixing process will merge the views based on the confidence in the views and the confidence in the
prior.

We will represent the investors k views on n assets using the following matrices

- P, a kxn matrix of the asset weights within each view. For a relative view the sum of the
weights will be 0, for an absolute view the sum of the weights will be 1. Different authors
compute the various weights within the view differently, He and Litterman (1999) and Idzorek
(2005) use a market capitalization weighed scheme, whereas Satchell and Scowcroft (2000) use
an equal weighted scheme.

« Q, akx1 matrix of the returns for each view.

« Qa kxk matrix of the covariance of the views. Q is generally diagonal as the views are
required to be independent and uncorrelated. Q' is known as the confidence in the investor's
views. The i-th diagonal element of Q is represented as w;.

We do not require P to be invertible. Meucci (2006) describes a method of augmenting the matrices to
make the P matrix invertible while not changing the net results.
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Q is symmetric and zero on all non-diagonal elements, but may also be zero on the diagonal if the
investor is certain of a view. This means that Q may or may not be invertible. At a practical level we
can require that @ > 0 so that Q is invertible, but we will reformulate the problem so that € is not
required to be invertible.

As an example of how these matrices would be populated we will examine some investors views. Our
example will have four assets and two views. First, a relative view in which the investor believes that
Asset 1 will outperform Asset 3 by 2% with confidence. ®,. Second, an absolute view in which the
investor believes that Asset 2 will return 3% with confidence ®,. Note that the investor has no view on
Asset 4, and thus it's return should not be directly adjusted. These views are specified as follows:

=10 -1 0] ,H2] . g=[@n O
01 0 O 3 0 wy
Given this specification of the views we can formulate the conditional distribution mean and variance
in view space as
P(B|A) ~N(Q, Q)
and in asset space as
(11)  P(BJA) ~N(P'Q, [P'Q'P]Y)

Remember that P may not be invertible, and even if P is invertible [PTQ'P] is probably not invertible,
making this expression impossible to evaluate in practice. Luckily, to work with the Black-Litterman
model we don't need to evaluate formula (11). It is interesting to see how the views are projected into
the asset space.

Q, the variance of the views is inversely related to the investors confidence in the views, however the
basic Black-Litterman model does not provide an intuitive way to quantify this relationship. It is up to
the investor to compute the variance of the views Q.

There are several ways to calculate Q.
e Proportional to the variance of the prior
e Use a confidence interval
e Use the variance of residuals in a factor model

e Use Idzorek's method to specify the confidence along the weight dimension

Proportional to the Variance of the Prior

We can just assume that the variance of the views will be proportional to the variance of the asset
returns, just as the variance of the prior distribution is. Both He and Litterman (1999), and Meucci
(2006) use this method, though they use it differently. He and Litterman (1999) set the variance of the
views as follow:

w;=p(tZ)p" Vi=j

(12) w, =0 Vi#j

or

Q=diag(P(tX)P")
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This specification of the variance, or uncertainty, of the views essentially equally weights the investor's
views and the market equilibrium weights. By including t in the expression, the final solution becomes
independent of T as well. This seems to be the most common method used in the literature.

Meucci (2006) doesn't bother with the diagonalization at all, and just sets
1

=—P3P'
c

Q
He sets ¢ < 1, and one obvious choice for ¢ is T'.We will see later that this form of the variance of the
views lends itself to some simplifications of the Black-Litterman formulas.

Use a Confidence Interval

The investor can actually compute the variance of the view. This is most easily done by defining a
confidence interval around the estimated mean return, e.g. Asset 2 has an estimated 3% mean return
with the expectation it is 68% likely to be within the interval (2.0%,3.0%). Knowing that 68% of the
normal distribution falls within 1 standard deviation of the mean, allows us to translate this into a
variance of (0.010)?.

Here we are specifying our uncertainty in the estimate of the mean, we are not specifying the variance
of returns about the mean. This formulation of the variance of the view is consistent with using t << 1
because the scale of the uncertainty of the prior will be on the same order as the uncertainty in the
view. For example, the standard deviation above is 1.0%, and given 1 ~ 0.025 and a standard deviation
of the prior returns of 15%, this would lead to the weight on the view being 6x the weight on the prior.
If T was 1, the views would be weighted 225x more than the weight on the prior. Understanding the
interplay between the selection of T and the specification of the variance of the views is critical.

Use the Variance of Residuals from a Factor Model

If the investor is using a factor model to compute the views, they can use the variance of the residuals
from the model to drive the variance of the return estimates. The general expression for a factor model
of returns is:

(13) E(r):Z B, f,+e

Where
E(r) is the return of the asset
B is the factor loading for factor (i)
S is the return due to factor (i)
€ is an independent normally distributed residual

And the general expression for the variance of the return from a factor model is:
(14)  V(r)=BVr(F)B"+V ()

B is the factor loading matrix
F 1s the vector of returns due to the various factors

Given formula (13), and the assumption that € is independent and normally distributed, then we can
compute the variance of ¢ directly as part of the regression. While the regression might yield a full
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covariance matrix, the mixing model will be more robust if only the diagonal elements are used.

Beach and Orlov (2006) describe their work using GARCH style factor models to generate their views
for use with the Black-Litterman model. They generate the precision of the views using the GARCH
models.

Use Idzorek's Method

Idzorek (2005) describes a method for specifying the confidence in the view in terms of a percentage
move of the weights on the interval from 0% confidence to 100% confidence. We will look at
Idzorek's algorithm in the section on extensions.

The Estimation Model

The original Black-Litterman paper references Theil's Mixed Estimation model rather than a Bayesian
estimation model, though we can get similar results from both methodologies. I chose to start with
Theil's model because it is simpler and cleaner. I also work through the Bayesian version of the
derivations for completeness.

With either approach, we will be using the reference model to estimate the mean returns, not the
distribution of returns. This is important in understanding the values used for t and €, and for the
computations of the variance of the prior and posterior distributions of returns.

Another way to think of the estimation model and the reference model is that while the estimated return
1s more accurate the variance of the distribution does not change because we have more data. The
prototypical example of this would be to blend the distributions, P(A) ~ N(10%, 20%) and P(B|A) ~
N(12%, 20%). If we apply Bayes formula in a straightforward fashion, P(AB) ~ N(11%, 10%).
Clearly with financial data we did not really cut the variance of the return distribution in 'z just because
we have a slightly better estimate of the mean.

However, if the mean is the random variable, and not the distribution, then our result of P(A|B) ~
N(11%, 10%) makes sense. By blending these two estimates of the mean, we have an estimate of the
mean with much less uncertainty (less variance) than either of the estimates.

Theil's Mixed Estimation Model

Theil's mixed estimation model was created for the purpose of estimating parameters from a mixture of
complete prior data and partial conditional data. This is a good fit with our problem as it allows us to
express views on only a subset of the asset returns, there is no requirement to express views on all of
them. The views can also be expressed on a single asset, or on arbitrary combinations of the assets.
The views do not even need be consistent, the estimation model will take each into account based on
the investors confidence.

Theil's Mixed Estimation model starts from a linear model for the parameters to be estimated. We can
use formula (2) from our reference model as a starting point.

Our simple linear model is shown below:
(15) m=xB+tu

Where
m  is the n x 1 vector of CAPM equilibrium returns for the assets.
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x  is the n x n matrix I, which are the factor loadings for our model.

is the n x 1 vector of unknown means for the asset return process.

u is a n x n matrix of residuals from the regression where E(u)=0,V (u)=E (u'u)=®
and @ is non-singular.

=

The Black-Litterman model uses a very simple linear model, the expected return for each asset is
modeled by a single factor which has a coefficient of 1. Thus, x, is the identity matrix. Given that
and u are independent, and x is constant, then we can model the variance of & as:

Vim)=x'V(B)x+V (u)
Which can be simplified to:
(16) Vim)=2+®

This ties back to formula (3) in the reference model. The total variance of the estimated return is the
sum of the variance of the actual return process plus the variance of the estimate of the mean. We will
come back to this relation again later in the paper.

We will pragmatically compute X from historical data for the asset returns.

Next we consider some additional information which we would like to combine with the prior. This
information can be subjective views or can be derived from statistical data. We will also allow it to be
incomplete, meaning that we might not have an estimate for each asset return.

(17)  q=pB+v

Where

is the k x 1 vector of returns for the views.

is the k x n vector mapping the views onto the assets.

is the n x 1 vector of unknown means for the asset return process.

is a k x k matrix of of residuals from the regression where
E(v)=0;V(v)=E(v'v)=Q and Q is non-singular.

< ™ R

We can combine the prior and conditional information by writing:

Wk

Where the expected value of the residual is 0, and the expected value of the variance of the residual is

el s 8

We can then apply the generalized least squares procedure, which leads to estimating B as

SRR R

This can be rewritten without the matrix notation as

A

B+

u
\%

=F

-1

(18) B=[x’¢_1x+p'.Q_1p]71[x'¢_lTr+p'.Q_lq]
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For the Black-Litterman model which is a single factor per asset, we can drop x as it is the identity
matrix. If one wanted to use a multi-factor model for the equilibrium, then x would be the equilibrium
factor loading matrix.

(19) [%=[¢71+p'Qilp]_l[GP*lTH—p'Q*lq

This new B is the weighted average of the estimates, where the weighting factor is the inverse of the
variance of the estimate. It is also the best linear unbiased estimate given the data, and has the property
that it minimizes the variance of the residual. Note that given anew J , we also should have an
updated expectation for the variance of the residual.

If we were using a factor model for the prior, then we would keep x the factor weightings in the
formulas. This would give us a multi-factor model, where all the factors will be priced into the
equilibrium.

We can reformulate our combined relationship in terms of our estimate of B and a new residual #

M

Once again E(i1)=0 |, so we can derive the expression for the variance of the new residual as:

B+ii

-1

20)  V(w)=E(u'#)=[¢"+p Q' p]
and the total variance is
vily mh=vB)+via)

We began this section by asserting that the variance of the return process is a known quantity derived
from historical estimates. Improved estimation of the quantity B does not change our estimate of the
variance of the return distribution, X. Because of our improved estimate, we do expect that the
variance of the estimate (residual) has decreased, thus the total variance has changed.. We can simplify
the variance formula (16) to

ey vy mh==+v(a)

This is a clearly intuitive result, consistent with the realities of financial time series. We have
combined two estimates of the mean of a distribution to arrive at a better estimate of the mean. The
variance of this estimate has been reduced, but the actual variance of the underlying process has not
changed. Given our uncertain estimate of the process, the total variance of our estimated process has
also improved incrementally, but it has the asymptotic limit that it cannot be less than the variance of
the actual underlying process.

He and Litterman (1999) adopt this same convention for computing the variance of the posterior
distribution.

In the absence of views,formula (21) simplifies to
vily nl)=z+o
Which is the variance of the prior distribution of returns.

Appendix A contains a more detailed derivation of formulas (19) and (20).
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A Quick Introduction to Bayes Theory

This section provides a quick overview of the relevant portion of Bayes theory in order to create a
common vocabulary which can be used in analyzing the Black-Litterman model from a Bayesian point
of view.

Bayes theory states

P(B|4)P(4)
P(A|B)=——F7"7F"—"—
@2)  PUIB==0
P(A|B) The conditional (or joint) probability of A, given B Also known as the posterior
distribution. We will call this the posterior distribution from here on.
P(B|A) The conditional probability of B given A. Also know as the sampling
distribution. We will call this the conditional distribution from here on.
P(A) The probability of A. Also known as the prior distribution. We will call this the
prior distribution from here on.
P(B) The probability of B. Also known as the normalizing constant.

When actually applying this formula and solving for the posterior distribution, the normalizing constant
will disappear into the constants of integration so from this point on we will ignore it..

A general problem in using Bayes theory is to identify an intuitive and tractable prior distribution. One
of the core assumptions of the Black-Litterman model (and Mean-Variance optimization) is that asset
returns are normally distributed. For that reason we will confine ourselves to the case of normally
distributed conditional and prior distributions. Given that the inputs are normal distributions, then it
follows that the posterior will also be normally distributed. When the prior distribution and the
posterior have the same structure, the prior is known as a conjugate prior. Given interest there is
nothing to keep us from building variants of the Black-Litterman model using different distributions,
however the normal distribution is generally the most straight forward.

Another core assumption of the Black-Litterman model is that the variance of the prior and the
conditional distributions about the actual mean are known, but the actual mean is not known. This
case, known as “Unknown Mean and Known Variance” is well documented in the Bayesian literature.
This matches the model which Theil uses where we have an uncertain estimate of the mean, but know
the variance.

We define the significant distributions below:
The prior distribution
(23) P(A)~N(x,S/n)

where S is the sample variance of the distribution about the mean, with n samples then S/n is the
variance of the estimate of x about the mean.

The conditional distribution
(24)  P(BJA) ~ N(u,2)

Q is the uncertainty in the estimate p of the mean, it is not the variance of the distribution about the
mean.

Then the posterior distribution is specified by
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(25) P(AB)~N([Q'p + nS"x]"[Q" +nS]H(Q" + nST)Y)

The variance term in (25) is the variance of the estimated mean about the actual mean.

In Bayesian statistics the inverse of the variance is known as the precision. We can describe the
posterior mean as the weighted mean of the prior and conditional means, where the weighting factor is
the respective precision. Further, the posterior precision is the sum of the prior and conditional
precision. Formula (25) requires that the precisions of the prior and conditional both be non-infinite,

and that the sum is non-zero. Infinite precision corresponds to a variance of 0, or absolute confidence.
Zero precision corresponds to infinite variance, or total uncertainty.

A full derivation of formula (25).using the PDF based Bayesian approach is shown in Appendix B.

As a first check on the formulas we can test the boundary conditions to see if they agree with our
intuition. If we examine formula (25) in the absence of a conditional distribution, it should collapse
into the prior distribution.

~N([nS ][ nS'TE(nS™)1)
(26) ~N(x,S/n)

As we can see in formula (26), it does indeed collapse to the prior distribution. Another important
scenario is the case of 100% certainty of the conditional distribution, where S, or some portion of it is
0, and thus S is not invertible. We can transform the returns and variance from formula (25) into a form
which is more easy to work with in the 100% certainty case.

(27) P(AB)~N(x+ (Sm)[Q + S/n]'[p—x],[(S/n) — (S/n)(Q + S/n)'(S/n)])

This transformation relies on the result that (A' + B")' = A — A(A+B)'A. It is easy to see that when S
is 0 (100% confidence in the views) then the posterior variance will be 0. If Q is positive infinity (the
confidence in the views is 0%) then the posterior variance will be (S/n).

We will revisit equations (25) and (27) later in this paper where we transform these basic equations into
the various parts of the Black-Litterman model. Appendices C and D contain derivations of the
alternate Black-Litterman formulas from the standard form, analogous to the transformation from (25)
to (27).

Using Bayes Theorem for the Estimation Model

One of the major assumptions made by the Black-Litterman model is that the covariance of the
estimated mean is proportional to the covariance of the actual returns. The parameter T will serve as
the constant of proportionality. It takes the place of 1/n in formula (23). The new prior is:

(28) P(A)~N(II, 1S)
This is the prior distribution for the Black-Litterman model.

We can now apply Bayes theory to the problem of blending the prior and conditional distributions to
create a new posterior distribution of the asset returns. Given equations (25), (28) and (11) we can
apply Bayes Theorem and derive our formula for the posterior distribution of asset returns.

Substituting (28) and (11) into (25) we have the following distribution
(29)  P(AIB) ~N([(x2)' I1 + P'Q'Q][(z2)"! + PIQ P ((zZ) " + PTQ'P)).
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This is sometimes referred to as the Black-Litterman master formula. A complete derivation of the
formula is shown in Appendix B. An alternate representation of the same formula for the mean returns
II and covariance (M) is

(30) [I=II+t=P'[(Pt=P )+Q]|'[0-PI]
Bl M=(rx)'+P Q7 'P)

The derivation of formula (30) is shown in Appendix D. Remember that M, the posterior variance, is
the variance of the posterior mean estimate about the actual mean. It is the uncertainty in the posterior
mean estimate, and is not the variance of the returns. In order to compute the variance of the returns so
that we can use it in a mean-variance optimizer we need to apply formula (0). This is mentioned in He
and Litterman (1999) but not in any of the other papers.

32) %,=X+M

Substituting the posterior variance from (31) we get
¥, = X+ ((t2)' +PTQ'P)!

In the absence of views this reduces to

(33) X, =X+(X)=(1+1X

Thus when applying the Black-Litterman model in the absence of views the variance of the estimated
returns will be greater than the prior distribution variance. We see the impact of this formula in the
results shown in He and Litterman (1999). In their results, the investor's weights sum to less than 1 if
they have no views.? Idzorek (2005) and most other authors do not compute a new posterior variance,
but instead use the known input variance of the returns about the mean. Several of the authors set 1= 1
along with using the variance of returns. We will consider these different reference models in a later
section.

Once we dig into the topic a little more we realize that if we have only partial views, views on some
assets, then by using a posterior estimate of the variance we will tilt the posterior weights towards
assets with lower variance (higher precision of the estimated mean) and away from assets with higher
variance (lower precision of the estimated mean). Thus the existence of the views and the updated
covariance will tilt the optimizer towards using or not using those assets. This tilt will not be very large
if we are working with a small value of t, but it will be measurable.

Since we are building the covariance matrix, X, from historical data we can compute T from the number
of samples. We can also estimate t based on our confidence in the prior distribution. Note that both of
these techniques provide some intuition for selecting a value of T which is closer to 0 than to 1. Black
and Litterman (1992), He and Litterman (1999) and Idzorek (2005) all indicate that in their calculations
they used small values of 1, on the order of 0.025 — 0.050. Satchell and Scowcroft (2000) state that
many investors use a T around 1 which does not seem to have any intuitive connection here.

We can check our results by seeing if the results match our intuition at the boundary conditions.
Given formula (30) it is easy to let Q — 0 showing that the return under 100% certainty of the views is
(34) [I=0+ZP'[PZP'|'[O0-PII]

Thus under 100% certainty of the views, the estimated return is insensitive to the value of T used.

3 This is shown in table 4 and mentioned on page 11 of He and Litterman (1999).
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Furthermore, if P is invertible which means that it we have also offered a view on every asset, then
[m=pP'o
If the investor is not sure about their views, so Q — oo, then formula (30) reduces to

I1=11

Finding an analytically tractable way to express and compute the posterior variance under 100%
certainty is a challenging problem. Formula (25) above works only if (P'Q'P) is invertible which is not
usually the case because the posterior variance in asset space is also not usually tractable.

The alternate formula for the posterior variance derived from (27) is
(35 M=1>X-1ZP(PtEP +Q)'Pt>

If Q — 0 (total confidence in views, and every asset is in at least one view) then formula (35) can be
reduced to M = 0. If on the other hand the investor is not confident in their views, Q — oo, then
formula (35) can be reduced to M = tX.

[Meucci, 2005] describes the transformation from (27) to (35), but does not show the full derivation. I
have included that derivation in Appendix B.

Calibrating t
This section will discuss some empirical ways to select and calibrate the value of 1.

The first method to calibrate t relies on falling back to basic statistics. When estimating the mean of a
distribution the uncertainty (variance) of the mean estimate will be proportional to the number of
samples. Given that we are estimating the covariance matrix from historical data, then

T= T The maximum likelihood estimator
T= Tk The best quadratic unbiased estimator
T The number of samples
k The number of assets

There are other estimators, but usually, the first definition above is used. Given that we usually aim for
a number of samples around 60 (5 years of monthly samples) then 1 is on the order of 0.02. This is
consistent with several of the papers which indicate they used values of t on the range (0.025, 0.05).
This is probably also consistent with the model to compute the variance of the distribution, X.

We could instead calibrate 1 to the amount invested in the risk free asset given the prior distribution.
Here we see that the portfolio invested in risky assets given the prior views will be

w=II[6(1+71) X!

Thus the weights allocated to the assets are smaller by [1/(1+1)] than the CAPM market weights. This
is because our Bayesian investor is uncertain in their estimate of the prior, and they do not want to be
100% invested in risky assets.
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The Alternative Reference Model

This section will discuss the most common alternative reference model used with the Black-Litterman
estimation model.

The most common alternative reference model is the one used in Satchell and Scowcroft (2000), and in
the work of Meucci.

E(r)~N(u,2)

In this reference model, p is normally distributed with variance . We estimate p, but the mean itself, p
, 1s not considered a random variable. This is commonly described as having a T = 1, but more
precisely we have eliminated t as a parameter. In this model Q becomes the covariance of the views
around the investor's estimate of the mean return, just as X is the covariance of the prior about it's

mean. Given these specifications for the covariances of the prior and conditional, it is infeasible to
have an updated covariance for the posterior. For example, it would require that the covariance of the
posterior is %4 the covariance of the prior and conditional if they had equal covariances. This conflicts
with our earlier statements that higher precision in our estimate of the mean return doesn't cause the
covariance of the return distribution to shrink by the same amount.

The primary artifacts of this new reference model are, first t is non-existant, and second, the investor's
portfolio weights in the absence of views equal the CAPM portfolio weights. Finally at
implementation time there is no need or use of formulas (31) or (32).

Note that none of the authors prior to Meucci (2008) except for Black and Litterman (1992), and He
and Litterman (1999) make any mention of the details of the Black-Litterman reference model, or of
the different reference model used by most authors. It is unclear to this author why this has occurred.

In the Black-Litterman reference model, the updated posterior variance of the mean estimate will be
lower than either the prior or conditional variance of the mean estimate, indicating that the addition of
more information will reduce the uncertainty of the model. The variance of the returns from formula
(32) will never be less than the prior variance of returns. This matches our intuition as adding more
information should reduce the uncertainty of the estimates. Given that there is some uncertainty in this
value (M), then formula (32) provides a better estimator of the variance of returns than the prior
variance of returns.

The Impact of T

The meaning and impact of the parameter t causes a great deal of confusion for many users of the
Black-Litterman model. In the literature we appear to see authors divided into two groups over 1. In
reality, T is not the significant difference, the reference model is the difference and the author's
specification of 7 just an artifact of the reference model they use.

The first group thinks t should be a small number on the order of 0.025-0.05, and includes He and
Litterman (1999), Black and Litterman (1992) and Idzorek(2004). The second group thinks t should be
near 1, or eliminates it from the model, and includes Satchell and Scowcroft (2000), Meucci (2005) and
others.

A better division of the authors has to do with the reference model. The Goldman Sachs papers, He
and Litterman (1999) and Black and Litterman (1992) use the Black-Litterman reference model with 7.
All the other authors use the alternative reference model described above, and either eliminate t
(Meucci), set it to 1 (Satchell and Scowcroft, or calibrate the model to it (Idzorek). Satchell and
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Scowcroft (2000) describe a model with a stochastic t, but this is really stochastic variance of returns.

Given the Black-Litterman reference model we can still perform an exercise to understand the impact
of T on the results. We will start with the expression for Q similar to the one used by He and Litterman
(1999). Rather than using only the diagonal, we will retain the entire structure of the covariance matrix
to make the math simpler and more clear.
(36) Q=P(t3)P’
We can substitute this into formula (30) as
N=M+tXP'[(PtZP )+Q|'[0-PH"]
=+t 3P [(PtXP)+(PtEZ P '0-PI]
=[I+t3XP'[2(PtZP")|'0-PI"]

=H+(1)T2PT(PT)*‘[PTz]”[Q—PHT]

2
=H+(%)TZ(TZ)1P1[Q—PHT]
=H+(;—)P_1[Q—PHT]

(37) 17=H+(%)[P‘1 o-11"]

Clearly using formula (36) is just a simplification and does not do justice to investors views, but we can
still see that setting Q) proportional to t, will eliminate T from the final formula for II . In the
general form if we formulate Q as
(38) Q=P(xtX)P’
Then we can rewrite formula (37) as

1

(39) ﬁ=H+(m)[P_1Q—H]

We can see a similar result if we substitute formula (36) into formula (35).

M=t3X—-t3XP'[PTIP +Q['PTX
=rS—71IP'[PtSP +PTIP'[' P73
=t>X-1tXP'[2(PtEZP|"'PTX

=3 () )P ) P (P )

=TZ—(;—)TZ
(40) M=(%)TZ

Note that t is not eliminated from formula (40). We can also observe that if t is on the order of 1 and
we were to use formula (32) that the uncertainty in the estimate of the mean would be a significant
fraction of the variance of the returns. With the alternative reference model, no posterior variance
calculations are performed and the mixing is weighted by the variance of returns.
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In both cases, our choice for Q has evenly weighted the prior and conditional distributions in the
estimation of the posterior distribution. This matches our intuition when we consider we have blended
two inputs, for both of which we have the same level of uncertainty. The posterior distribution will be
the average of the two distributions.

If we instead solve for the more useful general case of Q = oP(tZ)P"T where a > 0, substituting into
(30) and following the same logic as used to derive (40) we get

1
(14 o)

This parameterization of the uncertainty is specified in Meucci (2005) and it allows us an option
between using the same uncertainty for the prior and views, and having to specify a separate and
unique uncertainty for each view. Given that we are essentially multiplying the prior covariance matrix
by a constant this parameterization of the uncertainty of the views does not have a negative impact on
the stability of the results.

@1  II=IT+ P 'o-11]

Note that this specification of the uncertainty in the views changes the assumption from the views
being uncorrelated, to the views having the same correlations as the prior returns.

In summary, if the investor uses the alternative reference model and makes Q proportional to t%, then
they need only calibrate the constant of proportionality, a, which indicates their relative confidence in
their views versus the equilibrium. If they use the Black-Litterman reference model and set Q
proportional to tZ, then return estimate will not depend on the value of t, but the posterior covariance
of returns will depend on the proper calibration of 7.

An Asset Allocation Process

The Black-Litterman model is just one part of an asset allocation process. Bevan and Winkelmann
(1998) document the asset allocation process they use in the Fixed Income Group at Goldman Sachs.
At a minimum. a Black-Litterman oriented investment process would have the following steps:

e Determine which assets constitute the market

e Compute the historical covariance matrix for the assets

e Determine the market capitalization for each asset class.

e Use reverse optimization to compute the CAPM equilibrium returns for the assets

e Specify views on the market

e Blend the CAPM equilibrium returns with the views using the Black-Litterman model

e Feed the estimates (estimated returns, covariances) generated by the Black-Litterman model
into a portfolio optimizer.

e Sclect the efficient portfolio which matches the investors risk preferences
A further discussion of each step is provided below.

The first step is to determine the scope of the market. For an asset allocation exercise this would be
identifying the individual asset classes to be considered. For each asset class the weight of the asset
class in the market portfolio is required. Then a suitable proxy return series for the excess returns of
the asset class is required. Between these two requirements it can be very difficult to integrate illiquid
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asset classes such as private equity or real estate into the model. Furthermore, separating public real
estate holdings from equity holdings (e.g. REITS in the S&P 500 index) may also be required. Idzorek
(2006) provides an example of the analysis required to include commodities as an asset class.

Once the proxy return series have been identified, and returns in excess of the risk free rate have been
calculated, then a covariance matrix can be calculated. Typically the covariance matrix is calculated
from the highest frequency data available, e.g. daily, and then scaled up to the appropriate time frame.
Investor's often use an exponential weighting scheme to provide increased weights to more recent data
and less to older data. Other filtering (Random Matrix Theory) or shrinkage methods could also be
used in an attempt to impart additional stability to the process.

Now we can run a reverse optimization on the market portfolio to compute the equilibrium excess
returns for each asset class. Part of this step includes computing a 6 value for the market portfolio. This
can be calculated from the return and standard deviation of the market portfolio. Bevan and
Winkelmann (1998) discuss the use of an expected Sharpe Ratio target for the calibration of 8. For
their international fixed income investments they used an expect Sharpe Ratio of 1.0 for the market.
The investor then needs to calibrate T in some manner. This value is usually on the order of 0.025 ~
0.050.

At this point almost all of the machinery is in place. The investor needs to specify views on the market.
These views can impact one or more assets, in any combination. The views can be consistent, or they
can conflict. An example of conflicting views would be merging opinions from multiple analysts,
where they may not all agree. The investor needs to specify the assets involved in each view, the
absolute or relative return of the view, and their uncertainty in the return for the view consistent with
their reference model and measured by one of the methods discussed previously.

Appendix E shows the process of cranking through formulas (30), (35) and (32) to compute the new
posterior estimate of the returns and the covariance of the posterior returns. These values will be the
inputs to some type of optimizer, a mean-variance optimizer being the most common. If the user
generates the optimal portfolios for a series of returns, then they can plot an efficient frontier/

Results

This section of the document will step through a comparison of the results of the various authors. The
java programs used to compute these results are all available as part of the akutan open source finance
project at sourceforge.net. All of the mathematical functions were built using the Colt open source
numerics library for Java. Any small differences between my results and the authors reported results
are most likely the result of rounding of inputs and/or results.

When reporting results most authors have just reported the portfolio weights from an unconstrained
optimization using the posterior mean and variance. Given that the vector I is the excess return vector,
then we do not need a budget constraint (Xw; = 1) as we can safely assume any 'missing' weight is
invested in the risk free asset which has expected return 0 and variance 0. This calculation comes from
formula (9).

w =TI(8%,)"!

As a first test of our algorithm we verify that when the investor has no views that the weights are
correct, substituting formula (33) into (9) we get

Wy = [I(8(1+1)X)!
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(42) wn=w/(1+7)

Given this result, it is clear that the output weights with no views will be impacted by the choice of t
when the Black-Litterman reference model is used. He and Litterman (1999) indicate that if our
investor is a Bayesian, then they will not be certain of the prior distribution and thus would not be fully
invested in the risky portfolio at the start. This is consistent with formula (42).

Matching the Results of He and Litterman

First we will consider the results shown in He and Litterman (1999). These results are the easiest to
reproduce and they seem to stay close to the model described in the original Black and Litterman
(1992) paper. As Robert Litterman co-authored both this paper and the original paper, it makes sense
they would be consistent.

He and Litterman (1999) set
(43) Q= diag(P"(tX)P)

This essentially makes the uncertainty of the views equivalent to the uncertainty of the equilibrium
estimates. They select a small value for T (0.05), and they use the Black-Litterman reference model
and the updated posterior variance of returns as calculated in formulas (35) and (32).

Table 1 — These results correspond to Table 7 in [He and Litterman, 1999].

Asset Py P, p Weo/(147) w* w* - we/(1+1)
Australia 0.0 0.0 4.3 16.4 1.5% 0%
Canada 0.0 1.0 8.9 2.1% 53.9% 51.8%
France -0.295 0.0 9.3 5.0% -5% -5.4%
Germany 1.0 0.0 10.6 5.2% 23.6% 18.4%
Japan 0.0 0.0 4.6 11.0% 11.0% .0%
UK -0.705 0.0 6.9 11.8% -1.1% -13.0%
USA 0.0 -1.0 7.1 58.6% 6.8% -51.8%
q 5.0 4.0

o/t .043 .017

A 193 .544

Table 1 contains results computed using the akutan implementation of Black-Litterman and the input
data for the equilibrium case and the investor's views from He and Litterman (1999). The values
shown for w* exactly match the values shown in their paper.

Matching the Results of Idzorek
This section of the document describes the efforts to reproduce the results of Idzorek (2005). In trying
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to match Idzorek's results I found that he used the alternative reference model. which leaves X, the
known variance of the returns from the prior distribution, as the variance of the posterior returms. This
is a significant difference from the algorithm used in He and Litterman (1999), but in the end given that
Idzorek used a small value of 1, the differences amounted to approximately 50 basis points per asset.
Tables 2 and 3 below illustrate computed results with the data from his paper and how the results differ
between the two versions of the model.

Table 2 contains results generated using the data from Idzorek (2005) and the Black-Litterman model
as described by He and Litterman (1999). Table 3 shows the same results as generated by the
alternative reference model variant of the algorithm. This alternative model variant appears to be the
method used by Idzorek.

Table 2 — He and Litterman version of Black-Litterman Model with Idzorek data (Corresponds with
data in Idzorek's Table 6).

Asset Class | M Weq wk Black-Litterman | Idzorek's
Reference Model |Results

US Bonds .07 18.87% 28.96% 10.09% 10.54

Intl Bonds .50 25.49% 15.41% -10.09% -10.54

US LG 6.50 11.80% 9.27% -2.52% -2.73

US LV 4.33 11.80% 14.32% 2.52% -2.73

US SG 7.55 1.31% 1.03% -.28% -0.30

US SV 3.94 1.31% 1.59% .28% 0.30

Intl Dev 4.94 23.59% 27.74% 4.15% 3.63

Intl Emg 6.84 3.40% 3.40% .0% 0

Note that the results in Table 2 are close, but for several of the assets the difference is about 50 basis
points. The values shown in Table 3 are within 4 basis points, essentially matching the results reported
by Idzorek.
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Table 3 — Alternative Reference Model version of the Black-Litterman Model with Idzorek data
(Corresponds with data in Idzorek's Table 6).

Country B Weq w Alternative Idzorek's
Reference Model |Results

US Bonds .07 19.34% 29.89% 10.55% 10.54

Intl Bonds .50 26.13% 15.58% -10.55% -10.54

US LG 6.50 12.09% 9.37% -2.72% -2.73

US LV 4.33 12.09% 14.81% 2.72% -2.73

US SG 7.55 1.34% 1.04% -.30% -0.30

US SV 3.94 1.34% 1.64% .30% 0.30

Intl Dev 4.94 24.18% 27.77% 3.59% 3.63

Intl Emg 6.84 3.49% 3.49% 0% 0

On Mankert's Sampling Theoretic Analysis

Mankert (2006) derives the Black-Litterman 'master formula' using a Sampling Theory approach which
yields t as a ratio of the confidence in the prior to the confidence in the sampling distribution. She also
provides a full derivation of formula (30) from formula (29).

Her derivation is valid for the the Alternative Reference Model, which is the model most used in the
literature. Further, many authors set Q is proportional to P(X)P" which is consistent with her work. We
will show that her thesis holds for the alternative reference model, but does not for the Black-Litterman
reference model.

Given the derivation of the posterior distribution created by the mixing of a normally distributed
statistical prior and a subjective conditional shown in Appendix A, we can by replacing the subject
conditional with a statistical conditional distribution arrive at formula (25) by the same logic.

Given
S
P(A4)~N(x,,—*), givenn samples
n
SC
P(B|A)~N (x.,—=), given m samples
m
then

g ! S, -17-1 g ! S, -1 g ! S. -17-1
(44) P(AIB)NN([(—”) +(—) ] [x,,(—”) +x(—=) ||(F) (=) | )
Next we want to attempt to move the (m) terms out of each term so we can eliminate them yielding:

© Copyright 2009, Jay Walters 22



-1

[m[ms,,(ﬂ)) m(&)l],

n

P(A|B)~N(

-1
m _
m[<s,,<n—>> +(5) ]
In the mean term the m's cancel out and we see the formula Mankert used to support her thesis

[(S,xﬂ» +<SC>1] [xpwp(ﬂ)) +xg<sc>1]

Thus if we set X =S, and Q = S; then we can let T = m/n, the ratio of uncertainty in the views to the
uncertainty in the prior. For the alternative reference model, her approach is valid.

However in the posterior variance of the estimate an extra m term remains, this makes the covariance
term

This does not line up with formula (32) as we would expect, given the substitutions in the paragraph
above, Her approach is not consistent with the Black-Litterman reference model.

Additional Work

This section provides a brief discussion of efforts to reproduce results from some of the major research
papers on the Black-Litterman model.

Of the major papers on the Black-Litterman model, there are two which would be very useful to
reproduce, Satchell and Scowcroft (2000) and Black and Litterman (1992). Satchell and Scowcroft
(2000) does not provide enough data in their paper to reproduce their results. They have several
examples, one with 11 countries equity returns plus currency returns, and one with fifteen countries.
They don't provide the covariance matrix for either example, and so their analysis cannot be
reproduced. It would be interesting to confirm that they use the alternative reference model by
reproducing their results.

Black and Litterman (1992) do provide what seems to be all the inputs to their analysis, however they
chose a non-trivial example including partially hedged equity and bond returns. This requires the
application of some constraints to the reverse optimization process which I have been unable to
formulate as of this time. I plan on continuing this work with the goal of verifying the details of the
Black-Litterman implementation used in Black and Litterman (1992).

Extensions to the Black-Litterman Model

In this section I will cover the extensions to the Black-Litterman model proposed in Idzorek (2005),
Fusai and Meucci (2003) and Krishnan and Mains (2006).

Idzorek (2005) presents a means to calibrate the confidence or variance of the investors views in a
simple and straightforward method. Fusai and Meucci (2003) propose a way to measure how
consistent a posterior estimate of the mean is with regards to the prior, or some other estimate. Braga
and Natale (2007) describe how to use Tracking Error to measure the distance from the equilibirum to
the posterior portfolio. Krishnan and Mains (2006) present a method to incorporate additional factors
into the model.
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Idzorek's Extension

Idzorek's apparent goal was to reduce the complexity of the Black-Litterman model for non-
quantitative investors. He achieves this by allowing the investor to specify the investors confidence in
the views as a percentage (0-100%) where the confidence measures the change in weight of the
posterior from the prior estimate (0%) to the conditional estimate (100%). This linear relation is shown
below

(45) confidence=(w—w,_, )| (W,50=W )
Wigo 18 the weight of the asset under 100% certainty in the view
Wk 1S the weight of the asset under no views
w 1s the weight of the asset under the specified view.

He provides a method to back out the value of ® required to generate the proper tilt (change in weights
from prior to posterior) for each view. These values are then combined to form €2, and the model is
used to compute posterior estimates. A side effect of this method is that it is insensitive to the choice
of 1.

In his paper he discusses solving for o using a least squares method. We can actually solve this
analytically. The next section will provide a derivation of the formulas required for this solution.

First we will use the following form of the uncertainty of the views
46) Q=aP3P’

a, the coefficient of uncertainty, is a scalar quantity in the interval [0, co]. When the investor is 100%
confident in their views, then a will be 0, and when they are totally uncertain then o will be c. Note
that formula (46) is exact, it is identical to formula (43) the Q used by He and Litterman (1999)
because it is a 1x1 matrix. This allows us to find a closed form solution to the problem of Q for
Idzorek's confidence.

First we substitute formula (41)

o 1 —1
II=II+ P Oo-I1
T
into formula (9).
w=II1(s3)"
Which yields
N 1 - 1
=T+ P O-IT||(6%
@1 s Ttgslpro-nl|(ex)

Now we can solve formula (47) at the boundary conditions for a.

lim,w,,=IT(s3)"

lim, w,po=P '0(62)"
x—0

And recombining some of the terms in (47) we arrive at
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1
(1+ )

48y Ww=II(5X) '+ Po(sz) -11(62)]

Substituting wyi and wig back into (48) we get

w=w,. +

m [WIOO_ka}

And comparing the above with formula (45)
confidence=(W—w,, )/ (W= W,,;)

We see that

confidence= 0 Jlr(x)

And if we solve for a
(49) «=(1—confidence)l confidence

Using formulas (49) and (46) the investor can easily calculate the value of @ for each view, and then
roll them up into a single Q matrix. To check the results for each view, we then solve for the posterior
estimated returns using formula (30) and plug them back into formula (45). Note that when the
investor applies all their views at once, the interaction amongst the views will pull the posterior away
from the results generated when the views were taken one at a time.

Idzorek's method greatly simplifies the investor's process of specifying the uncertainty in the views
when the investor does not have a quantitative model driving the process. In addition, this model does
not add meaningful complexity to the process.

An Example of Idzorek's Extension
Idzorek describes the steps required to implement his extension in his paper, but does not provide a
worked example. In this section I will work through his example from where he leaves off in the
paper.
Idzorek's example includes 3 views:
International Dev Equity will have absolute excess return of 5.25%, Confidence 25.0%
International Bonds will outperform US bonds by 25bps, Confidence 50.0%
US Growth Equity will outperform US Value Equity by 2%, Confidence 65.0%

In his paper Idzorek defines the steps in his method which include calculations of wy¢ and then the
calculation of o for each view given the desired change in the weights. From the previous section, we
can see that we only need to take the investor's confidence for each view, plug it into formula (49) and
compute the value of alpha. Then we plug a, P and X into formula (46) and compute the value of ® for
each view. At this point we can assemble our Q matrix and proceed to solve for the posterior returns
using formula (29) or (30).

In working the example, I will show the results for each view including the wy, and w,q in order to
make the workings of the extension more transparent. Tables 4, 5 and 6 below each show the results
for a single view.
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Table 4 — Calibrated Results for View 1

Asset ® Wnkt wk W100% [mplied Confidence

Intl Dev Equity |.002126625 |24.18% 25.46% 29.28% 25.00%

Table 5 — Calibrated Results for View 2

Asset ) Wnkt w* Wi00% [mplied Confidence
US Bonds 000140650 |19.34% 29.06% 38.78% 50.00%
Intl Bonds 000140650 |26.13% 16.41% 6.69% 50.00%

Table 6 — Calibrated Results for View 3

Asset ® Wkt w W100% Implied Confidence
US LG 000466108 |12.09% 9.49% 8.09% 65.00%
USLV 000466108 |12.09% 14.69% 16.09% 65.00%
US SG 000466108 |1.34% 1.05% .90% 65.00%
US Sv 000466108 |1.34% 1.63% 1.78% 65.00%

Then we use the freshly computed values for the Q matrix with all views specified together and arrive
at the following final result shown in Table 7 blending all 3 views together.

Table 7 — Final Results for Idzorek's Confidence Extension Example

Asset View1 |View2 |View3 |pu o Winkt Posterior change
Weight

US 0.0 -1.0 0.0 1 3.2 19.3% 29.6% 10.3%
Bonds

Intl 0.0 1.0 0.0 S 8.5 26.1% 15.8% 10.3%
Bonds

USLG |0.0 0.0 0.9 6.3 24.5 12.1% 8.9% 3.2%
USLV 0.0 0.0 -0.9 4.2 17.2 12.1% 15.2% 3.2%
USSG 0.0 0.0 0.1 7.3 32.0 1.3% 1.0% -4%
UuSsv 0.0 0.0 -0.1 3.8 17.9 1.3% 1.7% 4%
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Asset View 1 |View2 | View3 |u o Winkt Posterior change
Weight

Intl Dev | 1.0 0.0 0.0 4.8 16.8 24.2% 26.0% 1.8%

Intl Emg 0.0 0.0 0.0 6.6 28.3 3.5% 3.5% -.0%

Total 101.8%

Return |5.2 2 2.0

Omega/ |.08507 |.00563 |.01864

tau

Lambda |.002 -.006 -.002

Measuring the Impact of the Views

This section will discuss several methods used in the literature to measure the impact of the views on
the posterior distribution. In general we can divide these measures into two groups. The first group
allows us to test the hypothesis that the views or posterior contradict the prior. The second group
allows us to measure a distance or information content between the prior and posterior.

Theil (1971), and Fusai and Meucci (2003) describe measures that are designed to allow a hypothesis
test to ensure the views or the posterior does not contradict the prior estimates. Theil (1971) describes
a method of performing a hypothesis test to verify that the views are compatibile with the prior. We
will extend that work to measure compatibility of the posterior and the prior. Fusai and Meucci (2003)
describe a method for testing the compatibility of the posterior and prior when using the alternative
reference model.

He and Litterman (1999), and Braga and Natale (2007) describe measures which can be used to
measure the distance between two distributions, or the amount of tilt between the prior and the
posterior. These measures don't lend themselves to hypothesis testing, but they can potentially be used
as constraints on the optimization process. He and Litterman (1999) define a metric, A, which
measures the tilt induced in the posterior by each view. Braga and Natale (2007) use Tracking Error
Volatility (TEV) to measure the distance from the prior to the posterior. We will also introduce the
concept of relative entropy from information theory, and use the Kullback-Leibler distance* to measure
the relative entropy between the prior and the posterior.

Theil's Measure of Compatibility Between the Views and the Prior

Theil (1971) describes this as testing the compatibility of the views with the prior information. Given
the linear mixed estimation model, we have the prior (15) and the conditional (17).

(15) m=xB+u
(17)  q=pB+tv

The mixed estimation model defines u as a random vector with mean 0 and covariance 12, and v as a

4 It is not really a true distance as it is not symmetric, but we will refer to it as a distance in this paper.
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random vector with mean 0 and covariance Q.

The approach we will take is very similar to the approach taken when analyzing a prediction from a
linear regression.

We can define an estimator for B, we will call this estimator f , computed only from the information
in the views. We can measure the estimation error between the prior and the views as:

(50)  g=(m—xB)=—x(B—B)+u
The vector  has mean 0 and variance V(). We will form our hypothesis test using the formulation

(51)  E=E(Q)V(C)'E(T)

The quantity, &, is known as the Mahalanobis distance (multi-dimensional analog of the z-score) and is
distributed as ¥*(n). In order to use this form we need to solve for the E(() and V({).

If we consider only the information in the views, the estimator of B is:
B:(PT‘QilP)ilPTgilQ
Note that since P is not required to be a matrix of full rank that we might not be able to evaluate this

formula as written. We work in return space here (as opposed to view space) as it seems more natural.
Later on we will transform the formula into view space to make it computable.

We then substitute the new estimator into the formula (50) and eliminate x as it is the identity matrix in
the Black-Litterman application of mixed-estimation.

(52)  ¢=—(P'Q'P)' P Q' O+B+u
Next we substitute formula (17) for Q.

C=—(P'Q7'P)'PTQ T (PB+V)+B+u
c=—(P'Q'P) (P TQ'P)BHP QTP PTQ T v BHu
c=—(P'Q'P)' P Q v+u

Give our estimator, we want to find the variance of the estimator.

V(€)=E(T’)

vig)=E(P'Q Py P QW Q' P(PTQ P —2(P T P PT O v uu)
But E(vu) = 0 so we can eliminate the cross term, and simplify the formula.

V()=E[(PTQP) P QT P(PTQT P) un]

V©)=E[(P v (PT) )+uu']

Vg)=(PTQ'P) +13

The last step is to take the expectation of formula (52). At the same time we will substitute the prior
estimate (IT) for f.

E(C)=0-(PPQ'P)'PTQ"'Q
Now substitute the various values into (51) as follows
e=(IT-(P"Q'PY' PP Q)(PTQ Py 42| (T—(PT Q7 P PP Q)

Unfortunately, under the usual circumstances we cannot compute &. Because P does not need to
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contain a view on every asset, several of the terms are not always computable as written. However, we
can easily convert it to view space by multiplying by P and P".

(53)  E=(PO-0)Q+PT2P T (PII-0)

This new test statistic statistic, &, in formula (53) is distributed as y*(q) where q is the number of views.
We can use this test statistic to determine if our views are consistent with the prior by means of a
standard confidence test.

P(q)=1-F(&(q))
Where F(§) is the CDF of y*(q) distribution.

We can also compute the sensitivities of this measure to the views using the chain rule.

oP _0Pog
0q 0& dq
Substituting the various terms
0P _
54 Go=—sEl2(Qr PP (PI-Q))

Where (&) is the PDF of the y*(q) distribution.

Fusai and Meucci's Measure of Consistency

Next we will look at the work of Fusai and Meucci (2003). In their paper they present a way to
quantify the statistical difference between the posterior return estimates and the prior estimates. This
provides a way to calibrate the uncertainty of the views and ensure that the posterior estimates are not
extreme when viewed in the context of the prior equilibrium estimates.

In their paper they use the Alternative Reference Model. Their measure is analagous to Theil's
Measure of Compatibility, but because the alternative reference model uses the prior variance of
returns for the posterior they do not need any derivation of the variance. We can apply a variant of
their measure to the Black-Litterman Reference Model as well.

They propose the use of the Mahalanobis distance of the posterior returns from the prior returns. I
include t here to match the Black-Litterman reference model, but their work does not include 1 as they
use the Alternative Reference Model.

(54)  M(q)=(pg—p)(t ) (ty—n)

It is essentially measuring the distance from the prior, p, to the estimated returns, pp., normalized by
the uncertainty in the estimate. We use the covariance matrix of the prior distribution as the
uncertainty. The Mahalanobis distance is distributed as a chi-square distribution with n degrees of
freedom (n is the number of assets), and thus allows us to use it in a hypothesis test. Thus the
probability of this event occurring can be computed as:

(55 Plg)=1-F(M(q))
Where F(M(q)) is the CDF of the chi square distribution of M(q) with n degrees of freedom.

Finally, in order to identify which views contribute most highly to the distance away from the
equilibrium, we can also compute sensitivities of the probability to each view. We use the chain rule to
compute the partial derivatives
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OP(q)_ 0P OM Oty
0q OM Oug Oq

656 T ()2~ (PLrZ) P42) P

Where f(M) is the PDF of the chi square distribution with n degrees of freedom for M(q).

They work an example in their paper which results in an initial probability of 94% that the posterior is
consistent with the prior. They specify that their investor desires this probability to be no less than
95% (a commonly used confidence level in hypothesis testing), and thus they would adjust their views
to bring the probability in line. Given that they also compute sensitivities, their investor can identify
which views are providing the largest marginal increase in their measure and they investor can then
adjust these views. These sensitivities are especially useful since some views may actually be pulling
the posterior towards the prior, and the investor could strengthen these views, or weaken views which
pull the posterior away from the prior. This last point may seem non-intuitive. Given that the views
are indirectly coupled by the covariance matrix, one would expect that the views only push the
posterior distribution away from the prior. However, because the views can be conflicting, either
directly or via the correlations, any individual view can have a net impact pushing the posterior closer
to the prior, or pushing it further away.

They propose to use their measure in an iterative method to ensure that the posterior is consistent with
the prior to the specified confidence level.

With the Black-Litterman Reference Model we could rewrite formula (54) using the posterior variance
of the return instead of 1% yielding:

(57) M(‘])=(UBL_IJ)((TZ)_1+PTQ_1P)_1(UBL_IJ)

Otherwise their Consistency Measure and it's use is the same for both reference models.

He and Litterman's Lambda

He and Litterman (1999) use a measure, A, to measure the impact of each view on the posterior. They
define the Black-Litterman unconstrained posterior portfolio as a blend of the equilibrium portfolio
(prior) and a contribution from each view, that contribution is measured by A.

Deriving the formula for A we will start with formula (9) and substitute in the various values from the
posterior distribution.

w=(53) "I
We substitute the return from formula (25) for 11
(58) W=(1?Z~IM1[(TZ)]H+PTQIQ]

We will first simplify the covariance term
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-1
ey (E s potph)

STM T =(PTeSPY (1+0) (P TSP  + Q7!

Yo7 L(P'xP) (P'rzpP)(P'ZP),Q PP
EM=P TP T T (e Tier
DIl Y g— [1—(PTZP> Qﬁﬂﬁ

14T 1+t T 14T

Then we can define

T
59 a=[24L2 2P,
T 1+T

And finally rewrite as

>
1+7

-
1+T

60) =M '=—"[1-(P"A4"'P)( )]

Our goal is to simplify the formula to the form

1

T Al
1+t 1Weq+P AJ

=

In order to find A we substitute formula (60) into (58) and then gather terms.

1T _(pT 4 > - T -l

W_6 1+T[[ (P A P)(H_T)][(TZ) I+ P Q QO]

~ 1 T — T -1 T T -l T -1 ) T -1
=— SV IHH—(P 4 P IH+P —(P "4 P)(—)P

W 51+T[(T ) ( )(1+T) Q 00— )(1+T) Q 0]
A 1 T -1 1 T.Q_IQ -1 2 T ~H-1
= +P|—A PII + —(4 P)(——)P Q

W | Ve (5(1+T)) 5 ( )(5(1+T)> Q”

A'PEZw Q'
A T 1 -1~ eq 41 T T Q
s P Weg P 69 0 I+ 4 1+T<P ZP) o ”

So we can see that along with (59), the following formula defines A.

A_l Pzweq _A—l T .Q_l Q
1+T 1+ o

(61) A=%Q‘1Q— (P'XP)

He and Litterman's A represents the weight on each of the view portfolios on the final posterior weight.

As aresult, we can use A as a measure of the impact of our views.
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Braga and Natale and Tracking Error Volatility

Braga and Natale (2007) propose the use of tracking error between the posterior and prior portfolios as
a measure of distance from the prior. Tracking error is commonly used by investors to measure risk
versus a benchmark, and can be used as an investment constraint. As it is so commonly used, most
investors have an intuitive understanding and ga level of comfort with TEV. Tracking error volatility is
defined as

(62) TEV=\/W5€WZ W,.., wherew,  =Ww—w,
Where
W o Active weights, or active portfolio
\% Weight in the investor's portfolio
w, Weight in the reference portfolio
b Covariance matrix of returns

They also derive the formula for tracking error sensitivities as follows: Given that
TEV=f(w,.,)

and we can further refine
Ww,.n=g(q) where qrepresentsthe views

Then we can use the chain rule to decompose the sensitivity of TEV to the views

OTEV _OTEV OWan
6q 6M/’actv aq

We can solve for the first term of formula (63) directly,

OTEV _ a(\/WzmZ W aery)

a Wactv a WLIC[V

(63)

Let x=w! , X W, then apply the chain rule
OTEV _OTEV Ox

a WCIC[V a X a WLICIV

OTEV 1

a =[ T ] [ 2 Z Waclv]
Wactv 2 \/Wactv Z Wactv

OTEV _ 2w,

- T
a Waetv \/Wam 2w

actv

Solving for the second term of formula (63) is slightly more complicated.
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ow o(w—w,,)

actv __

0g ~  dq
OWan _0((63) E(r)=(AZ) 1)
oq oq
8M}acz‘v _16(E(V)_H)

=(§X
oq (6) oq
5wam_(52),1GTZPT[(PTZPTHQ]_I[Q—PH]
oq 00
OW 4o, - T T -
5 =(6X) tXP [(PTXP )+Q]
ow

actv T T T -1
— = =—P |(PTXP )+Q
Sren= P [(PrEP)+0]

This result is somewhat different from that found in the Braga and Natale (2007) paper because we use
the form of the Black-Litterman model which requires less matrix inversions. The formula for the
sensitivities is

2w, _
6TEV= . actv EPT[(PTZPT)'FQ] 1
aq \/Wactvzwactv 6

(64)

Braga and Natale work through a fairly simple example in their paper. I have been unable to reproduce
either their equilibrium or their mixing results. Given their posterior distribution as presented in the
paper one can easily reproduce their TEV results.

One advantage of the TEV is that most investors are familiar with it, and so they will have some
intuition as to what it represents. The consistency metric introduced by Fusai and Meucci (2003) will
not be as familiar to investors.

Relative Entropy and the Kullback-Leibler Information Criteria

For a third measure of the impact of the views on the posterior distribution, we can turn to Information
Theory. The most common approach in Information Theory for measuring the distance between two
distributions is to use a relative entropy measure. A widely used relative entropy is the Kullback-
Leibler Information Criteria (KLIC). It measures the incremental amount of information required to
represent the posterior given the prior. As such it can be a useful tool for measuring the impact of the
views in the Black-Litterman model.

The continuous form of the KLIC is shown below:
_ dQ _ dP
(65) DPQ__fXlog(ﬁ)dp_fxlog(@)dp

We can apply it to the Black-Litterman Model where P and Q are the probability density functions
(PDF) for the posterior and prior distributions respectively.

From formula (65) we can see why the KLIC is not a true distance measure. It is not symmetric, the
measure from p to q will in general not be equal to the measure from q to p. One approach to making it
symmetric is to formulate it
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1
DS=E[DPQ+DQP]

It is often used in it's discrete form, shown below

(66)  KLIC(p.q)=Y p,n(£)

i=1 i
p; Posterior weight for asset (i)
q; Prior weight for asset (i)

In the discrete form we could use it to measure the distance from the prior weights to the posterior
weights. However, there are some drawbacks to using the discrete KLIC to measure the added
information content of the posterior versus the prior. One drawback is that in order to use the discrete
KLIC we require p; >0 and ;>0 V i. If we are using constrained optimization and a no-short selling
constraint then we can work around this restriction, but in the general case it is not a good metric.

If we use the continuous distributions of P and Q in formula (65), we will not suffer from the problems
which affect the discrete KLIC. In order to proceed, we first need to define P and Q. Given that both P
and Q are the multivariate normal distribution, their probability density function is:

1 (—5 (=) = (x =)
e
(2 _n_)NIZ det(Z)”z
Substituting formula (67) into (65) for both the prior and posterior distribution, and evaluating the
integral we arrive at the formula for the KLIC between two multi-variate normal distributions.
det(2

post )

det (X

67y  P.O=

1
(68) DKL=E 1

-1

Og +tr<Z;lstzpri)-i_(upast_upri)szost(upost_upri)_N

pri )

If we set X0 = Zpre then we can simplify formula (68) dramatically. The first term goes to 0, the
second and fourth terms cancel out as the (X ~'3)—N=tr(I1,)—~N=0 . That leaves only the third

term which is the Mahalanobis Distance, same as formula (54). Thus, we can see that the Consistency
Metric of Fusai and Meucci (2003) is related to the continuous KLIC of the distributions.

The KLIC is a relative measure, this means that while we can test the impact of differing views on the
posterior distribution for a given problem, we cannot easily compare the impact across problems using
the KLIC. Further, because the measure is not absolute like TEV or the Mahalanobis Distance, it will
be harder to develop intuition based on the scale of the KLIC.

A Demonstration of the Measures

Now we will work a sample problem to illustrate all of the metrics, and to provide some comparison of
their features. We will start with the equilibrium from He and Litterman (1999) and for Example 1 use
the views from their paper, Germany will outperform other European markets by 5% and Canada will
outperform the US by 4%.

Table 8 — Example 1 Returns and Weights, equilibrium from He and Litterman, (1999).
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Asset Py P, n Ueq Weo/(1+71) w* W* - weo/(1+1)
Australia 0.0 0.0 4.45 3.9 16.4 1.5% -14.9%
Canada 0.0 1.0 9.06 6.9 2.1% 53.3% 51.2%

France -0.295 0.0 9.53 8.4 5.0% -3.3% -8.3%
Germany 1.0 0.0 11.3 9 5.2% 33.1% 27.9%

Japan 0.0 0.0 4.65 4.3 11.0% 11.0% 0.0%

UK -0.705 0.0 6.98 6.8 11.8% -7.8% -19.6%

USA 0.0 -1.0 7.31 7.6 58.6% 7.3% -51.3%

q 5.0 4.0

o/t 0.02 .017

Table 9 - Impact Measures for Example 1

Measure Value (Confidence Level) Sensitivity (V1) | Sensitivity (V2)
Theil's Measure 1.67 (0.041) 1.15 2.21

Fusai and Meucci's Measure 0.87 (0.00337) -0.18 -0.33

A 0.292 0.538

TEV 8.20% 0.697 1.309

KLIC 1.222

Table (8) illustrates the results of applying the views and Table (9) displays the various impact

measures. If we examine the change in the estimated returns vs the equilibrium, we see where the USA

returns decreased by 29 bps, but the allocation decreased 51.3% caused by the optimizer favoring

Canada whose returns increased by 216 bps and whose allocation increased by 51.2%. This shows that

what appear to be moderate changes in return forecasts can cause very large swings in the weights of
the assets, a common issue with mean variance optimization.

Next looking at the impact measures, Theil's measure indicates that we can be confident at the 5% level
that the views are consistent with the prior. Fusai and Meucci's Mahalanobis Distance is less than 1, so

in return space the new forecast return vector is less than one standard deviation from the prior

estimates. The consistency measure is 0.30%, which means we can be very confident that the posterior

agrees with the prior. The measure of Fusai and Meucci is much more confident that the posterior is
consistent with the prior than Theil's measure is.

He and Litterman's Lambda indicates that the second view has a relative weight > !> which means it is

impacting the posterior more significantly than the first view.

The TEV of the posterior portfolio is 8.20% which is significant in terms of how closely the posterior

portfolio will track the equilibrium portfolio. Given the examples from their paper this scenario seems
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to have a very large TEV.

Next we change our confidence in the views by dividing the variance by 4, this will increase the change
from the prior to the posterior and allow us to make some judgements based on the impact measures.

Table 10 — Example 2 Returns and Weights, equilibrium from He and Litterman, (1999).

Asset Py P, p Weo/(1+7) w* W - Weo/(1+7)
Australia 0.0 0.0 4.72 16.4 1.5% -14.9%
Canada 0.0 1.0 10.3 2.1% 83.9% 81.8%

France -0.295 0.0 10.2 5.0% -7.7% -12.7%
Germany 1.0 0.0 12.4 5.2% 48.1% 32.9%

Japan 0.0 0.0 4.84 11.0% 11.0% 0.0%

UK -0.705 0.0 7.09 11.8% -18.4% -30.2%

USA 0.0 -1.0 7.14 58.6% -23.2% -81.8%

q 5.0 4.0

0/t 0.01 0

Table 11 - Impact Measures for Example 2

Measure Value (Confidence Level) |Sensitivity (V1) Sensitivity (V2)
Theil's Measure 2.607 (0.079) 3.32 6.66
Fusai and Meucci's Measure |2.121 (0.0470) -2.1 -4.06

A 0.450 0.859
TEV 12.90% 1.057 2.069
KLIC 8.090

Examining the updated results in Table (10) we see that the changes to the forecast returns have
increased and the changes to the asset allocation have become even more extreme. We now have an
80% increase in the allocation to Canada and an 80% decrease in the allocation to the USA. From
Table (11) we can see that Theil's measure has increased and we are no longer confident at the 5% level
that the views are consistent with the prior estimates. Fusai and Meucci's measure now is close to the
5% confidence level that the posterior is consistent with the prior. It is unclear in practice what bound
we would want to use, but 5% is a very common confidence level to use for statistical tests.

Once again we see the He and Litterman's Lambda shows the second view having more of an impact
on the final weights. In this scenario it is now up to 86%.

The TEV has increased, and is now 12.90% which seems very high and likely outside the tolerance.

The KLIC has increased 8x indicating that the posterior is significantly different from the prior.
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Next we change our confidence in the views by multiplying the variance by 4, this will decrease the
change from the prior to the posterior and allow us to make some judgements based on the impact

measures.

Table 12 — Example 3 Returns and Weights, equilibrium from He and Litterman, (1999).

Asset Py P, p Weo/(1+7) w* W - Weo/(1+7)
Australia 0.0 0.0 4.15 16.4 1.5% -14.9%

Canada 0.0 1.0 7.8 2.1% 22,7% 20.6%

France -0.295 0.0 8.85 5.00% 1.6% -3.5%

Germany 1.0 0.0 9.96 5.2% 16.8% 11.6%

Japan 0.0 0.0 4.45 11.0% 11.0% 0.0%

UK -0.705 0.0 6.86 11.8% 3.7% -8.1%

USA 0.0 -1.0 7.47 58.6% 38.0% -20.6%

q 5.0 4.0

0/t 0.09 0.07

Table 13 - Impact Measures for Example 2

Measure Value (Confidence Level) Sensitivity (V1) |Sensitivity (V2)
Theil's Measure 0.687 (0.0073) 0.086 0.159
Fusai and Meucci's Measure 0.147 (0.0000) -0.000547 -0.000933
A 0.120 0.220
TEV 3.40% 0.272 0.531
KLIC 0.121

In this scenario we see that Theil's measure now shows us confident at the 1% level that the views are
consistent with the prior estimates. Fusai and Meucci's Consistency Measure is very low, confident to
more than 99.999% indicating this is a highly plausible scenario. Lambda for the second view is now
less than 25% and about % that for the first view. This indicates that neither view is having a large
impact on the posterior. The TEV is down to a manageable 3.4% and all the discrete KLIC measures

have decreased as the impact of the views has lessened. The continuous KLIC measure seems to move
the most dramatically of the KLIC measures. The continuous KLIC is now actually less than Fusai and
Meucci's Mahalanobis Distance which indicates that the changes in the posterior Covariance matrix are
reducing the Mahalanobis Distance calculation embedded in that metric.

Theil's test ranged from a high of 99.27% confident to a low of 92.1% confident that the views were
consistent with the prior estimates. This indicates that using a threshold of 95-98% for a confidence
level would likely give good results, e.g. we can force the test to fail.

Fusai and Meucci's Consistency measure ranged from 99.99% confident to 95.3% confident,
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indicating the posterior was generally highly consistent with the prior by their measure. Fusai and
Meucci present that an investor may have a requirement that the confidence level be 5%. In light of
these results that would seem to be a fairly large value. The sensitivities of the Consistency measure
scale with the measure, and for low values of the measure the sensitivities are very low.

He and Litterman's Lambda ranged from a low of 22% for the second view to a high of 86%. This is
consistent with the impact of the second view on the weights, where in the first two scenarios the
weights of the United States and Canada were significantly impacted by the view.

Across the three scenarios the TEV increased from 3.4% in the low confidence case to 12.9% in the
high confidence case. The latter value for the TEV is very large. It is not clear what a realistic
threshold for the TEV is in this case, but these values are likely towards the upper limit that would be
tolerated. The sensitivities of the TEV scale with the TEV, so for posteriors with low TEV the
sensitivities are lower as well.

The KLIC ranged over one order of magnitude for the 16x change in the confidence in the views.

In analyzing these various measures of the tilt caused by the views, the TEV and discrete KLIC of the
weights measure the impact of the views and the optimization process, which we can consider as the
final outputs. If the investor is concerned about limits on TEV, they could be easily added as
constraints on the optimization process.

He and Litterman's Lambda measures the weight of the view on the posterior weights, but only in the
case of an unconstrained optimization. This makes it suitable for measuring impact and being a part of
the process, but it cannot be used as a constraint in the optimization process.

Theil's Compatibility measure, Fusai and Meucci's Consistency measure, the KLIC measure the
posterior distribution, including the returns and the covariance matrix. The latter more directly
measures the impact of the views on the posterior because it includes the impact of the views on the
covariance matrix.

Two-Factor Black-Litterman

Krishnan and Mains (2005) developed an extension to the alternate reference model which allows the
incorporation of additional uncorrelated market factors. The main point they make is that the Black-
Litterman model measures risk, like all MVO approaches, as the covariance of the assets. They
advocate for a richer measure of risk. They specifically focus on a recession indicator, given the thesis
that many investors want assets which perform well during recessions and thus there is a positive risk
premium associated with holding assets which do poorly during recessions. Their approach is general
and can be applied to one or more additional market factors given that the market has zero beta to the
factor and the factor has a non-zero risk premium.

They start from the standard quadratic utility function (6), but add an additional term for the new
market factor(s).

6 n
T 0 T T
(69)  U=w'II=(=) ZW_ZI s,w'B,
j -

U is the investors utility, this is the objective function during portfolio optimization.
w is the vector of weights invested in each asset
IT is the vector of equilibrium excess returns for each asset
Y is the covariance matrix for the assets
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do 1s the risk aversion parameter of the market
9; 1s the risk aversion parameter for the j-th additional risk factor
Biis the vector of exposures to the j-th additional risk factor

Given their utility function as shown in formula (69) we can take the first derivative with respect to w
in order to solve for the equilibrium asset returns.

(70)  II=8,Sw+),5,8,
J=1

Comparing this to formula (7), the simple reverse optimization formula, we see that the equilibrium
excess return vector (II) is a linear composition of (7) and a term linear in the ; values. This matches
our intuition as we expect assets exposed to this extra factor to have additional return above the
equilibrium return.

We will further define the following quantities:

I'm as the return of the market portfolio.
fj as the time series of returns for the factor
1j as the return of the replicating portfolio for risk factor j.

In order to compute the values of 6 we will need to perform a little more algebra. Given that the
market has no exposure to the factor, then we can find a weight vector, v;, such that v;' ;= 0. In order
to find v; we perform a least squares fit of ||, —v IT|| subject to the above constraint. v, will be

the market portfolio, and vof;= 0 V j by construction. We can solve for the various values of § by
multiplying formula (70) by v and solving for 9.

vgﬂ=50v52v0+z 6jvg[3j
Jj=1

By construction voB;= 0, and voII = r,, so

5=
’ <ngvo)

For any j > 1 we can multiply formula (70) by v; and substitute 9§, to get
fo=50vavj+; 6iv]T.Bi

Because these factors must all be independent and uncorrelated, then vi;= 0 V i # j so we can solve for
each 9;.
_(r =8,V X))
i~ T
(viB;)

The authors raise the point that this is only an approximation because the quantity ||/, —v/ IT|| may

not be identical to 0. The assertion that vi;= 0 V i # j may also not be satisfied for all i and j. For the
case of a single additional factor, we can ignore the latter issue.

In order to transform these formulas so we can directly use the Black-Litterman model, Krishnan and
Mains change variables, letting
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ﬁ=H—Z 6,8,
j=1

Substituting back into (69) we are back to the standard utility function

P
U=WTH—(70>WTZW

and from formula (11)

PII=PII-),5,P8,
Jj=1
thus

0=0-25,PB,
j=1

We can directly substitute I1 and Q into formula (30) for the posterior returns in the Black-
Litterman model in order to compute returns given the additional factors. Note that these additional
factor(s) do not impact the posterior variance in any way.

Krishnan and Mains work an example of their model for world equity models with an additional
recession factor. This factor is comprised of the Altman Distressed Debt index and a short position in
the S&P 500 index to ensure the market has a zero beta to the factor. They work through the problem
for the case of 100% certainty in the views. They provide all of the data needed to reproduce their
results given the set of formulas in this section. In order to perform all the regressions, one would need
to have access to the Altman Distressed Debt index along with the other indices used in their paper.

Future Directions

Future directions for this research include reproducing the results from the original papers, either Black
and Litterman (1991) or Black and Litterman (1992). These results have the additional complication of
including currency returns and partial hedging.

Later versions of this document should include more information on process and a synthesized model
containing the best elements from the various authors. A full example from the CAPM equilibrium,
through the views to the final optimized weights would be useful, and a worked example of the two
factor model from Krishnan and Mains (2005) would also be useful.

Meucci (2006) and Meucci (2008) provide further extensions to the Black-Litterman Model for non-
normal views and views on parameters other than return. This allows one to apply the Black-Litterman
Model to new areas such as alternative investments or derivatives pricing. His methods are based on
simulation and do not provide a closed form solution. Further analysis of his extensions will be
provided in a future revision of this document.

Literature Survey

This section will provide a quick overview of the references to Black-Litterman in the literature.
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The initial paper, Black and Litterman (1991) provides some discussion of the model, but does not
include significant details and also does not include all the data necessary to reproduce their results.
They introduce a parameter, weight on views, which is used in a few of the other papers but not clearly
defined. It appears to be the fraction [PTQ'P]((zZ)" + PTQ'P)"'. This represents the weight of the view
returns in the mixing. As Q — 0, then the weight on views — 100%.

Their second paper on the model, Black and Litterman (1992), provides a good discussion of the model
along with the main assumptions. The authors present several results and most of the input data
required to generate the results, however they do not document all their assumptions in any easy to use
fashion. As a result, it is not trivial to reproduce their results. They provide some of the key equations
required to implement the Black-Litterman model, but they do not provide any equations for the
posterior variance.

He and Litterman (1999) provide a clear and reproducible discussion of Black-Litterman. There are
still a few fuzzy details in their paper, but along with Idzorek (2005) one can recreate the mechanics of
the Black-Litterman model. Using the He and Litterman source data, and their assumptions as
documented in their paper one can reproduce their results.

Idzorek (2005) provides his inputs and assumptions allowing his results to be reproduced. During this
process of reproducing their results, I identified the fact that Idzorek does not handle the posterior
variance the same way as He and Litterman.

Bevan and Winkelmann (1998) and the chapter from Litterman's book Litterman, et al, (2003) do not
shed any further light on the details of the algorithm. Neither provides the details required to build the
model or to reproduce any results they might discuss. Bevan and Winkelmann (1998) provide details
on how they use Black-Litterman as part of their broader Asset Allocation process at Goldman Sachs,
including some calibrations of the model which they perform. This is useful information for anybody
planning on building Black-Litterman into an ongoing asset allocation process.

Satchell and Scowcroft (2000) claim to demystify Black-Litterman, but they don't provide enough
details to reproduce their results, and they seem to have a very different view on the parameter 1 than
the other authors do. I see no intuitive reason to back up their assertion that T should be set to 1. They
provide a detailed derivation of the Black-Litterman 'master formula'..

Christadoulakis (2002), and Da and Jagnannathan (2005) are teaching notes for Asset Allocation
classes. Christadoulakis (2002) provides some details on the Bayesian mechanisms, the assumptions of
the model and enumerates the key formulas for posterior returns. Da and Jagnannathan (2005)
provides some discussion of an excel spreadsheet they build and work through a simple example in the
content of their spreadsheet.

Herold (2003) provides an alternative view of the problem where he examines optimizing alpha
generation, essentially specifying that the sample distribution has zero mean.. He provides some
additional measures which can be used to validate that the views are reasonable.

Koch (2005) is a powerpoint presentation on the Black-Litterman model. It includes derivations of the
'master formula' and the alternative form under 100% certainty. He does not mention posterior
variance, or show the alternative form of the 'master formula' under uncertainty (general case).

Krishnan and Mains (2005) provide an extension to the Black-Litterman model for an additional factor
which is uncorrelated with the market. They call this the Two-Factor Black-Litterman model and they
show an example of extending Black-Litterman with a recession factor. They show how it intuitively
impacts the expected returns computed from the model.
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Mankert (2006) provides a nice solid walk through of the model and provides a detailed transformation
between the two specifications of the Black-Litterman 'master formula' for the estimated asset returns.
She also provides some new intuition about the value 1, from the point of view of sampling theory.

Meucci (2006) provides a method to use non-normal views in Black-Litterman. Meucci (2008) extends
this method to any model parameter, and allow for both analysis of the full distribution as well as
scenario analysis.

Braga and Natale (2007) describes a method of calibrating the uncertainty in the views using Tracking
Error Volatility (TEV). This metric is a well known for it's use in benchmark relative portfolio
management.

Several of the other authors refer to a reference Firoozy and Blamont, Asset Allocation Model, Global
Markets Research, Deutsche Bank, July 2003. I have been unable to find a copy of this document. 1
will at times still refer to this document based on comments by other authors. After reading other
authors references to their paper, I believe my approach to the problem is somewhat similar to theirs.
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Appendix A

This appendix includes the derivation of the Black-Litterman master formula using Theil's Mixed
Estimation approach which is based on Generalized Least Squares.

Theil's Mixed Estimation Approach

This approach is from Theil (1971) and is similar to the reference in the original Black and Litterman,
(1992) paper. Koch (2005) also includes a derivation similar to this.

If we start with a prior distribution for the returns. Assume a linear model such as
Al m=xfB+u

Where 7 is the mean of the prior return distribution, f is the expected return and u is the normally
distributed residual with mean 0 and variance ©.

Next we consider some additional information, the conditional distribution.
A2 q=pB+v

Where q is the mean of the conditional distribution and v is the normally distributed residual with mean
0 and variance Q.

Both ‘QQ and X are assumed to be non-singular.

We can combine the prior and conditional information by writing:

S

Where the expected value of the residual is 0, and the expected value of the variance is

e v 9

We can then apply the generalized least squares procedure, which leads to estimating B3 as

oAyl G Al

This can be rewritten without the matrix notation as

B+

u
1%

E

-1
A4 A
B:

A5 B=[x¢_1x'+p(2_1p']71[x'§b_lTr+p'.Q_lq]

We can derive the expression for the variance using similar logic. Given that the variance is the
expectation of (8—B)° , then we can start by substituting formula A.3 into A.5

A.6 [;:[x¢_1x’+p.(2_1p']_l[x’fi’_l(xﬁ-i-u)—i-p 'Q_l(pB+v)]
This simplifies to

B:[xd5_1x+p(21p’rl{xﬁtp_lx—i-p'Q_lpB+x<P_lu+p.Q_lv]
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B=[x(15_1x'+p[21p ']71 [x<15_1x '‘B+pQ'p 'ﬁ]+[x¢>_1x'+p.(21p ']71 [x¢_1u+p.Q_lv
E=B+{x¢71x +pQ'p ’]_l[xdTl u+p.(27]v]
A7 B—B={x¢_1x’+p.(21p']71[x¢_1u+p.(2_1v]
The variance is the expectation of formula A.7 squared.
E((B=pP)=(x 5 +p2'p'| [xo u"+p 2 V)
E((B—BP)=[xe™x"+pa! p] "
[x¢_luTud5_1xT+pQ_lvTv Q'pTx 45_1uTvQ_lpT+pQ_lvTuq5_1xT]
We know from our assumptions above that E(uu')=® | E(vw')=Q and E(uv')=0 becauseu
and v are independent variables, so taking the expectations we see the cross terms are 0

E((B-pP)=[xd" x"+p @ p'[[(xd ' @0 x" )+ p 2 Q2 )+ 0+0]
E((B-BP)=[xd" x"+p 0 p"[ [x &' x"+pQ ' p'|

And we know that for the Black-Litterman model, x is the identity matrix and ®=72 so after we
make those substitutions we have

A8 E((B_B)2>=[(TZ)_I+pQ_1pT -1
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Appendix B

This appendix contains a derivation of the Black-Litterman master formula using the standard Bayesian
approach for modeling the posterior of two normal distributions. One additional derivation is in
[Mankert, 2006] where she derives the Black-Litterman 'master formula' from Sampling theory, and
also shows the detailed transformation between the two forms of this formula.

The PDF Based Approach

The PDF Based Approach follows a Bayesian approach to computing the PDF of the posterior
distribution, when the prior and conditional distributions are both normal distributions. This section is
based on the proof shown in [DeGroot, 1970]. This is similar to the approach taken in [Satchell and
Scowcroft, 2000].

The method of this proof is to examine all the terms in the PDF of each distribution which depend on
E(r), neglecting the other terms as they have no dependence on E(r) and thus are constant with respect
to E(r).

Starting with our prior distribution, we derive an expression proportional to the value of the PDF.

P(A) o N(x,S/n) with n samples from the population.
So &(x) the PDF of P(A) satisfies

B g(x)cexpl(S/nf (E(r)—xT]

Next, we consider the PDF for the conditional distribution.
P(BIA) & N(W.E)

So &(u/x) the PDF of P(BJA) satisfies

B2 E(ulw)ocexp|S(E(r)— i)

Substituting B.1 and B.2 into formula (1) from the text, we have an expression which the PDF of the
posterior distribution will satisfy.

B3 Elxu)ocexp|—( T (E(r)—ul+(S1] (E(r)=xT))

b

or & (x|p)ocexp(—2)

Considering only the quantity in the exponent and simplifying
o=\ (E(r) = +(SIn) (E(r)-x))
&=(37(E(r=2E (ru+i?)+(Sin] (E(r)P =2 E(r)x+x7))
S=E(r)P (S +(S/n) )2 E(r)(u = +x(SIn) )+ X P +(SIn) "' X

If we introduce a new term y, where
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=(u2_1+x(S/n)_1)
(=" (S/n)7)

B.4

and then substitute in the second term
S=E(r) (S +(SIn) )2 E(r) y (7' +(SIn) )+ X 12 +(S/n) " X
Thenadd 0=)*(Z7'+(S/n) = (uZ"+x(SIn) " V(= "+(SIn)")"

S=E(rP(Z7'+(S/n) ) =2 E(r) y(Z 7' +(SIn) )+ 12+ (Sn) ' ¥
+ Y (T (SIn) )= (" +x(SIn) T (ET (S n) Y

d=E(r )2(2-1+(S/n)—1) 2E(F) y(ETH(SIn) )+ (ST H(SIn) Y
+37 (S In) = (2 X (SIn) T V(2T (S In) )
S=(S"+(SIn) ) EGP—2E(r) y+ 3+ (7 12+ (SIn) %)
— (= x(SIn) V(T (S
S=(S"+(SIn) ) EGP—2E(r) y+ 12— (uZ Hx(SIn) (T +(SIn) )
+H(ZYWPH(SIn) ) (T (SIn) Y ET (S In) )
¢=(2*‘+<S/n>”)[E<r>2—zE< )y+’]

—(urx? +2ux2_ (S/n) " +x2(SIn) (" +(SIn) ")
HE2 (S In) P TS )+ X (SIn) ) (ET (S n) )

o= +(SIn) | [E (r)=2E (r) y+ ]
Sin) zlxz 2uxZ NSIn) NS In) W T R (SIn) )
O=(S"'+(SIn) | [E(rP=2E(r)y+)]
HETH(S ) (=) (ETN(SIn) T

The second term has no dependency on E(r), thus it can be included in the proportionalality factor and
we are left we

B.5 E(xlu)oceXp(—[(Z”Jr(S/n)_‘)_l(E(R)—y)z])

(

—

Thus the posterior mean is y as defined in formula A.12, and the variance is

B.6 (2714-(5/71)71)_1
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Appendix C

This appendix provides a derivation of the alternate format of the posterior variance. This format does
not require the inversion of Q, and thus is more stable computationally.

() + P'Q'P)! = (=) + PTQPY!
()" + PTQPY PT(PTY! =
(PY'(Z)! + (PTY'PTQPY(PT)! =
((CZPTY" + Q'P)(PT)" =
((x=PT)! + Q'PY(PT) -
((cZPT)" + Q'Py ' (z2)(xZ) ' (PT)" =
((t<ZPT)! + Q'PY (:Z)(PZ) -
((zZP")!' + Q'P)'(t2)(P'1X)! =
(t=)(PTZ)"!

(TZ)(PIIE)! - (t=PT Y ((xZ)" + PTQPY”!
(tZ)(P™tZ)!' - (ZPT)((rZ)' + PTQ'P)!

(<ZPT)! + Q'PY(xZ)! + PTQ'P)!
(Q'PY(Z)" + PTQ P’
(QP)(xZ)" + PTQPY!
(QP)[(P'QP'Q) N ((xZ)" + PTQ'P)"]
— (@'P)[(P'Q)(Z)' P'Q + PTQ'PP'Q )]
= (Q'P)[(P'Q(Z)' P'Q + PT)]
— (@'P)[(P'Q)(Z)' P'Q + PT)(P1Z) ! (PiI)]
= (Q'P)[(P'Q)(PTZ)(tZ)" P'Q + (PtZ)PT)"(PiZ)]
= (Q'P)[(P'Q)Q + Pt=PT)"(P1Z)]
— (Q'P)[(Q'P)'(P(tZ)P" + Q) (PZ)]
= (PP + Q) P(tZ)
(tZ)(PTiZ) " - (P(1T)PT + Q) P(cZ) = (ZPT)((xZ)" + PTQP)"
(tZPM)(tZ)(P"Z) ! - (ZPT)(P(tZ)PT + Q) P(tX) = ((=2) ! + PTQ'P)’!
(tZ)(P"Z)(P™tZ)!' - (tZPT)(P(tZ)PT + Q) ' P(tX) = ((z2)' + PTQ'P)’!
(12) - (x=PT)(P(tZ)PT + Q) (P1X) — (x2)" + P'Q'P)"
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Appendix D

This appendix presents a derivation of the alternate formulation of the Black-Litterman master formula
for the posterior expected return. Starting from formula (29) we will derive formula (30).

E(r)=(z=y'+P Q"' P| [(x =)' T+P Q7' Q]
Separate the parts of the second term

E(r)= [z +p 0 ] syt )+ ez + PP p] (P2 o)
Replace the precision term in the first term with the alternate form

E(r)=|[rs—rs P [Prs P+ oSl sy m] [z PP o ] (P 2 0)]

Er)=|n-lrspprsprof Pz P o P (PP o)
E(r)=m-[rsp’[prspral prlj(c sz (x5 P o P (P 07 0)]
E(V)=:H_:TZPT[PTZPT+Q]_IPH:+:(TZ)[I,1+PTQ“PTz]_l(pTQ—lQ)]
E(r)=i17—:TZPT[PTZPT+.Q]_1PH::+:T2[1n+pTQ—1PTZ]—I(PTQ_I)Q]
E(r)=:H—:TZPT[PT2PT+Q]"pn:+:TZ[ln+PTQ—1PTZ]*I(Q(PT)_I)_IQ]
)=\ n-[rz P pr=p vol plj|rslapy v pes] o]

-1

()= m-[rsp'[prspreof prles p ey P s pes] ]

E(r)=|l-|csP[PrspP +of P+ rsPa+Prs P[0l
Voila, the alternate form of the Black-Litterman formula for expected return.

E(r)=m-|xx P [Prs P +a] |o-pP]
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Appendix E

This section of the document summarizes the steps required to implement the Black-Litterman model.
You can use this road map to implement either the He and Litterman version of the model, or the
Idzorek version of the model. The Idzorek version of the Black-Litterman model leaves out two steps.

Given the following inputs

w Equilibrium weights for each asset class. Derived from capitalization weighted CAPM Market
portfolio,

)y Matrix of covariances between the asset classes. Can be computed from historical data.

It Risk free rate for base currency

) The risk aversion coefficient of the market portfolio. This can be assumed, or can be computed

if one knows the return and standard deviation of the market portfolio.

T A measure of uncertainty of the equilibrium variance. Usually set to a small number of the
order of 0.025 — 0.050.

First we use reverse optimization to compute the vector of equilibrium returns, IT using formula (7).
(7) II=6%w

Then we formulate the investors views, and specify P, @ and Q. Given k views and n assets, then P is
a k x n matrix where each row sums to 0 (relative view) or 1 (absolute view). Q is a k x 1 vector of the
excess returns for each view. Q is a diagonal k x k matrix of the variance of the views, or the
confidence in the views. As a starting point, most authors call for the values of w;to be set equal to
p"tZip (where p is the row from P for the specific view).

Next assuming we are uncertain in all the views, we apply the Black-Litterman "'master formula' to
compute the posterior estimate of the returns using formula (30).

(30) [I=Im+r3P’[(Pr=P)+0| [0-PIH]

This following two steps are not needed when using the alternative reference model. In the alternative
reference model 2 ,=2 .

We compute the posterior variance using formula (35).

(35) M=t3-tXP'[PXP'+Q| Pr3

Closely followed by the computation of the sample variance from formula (32).
(32) X, =3+M

And now we can compute the portfolio weights for the optimal portfolio on the unconstrained efficient
frontier from formula (9).

9) w=II1(s%,)"
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