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Abstract

In this paper we address the constrained longest common subsequence problem. Given two sEqlieartea constrained
sequenceP, a sequence is a constrained longest common subsequence&fandY with respect toP if Z is the longest
subsequence df andY such thatP is a subsequence @f.

Recently, Tsai [Inform. Process. Lett. 88 (2003) 173-176] proposed(a%-@zz - r) time algorithm to solve this problem
using dynamic programming technique, where: andr are the lengths ok, Y and P, respectively.

In this paper, we present a simple algorithm to solve the constrained longest common subsequence protadem in)O
time and show that the constrained longest common subsequence problem is equivalent to a special case of the constraine
multiple sequence alignment problem which can also be solved with the same time complexity.
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1. Introduction of the similarity of biological sequences. Indeed, if we
wish to compare two strands of DNA or two protein

The longest common subsequence (LCS) problem S€duences, we may compute the LCS of them. The
has several applications in many apparently unrelated WCS Problem on multiple sequences is NP-hard [4].
fields, such as computer soige, mathematics, molec- However, it may be solved in polynomial time for two
ular biology, speech recogion, gas chromatography. ~ SEqUENCES.

In molecular biology, LCS is an appropriate measure ~ Many algorithms have been designed using the
dynamic programming technique on this problem

[3,5,8]. Tsai addressed a variant of the LCS problem,
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on the dynamic programming technique was proposed  The following theorem characterizes the structure
for this problem by Tsai [7], where, m andr are the of an optimal solution based on optimal solutions to
lengths ofX, Y and P, respectively. subproblems, for the constrained LCS problem.

In this paper, we present a simple algorithm to
solve the CLCS problem in @ - m - r) time. We Theorem 2.1. If Z = (z1,22,...,2¢) is the con-
further show that this CLCS problem is equivalent to strained LCSof X = (x1,x2,...,x,) and ¥ = (y1, y2,

a special case of the constrained sequence alignment .., y,) With respect to P = (p1, p2, ..., p,), thefol-
(CSA) problem which can be solved with the same lowing conditions hold:
time complexity.

The rest of this paper is organized as follows. In 1. If x, = y,» = p, then z; = x,, = y, = p, and
Section 2, we define formally the CLCS problem and Z¢-1 is the constrained LCS of X,,—1 and Y;,—1
characterize the structure in computing the CLCS. In with respect to P,_1.

Section 3, we present a simple dynamic programming 2. If x, = y» and x, # p, then z; = x, = y,, and
algorithm that computes the CLCS of two sequences  Z¢—1 is the constrained LCS of X,,—1 and Y,,—1
with respect to a constrained sequence. In Section 4,  Withrespect to P.

we show that the CLCS problem is equivalent to a 3. If xx # ym then z¢ # x, implies that Z is a
special case of the constrained sequence alignment  constrained LCSof X,,_; and Y’ with respect to P.

prob|em [1,6] 4. If Xn 75 Ym then ¢ ?é Ym IrT‘plleS that Z is a
constrained LCS of X and Y,,—1 with respect
to P.

2. Characterization of the constrained LCS

problem Proof. As Z is the constrained LCS of andY with

respect toP, x,, y, andz, are the last characters of

) ) X, Y and Z, respectively, we have; = x, = y,, if
A sequence is a string of characters over a set of Xn = ym. Assume by contradiction thak # x,, we

alphabetsX'. A subsequenc& of a sequenceX is may appendr, = y, t0 Z to obtain a constrained
obtained by deleting some characters fram(not common subsequence a&f and ¥ of length ¢ + 1,
necessarily contiguous); we also say tiatontains contradicting the hypothesis that, of length ¢, is
Z if Z is a subsequence of. Given two sequences constrained LCS o and Y with respect toP.
X andY, Z is a common subsequence Kfand Y Therefore, ifx, = y,, thenz; = x, = y,. This will be

if Z is a subsequence of botki and Y. Z is the  ysed in the proofs of 1 and 2. Now, we prove the four
longest common subsequence (LCS) of X and Y if properties.

Z is the longest among all common subsequences  Proof of 1. Sincex, = Ym = pr, W& havex, =
of X andY. For example, I'm' and “r i’ are both ym = pr = z¢. The prefixZ,_1 is a common subse-
the longest common subsequencemf bl ent and quence ofX,_1 and Y,,_1 with respect toP,_1 of
“al gori t hnf. Let P be a constrained sequence. We |ength¢ — 1. Now, we show thaZ,_1 is a constrained
say thatZ is the constrained LCS of X andY with LCS of X,,_1 andY,,_1 with respect taP,_1. Assume
respect toP if Z is the longest subsequence Bf by contradiction that there exists a constrained com-
andY and Z containsP (i.e., P is a subsequence mon subsequenceof X,_; andY,,_1 with respect to
of Z). For example, I'nf is the longest common  P._; whose length is greater th@n- 1. If we append
subsequence opt obl ent and “al gori t him with X, = ym = pr t0 S we obtain a constrained common
respecttol'”. subsequence of andY with respect toP of length

Givenasequenck = (x1, x2, ..., x,), where char- greater thart, contradicting the hypothesis thatis a
acterx; € ¥ for anyi = 1,...,n, we denote the constrained LCS ok andY with respect taP.

ith prefix of X by X; = (x1,x2,...,x;) for any Proof of 2. Sincex, = y, and x, # p,, then
i =1,...,n. In particular,Xo denotes the empty se- x, = y,, = z¢ andzy # p,. As z; # p,, the prefix
quence. For example, ik = “al gorit hni then Zy—1 is a common subsequence &f,_1 and Y,,,_1

X3="al g". with respect toP of length ¢ — 1. Now, we show
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that Z,_1 is a constrained LCS oX,_1 andY,,_1
with respect toP. Assume by contradiction that there
exists a constrained common subsequehoé X,,_1
andY,,_1 with respect toP whose length is greater
than¢ — 1. If we appendy, = y,, to S, we obtain a
constrained common subsequenceXofind Y with
respect taP of length greater thas, contradicting the
hypothesis tha¥ is a constrained LCS ok andY
with respect taP.

Proof of 3. Sincez¢ # x,,, Z is a constrained com-
mon subsequence df,_1 andY with respect toP.
Now, we show thatZ is a constrained LCS aoX,_1
andY with respect taP. Assume by contradiction that
there exists a constrained common subsequénak
X,—1 andY with respect toP whose length is greater
than ¢, then S also is a constrained common subse-
quence ofX andY with respect toP whose length is
greater thart. This contradicts the assumption that
is a constrained LCS of andY with respect taP.

Proof of 4. The proof is similar to proof of 3. O

The next theorem shows a characterization of
the constrained LCS problem when no constrained
common subsequence exists.

Theorem 2.2. If there is no constrained common sub-
sequenceof X = (x1, x2,...,xp)and Y = (y1, y2, ...,
ym) With respect to P = (p1, p2, ..., pr), the follow-
ing conditions hold:

1. If x, = ym = pr then there is no constrained
common subsequence of X,—1 and Y,,_1 with
respect to P,_1.

. There is no constrained common subseguence of
the two sequences X’ and Y’ with respect to P,
for each of the following three cases:

e X' =X, 1andY' =Y,,_1;
e X' =X,1andY’ =Y;
e X'=XandY' =Y,,_1.

Proof of 1. Assume by contradiction that there is no
constrained common subsequenc&afndY with re-
spect toP but there exists a constrained common sub-
sequence of X,,_1 andY,,_1 with respect toP,_1.
Sincex, = y, = p, then the concatenation f to Z
is a constrained common subsequenck ahdY with
respect taP. Contradiction.

177

Proof of 2. Assume by contradiction that there is
no constrained common subsequenc& @ndY with
respect toP but there exists a constrained common
subsequencg of X’ andY’ with respect toP. This
is a contradiction becausg is also a constrained
common subsequence BfandY with respect toP.

3. A simplealgorithm

Given two sequenceX, Y and a constrained se-
quenceP, whose lengths are, m andr, respectively,
we defineL(i, j, k) as the constrained LCS length
of X; andY; with respect toPy, for any 0<i < n,
0<j<mand0<k<r. In particular,L(n,m, r)
gives the length of the constrained LCS Xfand Y
with respect toP. We design an algorithm that com-
putes the CLCS ofX and Y with respect toP in
O(n-m-r) time.

If eitheri < k or j <k, there is no constrained
common subsequence fof; and Y; with respect
to Pr. We represent this condition by denoting, ;,

k) = —oo, whereoo represents a large number, greater
than the maximum value efandm. If i =0orj =0
andk =0, the CLCS forX; andY; with respect taPg

has length 0. The characterization of the structure of a
solution for the CLCS problem based on solutions to
subproblems shown in Section 2, yields the following
recursive relation, forany & i <n, 0< j <m and
0<k<r,

1+LG—1,j—1k—1)
if i, j,k>0andx; =y; = px,
1+LG—-1,j—1k)
ifi,j>0, x; =y; and
(k=00rx; # pr),
max(L(i —1, j, k), L, j—1k))
if i, j >0andx; #y;

L@, j, k)= @

with boundary conditions,
L(i,0,00=L(0, j,00=0
and

L(0, j,k)=L(,0,k)=—o0,

fori=0,...,n,j=0,...,mandk =1, ...
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This is a generalization of the recurrence formula
that computes the length of an LCS between two
sequences [2], indeed,if= 0, it holds that
1+4LG—-1,j-1,0

ifi,j>0, x; =yj,
maxL(i —1,;,0),L3G j—1,0) (2

ifi,j >0, x; #yj,
0 ifi=0orj=0.

LG, j,0)=

Constructing the constrained LCS. The CLCS of
X and Y with respect toP can be constructed
by backtracking through the computation path from
L(n,m,r) to L(0,0,0). Let Z, the initial CLCS,
be an empty sequence. If the value bfi, j, k) is
computed fromL(i —1,j — 1, k)or L(i —1,j — 1,
k — 1), prepend the charactef(= y;) to Z. Repeat
backtrackinguntil reachingL(0, 0,0), and Z is the
CLCS of X andY with respect toP. Recovering the
computation path of the CLCS takes at mosgn G-
m +r) steps.

Thus, computing and constructing the CLCS takes
O(n -m - r) time and space.

4, CLCSand constrained sequence alignment

In this section, we show that the CLCS problem
is in fact a special case of thenstrained sequence
alignment (CSA) problem [1,6].

Let X = (x1,x2,...,xy) andY = (y1, y2, ..., Ym)
be two sequences over, with lengthsn andm, re-
spectively. We define thequence alignment of X and
Y as two equal-length sequence’s= (x3, x5, ..., x,,)
andY’ = (y1,y5,...,y,,) such thai X'| = |Y'| = n’,
wheren’ > n, m, and removing all space characters
“-"from X’ andY’ givesX andY, respectively, with
the assumption that ng = y/ = “- " forany 1<i <
n’. For a given distance functiat(x’, y") which mea-
sures themutation distance between two characters,
wherex’,y’ € X U {- }, the alignment score of two
length#’ sequenceX’ andY’ is defined as

>80y
1<i<n’

In the constrained sequence alignment (CSA) prob-
lem, we are given, in addition to the inputs of the
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P = {(p1, p2, ..., px), Where P is a common subse-
quence ofX andY. A solution of the CSA problem is
[}y(f] an alignment of¥ andY, such that wherX’ is
placed on top of’’, each character i® appears in an
entire column of the alignment and in the same order
asP, i.e., there exists a list of integefs, co, ..., ¢)
wherel<ci <o <---<¢, <n/,andforall 1<k <
r,we havex, =y, = px. The CSA problemis to find
X’ andY’ with minimum alignment score when given
two sequence¥, Y, a constrained sequenéeand a
distance functiod (x’/, y').

The CSA problem can also be solved ivOm - r)
time and space [1]. Next, we show that the CLCS
problem is equivalent to the CSA problemXfandY
with respect taP, using the distance functidrix’, y),
wherex’,y’ € Y U {-},

-1
s(x',y)=10

if x’ =y’ (match
if x’ #£ y’ (insertion, deletion (3)
or replacement

The distance functio(x’, y’) in Eq. (3) favors
matching characters, and does not penalize mismatch-
ing characters or insertion of spaces. Therefore, when
the CSA alignment score iss, there are matchings
in X andY with respect toP.

Theorem 4.1. Given two sequences X, Y and a
constrained sequence P, the CLCS of problem is
equivalent to the CSA problem when the distance
function §(x’, y’) givenin Eq. (3) is used.

Proof. Let [’Y(//] be the CSA solution with the mini-
mum alignment scorey’ = |X’| = |Y’|. By the de-
finition of CSA with the distance functio(x’, y),
[}y(f] has the minimum alignment score onlyXf and
Y’ have the most number of matches (i.€.= y;)

and every character iR appears as a column [li//]
Let Z’' be the subsequence &f andY’, containing
only the matching characters X andY’. Obviously,
7' is a common subsequence ¥f and Y’ contain-
ing P. Thus,Z’ is the CLCS ofX andY with respect
to P.

Let Z be a CLCS solution ok andY with respect
to P and |Z| = ¢. By definition of CLCS,P is a
subsequence af and Z is a common subsequence
of both X andY. To obtain an optimal solution for the

sequence alignment problem, a constrained sequenceCSA problem ofX andY with respect toP, we can
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constructX” andY’ by inserting spaces int& andY
respectively, such that every characteZimppears in
the same position iX’ and Y’. Using the distance
function 8(x’, '), the alignment score c{fx] is —¢,
i.e., the alignmenﬁ’y(f] has¢ matching columns. Since
P is a subsequence gf, there is a column matchingin
[’)ff] for every character i?. As Z is a CLCS ofX and
Y with respect toP, the optimal CSA solution foX
andY with respect toP has at most matches, i.e.,
with the minimum alignment score®. Hence,[’}ff] is
the optimal CSA solution foiX and Y with respect
toP. O

5. Conclusions

In this paper, we have addressed the constrained
longest common subsequence problem proposed by

Tsai [7]. An On? - m? - r) time algorithm based on

the dynamic programming technique was proposed to

compute a CLCS foK andY with respect taP, where
n, m andr are the lengths ok, Y and P, respectively.
We have described a simpleg® m - r) time algorithm

0<j<nrlfaox<k<r(L(n/2’ k)

+L"(n/2+1, j+ 1 k+1))

which can be found in G - m - r) time (sayKnmr
time, wherek is a constant) and @: - r) space. As-
sume the maximum value occurs whe¢n= j’ and

k = k', then we can further solve the two subprob-
lemsL(3n, j’,k) andL"(3n + 1, j' + 1,k' + 1) in
%Kmnr time and Gm - r) space. Continuing this re-
cursively, we can solve the CLCS problem in the same
O® -m - r) time and Qm - r) space complexities.
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