
l

gs
n
ic

mon

son, and
ences.

aximum

ver, the
rs have
several

at

ld be
Information Processing Letters 88 (2003) 173–176

www.elsevier.com/locate/ip

The constrained longest common subsequence problem

Yin-Te Tsai

Department of Computer Science and Information Management, Providence University,
200 Chung Chi Road, Shalu, Taichung Hsien 433, Taiwan, R.O.C.

Received 23 October 2002; received in revised form 10 July 2003

Communicated by F.Y.L. Chin

Abstract

This paper considers a constrained version of longest common subsequence problem for two strings. Given strinS1, S2
andP , the constrained longest common subsequence problem forS1 andS2 with respect toP is to find a longest commo
subsequencelcs of S1 andS2 such thatP is a subsequence of thislcs. An O(rn2m2) time algorithm based upon the dynam
programming technique is proposed for this new problem, wheren, m andr are lengths ofS1, S2 andP , respectively.
 2003 Elsevier B.V. All rights reserved.

Keywords: Constrained longest common subsequence problems; Algorithms; Dynamic programming

1. Introduction

A string is a sequence of symbols over an alphabet setΣ . A subsequence of a strings is obtained by deleting
zero or more symbols froms. The longest common subsequence (LCS) problem for strings is to find a com
subsequence having maximum length. For example, ifS1 = abcacba andS2 = aabbccbbaa,abccba is a
LCS for these two strings. This problem has many important applications in data compression, file compari
pattern recognition. In molecular biology, LCS is an appropriate measure of the similarity of biological sequ
When we want to know how homologous those DNA or protein sequences are, we can calculate the m
number of identical symbols among them. That is exactly an LCS of them.

The LCS problem on multiple strings was shown to be NP-hard [6] (even on a binary alphabet). Howe
LCS problem on two strings is polynomial-time solvable and has received much attention. Many autho
designed algorithms using the dynamic programming technique on this problem [8,4,7]. You may get
surveys for this problem from [5,1–3].

Suppose we want to compute an LCS for the similarity ofS1 andS2 as shown in Fig. 1. We may say th
the similarity of them is 15, because an LCS ofS1 andS2 is abcabcabcabcabc of length 15. However, this
LCS is not satisfactory if we know that subsequencedef appears in both strings and this subsequence shou
considered for the similarity measurement. In this case, bothdhejifabcabc andgdejifabcabc of length

E-mail address: yttsai@pu.edu.tw (Y.-T. Tsai).

0020-0190/$ – see front matter 2003 Elsevier B.V. All rights reserved.
doi:10.1016/j.ipl.2003.07.001

174 Y.-T. Tsai / Information Processing Letters 88 (2003) 173–176

arise in
n.

ings
ce
,

lso
dynamic

plexity

et

d

Fig. 1. An example forS1 andS2.

12 are LCSs under this constraint, and the similarity you concern becomes 12. Such a problem could
computing the homology of two biological sequences which have a specific or putative structure in commo

This paper considers a new problem of finding an LCS with a requested pattern for two strings. Given strS1,
S2 andP , the constrained LCS problem forS1 andS2 with respect toP is to find a longest common subsequen
lcs of S1 and S2 such thatP is a subsequence of thislcs. For example, ifS1 and S2 are as shown in Fig. 1
bothdhejifabcabc andgdejifabcabc are constrained LCSs forS1 andS2 with respect toP = def. The
LCS problem for stringsS1 andS2 on Σ can be reduced to a constrained LCS problem for stringsS′

1 = $ + S1
and S′

2 = $ + S2 with respect toP = $, where $/∈ Σ . For example, the LCS problem forS1 = abcacba
and S2 = aabbccbbaa could be reduced to the constrained LCS problem for stringsS′

1 = $abcacba and
S′

2 = $aabbccbbaa with respect toP = $. The lower bound of time complexity of the LCS problem is a
a lower bound of the constrained LCS problem. In this paper, we propose an algorithm based upon the
programming technique with O(rn2m2) time for this new problem, wheren, m andr are lengths ofS1, S2 andP ,
respectively.

The rest of this paper is organized as follows: Section 2 describes our algorithm and give the time com
analysis for the algorithm. Finally some future research directions are provided in Section 3.

2. The algorithm

Let S[x..y] denote the substring of stringS from positionsx to y if x � y, and an empty string otherwise. L
S[x] be the character at positionx in string S. Let L(x, y, x ′, y ′) be the length of LCS of stringsS1[x..x ′] and
S2[y..y ′] if 1 � x � x ′ � n and 1� y � y ′ � m, and 0 otherwise. For 1� k � r, 1 � i � n and 1� j � m, let
Lk(i, j) be the length of constrained LCS of stringsS1[1..i] andS2[1..j] with respect toP [1..k] if S1[i] = S2[j] =
P [k], and−∞ otherwise. For 1� i � n and 1� j � m, it is easy to know thatL1(i, j) = L(1,1, i − 1, j − 1) + 1
if S1[i] = S2[j] = P [1], and−∞ otherwise. Then we have the following result.

Lemma 1. For 2� k � r , 1 � i � n and 1 � j � m,

Lk(i, j) =
{

max1�x<i,1�y<j {Lk−1(x, y) + L(x + 1, y + 1, i − 1, j − 1) + 1} if S1[i] = S2[j] = P [k];
−∞ otherwise.

Proof. Suppose thatS1[i] = S2[j] = P [k]. Assume thatk > 1. Letx andy be such thatS1[x] = S2[y] = P [k − 1]
where 1� x < i and 1� y < j . Obviously, there is a constrained common subsequence ofS1[1..i] andS2[1..j]
with lengthLk−1(x, y) + L(x + 1, y + 1, i − 1, j − 1) + 1. SinceLk(i, j) is the longest length of constraine
common subsequence forS1[1..i] andS2[1..j] with respect toP [1..k], we have

Lk(i, j) � max
1�x<i,1�y<j

{
Lk−1(x, y) + L(x + 1, y + 1, i − 1, j − 1) + 1

}
.

Y.-T. Tsai / Information Processing Letters 88 (2003) 173–176 175

AssumeLk(i, j) > max1�x<i,1�y<j {Lk−1(x, y) + L(x + 1, y + 1, i − 1, j − 1) + 1}. Let x ′ andy ′ be such
thatS1[x ′], S2[y ′] andP [k − 1] are identical and aligned together in an optimal solutionL with lengthLk(i, j),

of

of
ds:

as
where 1� x ′ < i and 1� y ′ < j . ThenLk(i, j) = L′ + L′′ + 1, whereL′ denote the length of constrained LCS
S1[1..x ′] andS2[1..y ′] in L andL′′ denote the length of LCS ofS1[x ′ + 1..i − 1] andS2[y ′ + 1..j − 1] in L. So
we have the following inequality by the assumption

L′ + L′′ + 1 > max
1�x<i,1�y<j

{
Lk−1(x, y) + L(x + 1, y + 1, i − 1, j − 1) + 1

}
. (1)

By the definitions of functionsLk−1 andL, we haveLk−1(x
′, y ′) � L′ andL(x ′ + 1, y ′ + 1, i − 1, j − 1) � L′′.

Then the following inequality can be derived from inequality (1):

Lk−1(x
′, y ′) + L(x ′ + 1, y ′ + 1, i − 1, j − 1) + 1

> max
1�x<i,1�y<j

{
Lk−1(x, y) + L(x + 1, y + 1, i − 1, j − 1) + 1

}
. (2)

Inequality (2) implies thatLk−1(x
′, y ′) + L(x ′ + 1, y ′ + 1, i − 1, j − 1) + 1 is larger than the maximum value

Lk−1(x, y) + L(x + 1, y + 1, i − 1, j − 1) + 1, which is a contradiction. Therefore, the following inequality hol

Lk(i, j) � max
1�x<i,1�y<j

{
Lk−1(x, y) + L(x + 1, y + 1, i − 1, j − 1) + 1

}
. ✷

Lemma 2. The length of constrained LCS lcs for strings S1 and S2 with respect to string P is |lcs| =
max1�i�n,1�j�m{Lr(i, j) + L(i + 1, j + 1, n,m)}, where n, m and r are lengths of S1, S2 and P , respectively.

Proof. AssumeS1, S2 andP are strings over an alphabet setΣ . Let S′
1 = S1 + $, S′

2 = S2 + $ andP ′ = P + $,
where $/∈ Σ . Let L′(x, y, x ′, y ′) be the length of LCS of stringsS′

1[x..x ′] andS′
2[y..y ′] if 1 � x � x ′ � n + 1 and

1 � y � y ′ � m + 1, and 0 otherwise. For 1� k � r + 1, 1� i � n + 1 and 1� j � m + 1, let L′
k(i, j) be the

length of constrained LCS of stringsS′
1[1..i] andS′

2[1..j] with respect toP ′[1..k] if S′
1[i] = S′

2[j] = P ′[k], and
−∞ otherwise. By the result of Lemma 1, we easily have the following equation for 2� k � r + 1, 1� i � n + 1
and 1� j � m + 1:

L′
k(i, j) =

{
max1�x<i,1�y<j

{
L′

k−1(x, y) + L′(x + 1, y + 1, i − 1, j − 1) + 1
}

if S′
1[i] = S′

2[j] = P ′[k];
−∞ otherwise.

Let lcs′ denote a constrained LCS forS′
1 andS′

2 with respect toP ′. It is easy to know|lcs| = |lcs′| − 1. Since
S′

1[n + 1] = S′
2[m + 1] = P ′[r + 1] = $, we have

|lcs′| = L′
r+1(n + 1,m + 1) = max

1�x<n+1,1�y<m+1

{
L′

r (x, y) + L′(x + 1, y + 1, n,m) + 1
}
.

SinceS1[1..n] = S′
1[1..n], S2[1..m] = S′

2[1..m] andP [1..r] = P ′[1..r], we haveL′
r (x, y) = Lr(x, y) andL′(x +

1, y + 1, n,m) = L(x + 1, y + 1, n,m) for 1� x � n and 1� y � m. Then the above equation can be rewritten

|lcs′| = max
1�x�n,1�y�m

{
Lr(x, y) + L(x + 1, y + 1, i − 1, j − 1) + 1

}
.

Finally, we conclude that

|lcs| = |lcs′| − 1= max
1�x�n,1�y�m

{
Lr(x, y) + L(x + 1, y + 1, i − 1, j − 1)

}
. ✷

In the following, we show the values of functionsL1, L2 andL3 to compute the length of constrained LCSlcs
for two strings given in Fig. 1 with respect toP = def.

(1) L1(i, j) = −∞ for 1 � i � 27 and 1� j � 25, except thatL1(10,2) = L(1,1,9,1) + 1 = 1 andL1(13,2) =
L(1,1,12,1) + 1 = 2.

176 Y.-T. Tsai / Information Processing Letters 88 (2003) 173–176

(2) L2(i, j) = −∞ for 1 � i � 27 and 1� j � 25, except thatL2(16,6) = max{L1(10,2) + L(11,3,

15,5),L1(13,2) + L(14,3,15,5)} + 1 = 3, andL2(16,8) = max{L1(10,2) + L(11,3,15,7), L1(13,2) +

the

,

ic

ed LCS
m is a

ound and

Raton,

39–48.

Oxford
L(14,3,15,7)}+ 1= 3.
(3) L3(i, j) = −∞ for 1 � i � 27 and 1� j � 25, except thatL3(21,10) = max{L2(16,6) + L(17,7,20,9),

L2(16,8) + L(17,9,20,9)}+ 1 = 6.
(4) |lcs| = max{L3(21,10) + L(22,11,27,25)} = 12.

Theorem 1. The constrained LCS problem for strings S1 and S2 with respect to string P can be solved in O(rn2m2)

time, where n, m and r are lengths of S1, S2 and P , respectively.

Proof. First of all, we describe the preprocessing steps of O(n2m2) time for determiningL(x, y, x ′, y ′) in O(1)

time. For 1� a � n and 1� b � m, let Ma,b be a 2D matrix of size(n − a + 1) × (m − b + 1) such that the
value ofMa,b[u,v] is the length of longest common subsequence ofS1[a..a + u − 1] andS2[b..b + v − 1], where
1 � u � n − a + 1 and 1� v � m − b + 1. Matrix Ma,b can be computed in O((n − a + 1) · (m − b + 1)) time
by the algorithm in [8] for computing the length of LCS ofS1[a..n] andS2[b..m]. Hence, all matricesMa,b can
be found in

∑
1�a�n

∑
1�b�m O((n− a + 1) · (m − b + 1)) = O(n2m2) time. After those preprocessing steps,

value ofL(x, y, x ′, y ′) can be determined in O(1) time by table lookup forMx,y[x ′ − x + 1, y ′ − y + 1].
According to the formulation in Lemma 1, eachLk(i, j) can be found in O(ij) time if functionLk−1 is known.

Then functionLk can be obtained in O(
∑

1�i<n,1�j<m ij) = O(n2m2) time. Thus allLk ’s need O(rn2m2) time
in total. Moreover, it takes O(nm) time to compute|lcs| in Lemma 2 when functionLr is known. Therefore
we conclude that the constrained LCS problem can be solved in O(n2m2 + rn2m2 + nm) = O(rn2m2) time in
total. ✷

3. Concluding remarks

This paper considers a new problem for finding a longest common subsequencelcs for two stringsS1 and
S2 such that stringP is a subsequence of the solutionlcs. An O(rn2m2) time algorithm based upon dynam
programming has been proposed for this new problem, wheren, m andr are lengths ofS1, S2 andP , respectively.
To reduce the time and space requirement of this problem would be the next important work.

The LCS problem on multiple strings was shown to be NP-hard [6]. It is easy to show that the constrain
problem for multiple strings is also NP-hard. To exploit exact and approximate algorithms for this proble
new research direction.

References

[1] A. Apostolico, String editing and longest common subsequences, in: G. Rozenberg, A. Salomaa (Eds.), Linear Modeling: Backgr
Application, in: Handbook of Formal Languages, Vol. 2, Springer-Verlag, Berlin, 1997, pp. 361–398.

[2] A. Apostolico, General pattern matchings, in: M.J. Atallah (Ed.), Handbook of Algorithms and Theory of Computation, CRC, Boca
FL, 1998, Chapter 13.

[3] L. Bergroth, H. Hakonen, T. Raita, A survey of longest common subsequence algorithms, in: SPIRE, A Coruña, Spain, 2000, pp.
[4] D.S. Hirschberg, Algorithms for the longest common subsequence problem, J. ACM 24 (1977) 664–675.
[5] D.S. Hirschberg, Serial computations of Levenshtein distances, in: A. Apostolico, Z. Galil (Eds.), Pattern Matching Algorithms,

University Press, Oxford, 1997, pp. 123–141.
[6] D. Maier, The complexity of some problems on subsequences and supersequences, J. ACM 25 (1978) 322–336.
[7] W.J. Masek, M.S. Paterson, A faster algorithm computing string edit distances, J. Comput. System Sci. 20 (1980) 18–31.
[8] R.A. Wagner, M.J. Fischer, The string-to-string correction problem, J. ACM 21 (1974) 168–173.

