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Abstract. Discovering protein structural signatures directly from their primary 
information is a challenging task, because the residues associated with a 
functional motif are not necessarily clustered in one region of the sequence. 
This work proposes an algorithm that aims to discover conserved sequential 
blocks interleaved by large irregular gaps from a set of unaligned biological 
sequences. Different from the previous works that employ only one type of 
constraint on gap flexibility, we propose using combination of intra- and inter-
block gap constraints to discover longer patterns with larger irregular gaps. The 
smaller flexible intra-block gap constraint is used to relax the restriction in local 
motif blocks but still keep them compact, and the larger flexible inter-block gap 
constraint is proposed to allow longer irregular gaps between compact motif 
blocks. Using two types of gap constraints for different purposes improves the 
efficiency of mining process while keeping high accuracy of mining results. 
The efficiency of the algorithm also helps to identify functional motifs that are 
conserved in only a small subset of the input sequences.  

1   Introduction 

Automatic discovery of patterns in unaligned biological sequences is an important 
problem in molecular biology. For a set of proteins that share a common function or 
structure, it is often that only a few of common residues are conserved among them 
[4]. In biology, a motif is a pattern that has a specific structure and is functionally 
significant [4]. Functional motifs are not necessarily found in only one region of the 
protein sequence. Instead, the conserved residues usually appear as clusters (it is 
called a motif block in this paper), and multiple clusters may simultaneously 
contribute to an important substructure [13]. Limited insertions and deletions are 
admitted within a motif block, and large insertions and deletions may happen between 
motif blocks during evolution. 

Protein families can often be characterized by one or more such patterns, which 
each consist of one or more motif blocks [12, 18, 21, 22]. Many computational 
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approaches have been introduced for the problem of motif identification [1, 2, 3, 6, 8, 
11, 16, 17]. These approaches can be categorized based on the type of the motifs they 
discover, statistical or deterministic. In this paper, we focus on the problem of 
discovering deterministic patterns like some other web services, Pratt [6] and 
Teiresias [17]. A deterministic pattern can be matched or not matched by a sequence. 
In the mining process, a pattern is found if it matches more than a user-specified 
percentage of the input sequence set. This is the so-called minimum support 
constraint. 

A sequential pattern is called sparse if a large number of wildcards exist between 
pattern components, and is treated as flexible, contrary to fixed, if different sequences 
match the same pattern with different sizes of gaps, where a gap is defined as a set of 
one or more successive wildcards. Discovering sparse and flexible patterns is a time-
consuming task due to the large search space of solutions. So many related studies 
employ constraints to expedite the mining process [6, 14, 17, 20], among which the 
gap constraint is widely used to restrict the length of a fixed gap within some 
maximum and minimum values specified by the users. Jonassen et al. in 1995 first 
introduced the constraint of gap flexibility in Pratt program that allows limited 
variable spacing between pattern components [7]. Gaps of irregular lengths are 
important in biological patterns because variable sizes of loops can occur even in 
well-conserved regions. Setting flexibility as 2 satisfies most short patterns existing in 
protein sequences [7]. 

However, longer patterns consisting of several sequential blocks can be discovered 
only when a larger flexibility is allowed. According to our performance analysis on 
Pratt program, version 2.1 [6], we observed that the program consumes unreasonably 
much time when flexibility is set to a value larger than 4, as shown in Table 1. This 
result is because the branching factor of Pratt used in constructing the pattern tree is 
exponentially in proportion to the flexibility constraint. Pratt uses some other 
constraints, such as flexibility product, to narrow down the search space and to 
decrease the number of potential patterns generated. However, this largely reduces the 
solution space, and consequently longer patterns cannot be discovered. 

Another common problem of current mining algorithms is a huge amount of 
memory is required for constructing a pattern tree and the associated data structures 
during mining process. Table 1 also shows the memory usage of Pratt v2.1 versus the 
flexibility constraint. This situation is getting even worse when lower support 
constraint is requested. Nevertheless, low supports are desired during mining process 
because some highly specific signatures are usually conserved in few members of a 
protein family. 

Table 1. Performance analysis of Pratt v2.1 on a data set containing about one hundred of 
sequences with the support constraint set as 70% 

Flexibility Flexibility product Memory used Execution time 
FL=2 FP=16 0.182 Gigabytes 2895 seconds 
FL=3 FP=81 1.016 Gigabytes 36963 seconds 
FL=4 FP=256 1.5 Gigabytes 207236 seconds 
FL=5 FP=625 3.9 Gigabytes The system crashed 
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This work presents the algorithm MAGIIC that aims to discover flexible long 
patterns from a set of unaligned biological sequences. We propose using combination 
of intra- and inter-block gap constraints to find patterns with large irregular gaps, 
provided that the derived patterns are still compact in local regions. The idea is 
motivated by the observation that highly conserved regions of biological sequences 
are usually separated by a set of large gaps with irregular lengths. The smaller flexible 
intra-block gap constraint is used to relax the local motif blocks but still keep them 
compact, and the larger inter-block gap constraint is proposed to allow longer gaps to 
exist between compact motif blocks. Using two types of gap constraints for different 
purposes largely improves the efficiency of the mining process. 

2   Problem Definition 

In this section, the problem of mining conserved sequential blocks with flexible intra-
and inter-block gaps is defined. We first give the definition of a sequence. 

Definition 1 (Sequence). A sequence over an alphabet Σ is a finite sequence of 
components belonging to Σ. For any sequence β=〈β1…βm〉,

 a sequence α is called a 
subsequence of β, denoted as α <s β, if α can be obtained by deleting zero or more 
components from sequence β. We use β[i..j] to denote the substring (contiguous 
subsequence) of β, which starts at position i and ends at position j of β, for 1 ≤ i ≤ j ≤ 
m. In particular, β[1..i] is the prefix of sequence β that ends at position i, and β[i..m] is 
the suffix of sequence β that begins at position i. The number of components in β is 
denoted as |β |.                                                                                                                □ 

If we segment a sequence into one or more blocks, it can be expressed as a blocked 
sequence. Blocks belonging to the same sequence are called sequential blocks. 

Definition 2 (Blocked sequence). A sequence α = 〈α1…αm〉 can be segmented into 
disjoint r blocks, r ≤ m, and be written as 〈B1…Br〉, where Bk= α[ek-1+1..ek], e0 = 0, er = 
m, and ek > ek-1+1, for 1 ≤ k ≤ r.                                                                                      □ 

We next define what intra- and inter-block gaps are. 

Definition 3 (Intra- and inter-block gaps). Let β = 〈β1…βm〉 be a sequence, and 
α=〈B1…Br〉 be a blocked sequence provided that α <s β. If we consider the blocked 
sequence α as a pattern, then β serves as an instance of α. The interval between any 
two adjacent blocks Bi and Bi+1 on the sequence β is called an inter-block gap. The 
interval between any two adjacent components within a block of α on the instance β 
is called an intra-block gap.                                                                                           □ 

MAGIIC employs different constraints for intra- and inter-block gaps respectively. 

Definition 4 (Gap constraints). Let ω = (γmin, γmax, τmin, τmax) be a set of constraints 
called gap constraints, which stand for the low and up bounds of an intra-block gap 
and the low and up bounds of an inter-block gap, respectively. Given a blocked 
sequence α=〈B1…Br〉, we say that α satisfies the user-defined gap constraints ω if 
there exists a sequence β=〈β1…βm〉 such that α holds as a subsequence of β and the 
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Table 2. Parameters of MAGIIC 

Parameter set θ Description 

λ Minimum occurrences of a pattern 
κ min Minimum size of a motif block 
κ max Maximum size of a motif block 

γ min  Low bound of an intra-block gap 
γ max Up bound of an intra-block gap 
τ min Low bound of an inter-block gap ω 

τ max Up bound of an inter-block gap 
nmin Minimum size of a pattern 
nmax Maximum size of a pattern 

blocks in α satisfy the constraint ω, denoted as α <ω β. The set β/(α)ω stands for all the 
substrings of β that match pattern α under the gap constraints ω.                                □ 

MAGIIC also employs some other basic constraints associated with pattern mining, 
including the support and size constraints. The parameter names are given in Table 2.  

Definition 5 (Support and size constraints). The support of a blocked sequence α in 
a sequence database D under the gap constraints ω and the size constraints (κ min, κmax, 
nmin, nmax) is defined as the number of distinct input sequences β ∈ D such that α <ω β 
and the blocked sequence α=〈B1…Br〉 satisfies nmin ≤ |α| ≤ nmax, and κmin ≤ |Bi| ≤ κmax for 
1 ≤ i ≤ r. The pattern α is frequent (conserved) in sequence database D if its support is 
grater than λ, where λ is the minimum support constraint.                                           □ 

Finally we give the problem statement as follows. 

Problem Statement. Given a sequence database D and the parameter set θ listed in 
Table 2, the algorithm will find the complete set of conserved blocked sequences 
(patterns) existing in the sequence database D under the constraints in θ. 

The derived patterns are expressed in the PROSITE language [5]. The notation x(a,b), 
a < b, is used for a size-bounded gap with minimum length of a and maximum length 
of b, and x(a) stands for a gap with a fixed length of a. The wildcard x(a) is omitted if 
a = 0, and is written as x if a = 1, i.e. x = x(1).  

3   Method 

This paper proposes a novel algorithm called MAGIIC, which is designed based on 
the PrefixSpan algorithm proposed by Pei et. al. in 2004 [15]. The contribution of 
MAGIIC comes from two parts. First, MAGIIC develops a new procedure called 
bounded-prefix-growth based on the prefix-growth procedure of the PrefixSpan 
algorithm. In order to identify patterns with large flexible gaps in biological data, the 
bounded-prefix-growth procedure incorporates intra- and inter-block gap constraints 
to speed up the mining process. Second, MAGIIC employs a newly designed 
projected database, called complete projected database, to guarantee that all the 
patterns satisfying the user-specified gap constraints will be found. In this section, we 
first briefly describe the PrefixSpan algorithm. After that, the concept of a complete 
projected database will be defined and how the intra- and inter-block gap constraints 
affect the scanning process of bounded-prefix-growth will be introduced. 

□
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PrefixSpan algorithm presents as a promising and efficient approach for many 
applications of sequential pattern discovery by avoiding generating a large amount of 
pattern candidates, and it consumes a relatively stable and small amount of memory 
space by using the pseudo projecting technique that records only the sequence 
identifiers and the associated event identifiers instead of constructing a physical 
projected database. The prefix-growth procedure of PrefixSpan employs a divided-
and-conquer mechanism for pattern growing, which recursively reduces the size of 
the sequence database by generating the projected database of the current sequential 
pattern and then grows the sequential pattern in one particular projected database by 
exploring the local frequent components. 

Fig.1 provides an example of a projected database with respect to a pattern 〈CG〉. 
Fig.1(a) shows the original database D. The projected database addressed by the 
PrefixSpan algorithm does not record complete information regarding gaps between 
sequence components, because PrefixSpan does not consider gap constraints in its 
mining process. As the example shown in Fig.1(b), the 〈CG〉’s projected database 
only keeps the longest substring of each sequence in D whose prefix matches the 
pattern 〈CG〉. This information is not sufficient when gaps are considered in the 
pattern mining process. Thus as shown in Fig.1(c), a complete projected database 
collects all the substrings in database D with a prefix of pattern 〈CG〉 that satisfies the 
gap constraints. We next give the definition of a complete projected database. 

Seq id 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
S

1
 C T G E Y T J E A S N C A G E G 

S
2
 P E C P G K I I C H P G Q G R K 

S
3
 S C W V S Q W V V C Q G W G   

(a) The original database D 
Seq id 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
s

1
 C T G E Y T J E A S N C A G E G 

s
2
 C P G K I I C H P G Q G R K   

s
3
 C Q G W G            

(b) The projected database of the pattern 〈CG〉, according to the definition of PrefixSpan 
Seq id 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
s

1-1
 C T G E Y T J E A S N C A G E G 

s
1-2

 C A G E G            
s

2-1
 C P G K I I C H P G Q G R K   

s
2-2

 C H P G Q G R K         
s

3
 C Q G W G            

(c) The complete projected database of the pattern 〈CG〉 

Fig. 1. Illustration of the complete projected database 

S1 C T G E Y T J E A S N C A G E G 
 

S2 P E C P G K I I C H P G Q G R K 
 

S3 S C W V S Q W V V C Q G W G   
                         

Note: S1/〈CG〉ω ={g1, g2}, S2/〈CG〉ω ={g3, g4}, and S3/〈CG〉ω ={g5} 

Fig. 2. The scenario of scanning a projected database 

g1 g2 

g4 g3 

g5 
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Definition 6 (Complete projected database). Let α be a blocked sequence, and ω be 
a set of gap constraints. The α’s complete projected database constructed from 
projecting the database D under gap constraints ω, denoted as D|(α)ω, is a complete 
collection of sequences, each of which is the suffix of a sequence β ∈ D and has a 
prefix of s, provided that s ∈ β /(α)ω.                                                                            □ 

We next describe how the bounded-prefix-growth procedure scans a complete 
projected database. The proposed procedure is called bounded-prefix-growth because 
its scanning range in the projected database is restricted by the gap constraints. In 
Fig.2, the dotted arrows represent the original scanning range of a projected database 
in PrefixSpan algorithm and the solid arrows show the scanning range of the bounded-
prefix-growth procedure under the intra-block gap constraints (γmin = 1, γmax = 2). The 
scanning range of a complete projected database under gap constraints ω is much 
smaller. Most of the times, only the ranges under the intra-block gap constraints are 
considered when looking for the next frequent component. Only when the size of the 
currently growing block (the right most block) of the pattern satisfies the minimum 
block size constraint, larger scanning range with respect to the inter-block constraints 
will also be considered during the mining process. 

The arguments of bounded-prefix-growth include a pattern as a blocked sequence 
α and its complete projected database D|(α)ω. This procedure takes the blocked 
pattern α as input and tries to extend it under the user-specified constraints ω. In each 
call of bounded-prefix-growth, the search space of finding the next frequent 
component is bounded by the intra- and inter-block gap constraints. A component is 
conserved (frequent) if its occurrences in the projected database D|(α)ω satisfy the 
minimum support threshold. Each frequent component is appended to the current 
blocked sequence one at a time, and the resulted new blocked sequence (α′) is used as 
the argument for the next call of bounded-prefix-growth, accompanied with a smaller 
projected database D|(α′)ω. Adding one more component to the current blocked 
pattern thus reduces the size of the complete projected database. 

4   Results and Discussions 

The performance of MAGIIC is compared with two well known packages on this 
problem, Teiresias [17] and Pratt v2.1 [6]. All the experiments provided here were 
conducted on a machine with a 3GHz Intel Pentium CPU and memory of 2GBs, 
running Linux Server. Regarding the parameter setting of MAGIIC, the users can set 
the following three constraints as a large number as long as the consuming time is 
acceptable on their machines. In this paper, we set both the maximum size of a motif 
block (κmax) and the maximum size of a pattern (nmax) as 100, and change the up 
bound of an inter-block gap (τmax) incrementally during mining process because this 
parameter affects the performance of MAGIIC significantly. Furthermore, in order to 
reduce the confusion of setting the other parameters, we set the low bound of an inter-
block gap (τmin) just one larger than the up bound of an intra-block gap (γmax). Since 
only limited insertions and deletions within motif blocks are allowed during 
evolution, we set the low/up bound of an intra-block gap (γmin/γmax) as 0/2. 
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Table 3. Study on the first data set. (Arsenate reductase and related) 

(a) Patterns discovered by different algorithms 
ID Patterns discovered by different algorithms Support 
 Pattern discovered by MAGIIC   
(1) P-x-C-x(0,2)-S-x(0,2)-R-x(72,75)-P-x(1,2)-L-x(1,2)-R-P-I 38 
 Pattern discovered by Teiresias (K=70, L=6, W=100, other parameters as default,) 
(i) L-x(19)-P-x(4)-RPI-x(19)-L 38 
 Pattern discovered by Pratt v2.1 (C%=70, PX=100, FN=4, FL=5, FP=12, other parameters as 

default) 
(ii) R-x(18,20)-L-x(7)-P-x-L-x(2)-R-P-I 35 
(iii) G-x-[DEST]-x(2)-[AI]-x(2)-R-x(0,1)-K-x(4,7)-L-[ADGN]-[ILMV]-[ADEN]-x-

[DEGN]-x-[FILM]-[PST]-x(3)-[FL]-x(2)-[FILM]-[IMV]-x(3)-P-x-[ILM]-[IL]-x 
-[RS]-P-I-[ILMV]-x-[DT] 

35 

(b) Executing time and usage of memory space for each algorithm with support = 70% 
Method MAGIIC Teiresias Pratt v2.1 
Runtime in seconds 2 15 588 
Memory used in Megabytes 3 15 150 

 

  
(a) Pattern (1) found by MAGIIC (b) Pattern (i) found by Teiresias  (c) Pattern (ii) found by Pratt v2.1 

Fig. 4. Viewing the derived patterns of the first data set in a three-dimensional structure 
(1I9D.pdb). The patterns are plotted in sticks, and blocks are shown with different colors. 

This paper employs two well annotated data sets to demonstrate the capability of 
MAGIIC algorithm in identifying conserved structural motifs. The first input set 
collects 50 proteins of the InterPro family IPR006660, Arsenate reductase and related, 
(one fragment has been removed) from Swiss-Prot (http://www.expasy.org/sprot/) 
(version 48.1). With the support constraint set as 70%, the minimum size of a motif 
block as 4, and the up bound of an inter-block gap constraint as 100, MAGIIC found 
one pattern with 38 supporting sequences, as shown in Table 3(a), denoted as pattern 
(1). In fact, this pattern can be found as long as the user-specified constraints are more 
relaxed than the above settings. It can be observed in Fig. 4(a) that the two motif 
blocks of pattern (1) are clustered together when the protein is folded, and they are 
really closed to the ligands bound together with this protein. This shows that the 
derived motif reveals its structural and functional meanings. It has been reported in 
[9] that the cysteine in the first block is important in binding one of the sulfate anion 
(SO4). We will show in the following that it is not found by other mining programs. 

Table 3(a) also provides the best pattern found by Teiresias and Pratt v2.1, labeled 
as pattern (i)-(iii), which are derived by using reasonable parameter settings regarding 
this data set. It can be observed in Fig. 4(b) and (c) that patterns (i) and (ii) do not 
capture the signature of the substructure with respect to the ligands bound with this 
protein. The main problem of Teiresias is only fixed gaps are considered. Even Pratt 
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considers the flexibility of gaps, allowing large flexibility on every gap enlarges the 
search space and increases the executing time rapidly, which forces the users to give 
up searching for a pattern with a large gap like x(72,75). On the other hand, both 
Teiresias and Pratt v2.1 can handle equivalence to extend the length of the patterns, 
such as the pattern (iii) identified by Pratt v2.1. However, it does not really help to 
identify the structural motif associated with the functional site. Table 3(b) provides 
the executing time and memory usage of each algorithm. It is always the case that 
lowering support constraint enlarges the search space and thus consumes more 
computing time and space. Incorporating two gap constraints also makes MAGIIC 
more efficient than the other two packages in finding some highly specific signatures 
which are conserved in few members of a protein family. 

The second training data was retrieved from Swiss-Prot database (release 48.1) by 
querying the keywords IPR001305, PF00684, and PS00637, which are associated 
with the CXXCXGXG domain signature of DnaJ proteins. The keywords are the 
entry IDs of InterPro (release 11.0), Pfam (version 18.0) and PROSITE (release 
19.11) databases, respectively. We randomly select 100 proteins from the retrieved 
272 sequences (totally we have 275 sequences, but three short fragments have been 
excluded.) And later we will show that the other 172 proteins can be completely 
found by using the pattern derived by MAGIIC.  

With the support constraint set as 70%, the minimum size of a motif block as 4, and 
the up bound of an inter-block gap constraint as 20, MAGIIC found a pattern with 72 
supporting sequences, denoted as pattern (1) in Table 4(a). This pattern contains four 
repeats of the motif block {C-x(2)-C-x-G-x-G}, which is recognized as the DnaJ 
central cysteine-rich (CR) domain. The DnaJ CR domain consists of two zinc centers, 
each of which is composed of four conserved cysteines [10]. We can see in Fig. 5(a) 
that each pair of the blocks in pattern (1) forms a zinc binding site, where the first and 
fourth blocks contribute to the first one and the second and third blocks contribute to 
the second one. It has been studied in [19] that the second binding site is more 
important than the first one. By increasing the support constraint as 100% and relaxing 
the minimum size of a motif block as 3, MAGIIC found another pattern, listed in Table 
4(a) as pattern (2), which contains only three motif blocks. We observed that some 
DnaJ proteins lost the first block of the CR domain during evolution and some other 
lost the last block. This is consistent with the observation in [19] that the second and 
third blocks are more important to the function of DnaJ proteins. 

The pattern of the entry PS00637 in PROSITE is provided in Table 4(a), denoted 
as pattern (i). As shown in Fig. 5(b), this pattern does not capture the feature of the 
isolated cysteine-rich domain, same as the best patterns found by Pratt v2.1 and 
Teiresias, also provided in Table 4(a). The selectivity of the derived patterns is 
evaluated by employing the ScanProsite (http://www.expasy.org/tools/scanprosite/) 
web service to scan protein sequences in Swiss-Prot database (release 48.1). The 
results are shown in Table 4(b). The precision rate is defined as TP / (TP + FP) and 
the recall rate as TP/ (TP + FN), where TP is short for true positives, FP for false 
positives, and FN for false negatives. It can be observed that the patterns found by 
Teiresias are not as good as MAGIIC or Pratt, and the pattern (ii) found by Pratt is 
specific enough to recognize the DnaJ proteins. However, pattern (2) still does not 
correctly capture the structural motif of the cysteine-rich domain. Also, Pratt v2.1 
consumes much more resources than MAGIIC and Teiresias, as shown in Table 4(c). 
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Table 4. Study on the second data set (the CXXCXGXG domain signature of DnaJ proteins) 

(a) Patterns discovered by different algorithms 
ID Pattern discovered by MAGIIC  Support 

(1) 
C-x(2)-C-x-G-x-G-x(8,14)-C-x(2)-C-x-G-x-G-x(12,19)- 
C-x(2)-C-x-G-x-G-x(5,12)-C-x(2)-C-x-G-x-G 72 

(2) C-x(2)-C-x-G-x-G-x(8,19)-C-x(2)-C-x-G-x(7,20)-C-x(2)-C-x-G 100 
ID Pattern of PS00637 in PROSITE database 
(i) C-[DEGSTHKR]-x-C-x-G-x-[GK]-[AGSDM]-x(2)-[GSNKR]-x(4,6)-C-x(2,3)-C-x-G-x-G - 
 Pattern discovered by Pratt (C%:70,PX:20,FL:8, FN:3, FP:256 and other parameters as default) 

(ii) G-x(7,12)-C-x(2)-C-x-G-x-G-x(6,14)-C-x(2)-C-x-G 100 
 Pattern discovered by Teiresias (K=70, L=4, W=30 and other parameters as default) 
(iii) C-x(2)-C-x-G-x-G-x(6)-C-x(2)-C-x-G-x-G-x(12)-P-x(14)-G 70 
(iv) C-x(2)-C-x-G-x-G 100 

(b) Analysis on the selectivity and sensitivity of patterns 
Method ID TP FN FP Precision % Recall % Expected random matches 
MAGIIC (1) 219 53 0 100 80.50 4.342022e-14 
MAGIIC (2) 272 0 1 99.63 100 2.950594e-06 
PROSITE (i) 188 76 0 100 71.21 2.857160e-05 
Pratt (ii) 271 1 5 98.18 99.63 3.565674e-03 
Teiresias (iii) 223 49 0 100 81.98 2.180195e-07 
Teiresias (iv) 272 0 366 42.63 100 55 

(c) Performance and usage of memory space with support = 70% 
Method MAGIIC Teiresias Pratt v2.1 
Runtime in seconds 76 217 858760 
Memory used in Megabytes 3 18 4000 

 

  
(a) Pattern found by MAGIIC (1EXK.pdb) (a) Pattern found by MAGIIC (1EXK.pdb) 

Fig. 5. Structure of the patterns for the DnaJ proteins. The zinc atoms are plotted as red spheres 
and the patterns in colored cartoon display. 

5   Conclusion 

Functional motifs composed of several sequential blocks are difficult to find. Current 
mining technologies might individually find each motif block but fail to connect them 
with large irregular gaps. On the other hand, allowing large flexible gaps might derive 
patterns with the conserved residues largely scattered. MAGIIC employs intra- and 
inter-block gap constraints to discover clusters of conserved residues present in 
protein sequences. The efficiency of MAGIIC remains even when the constraints are 
relaxed. This is important because setting lower support constrains or larger gap 
flexibilities helps to identify the signature of protein functional sites. The spatial 
information of the sequential motifs also helps to detect critical substructures of 
proteins that share similar functions. Thus, how to incorporate MAGIIC in the study 
of protein binding or protein-protein interaction deserves further study. 
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