
W.K. Ng, M. Kitsuregawa, and J. Li (Eds.): PAKDD 2006, LNAI 3918, pp. 530 – 539, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Efficient Discovery of Structural Motifs from
Protein Sequences with Combination of

Flexible Intra- and Inter-block Gap Constraints

Chen-Ming Hsu1, Chien-Yu Chen2, Ching-Chi Hsu3, and Baw-Jhiune Liu1

1 Yuan Ze University, Department of Computer Science and Engineering,
Chung-Li, Taiwan, 320, R.O.C.

{cmhsu, bjliu}@saturn.yzu.edu.tw
2 National Taiwan University, Department of Bio-Industrial Mechatronics Engineering,

Taipei, Taiwan, 106, R.O.C.
cychen@mars.csie.ntu.edu.tw

3 Institute for Information Industry, Taipei, Taiwan, 106, R.O.C.
cchsu@iii.org.tw

Abstract. Discovering protein structural signatures directly from their primary
information is a challenging task, because the residues associated with a
functional motif are not necessarily clustered in one region of the sequence.
This work proposes an algorithm that aims to discover conserved sequential
blocks interleaved by large irregular gaps from a set of unaligned biological
sequences. Different from the previous works that employ only one type of
constraint on gap flexibility, we propose using combination of intra- and inter-
block gap constraints to discover longer patterns with larger irregular gaps. The
smaller flexible intra-block gap constraint is used to relax the restriction in local
motif blocks but still keep them compact, and the larger flexible inter-block gap
constraint is proposed to allow longer irregular gaps between compact motif
blocks. Using two types of gap constraints for different purposes improves the
efficiency of mining process while keeping high accuracy of mining results.
The efficiency of the algorithm also helps to identify functional motifs that are
conserved in only a small subset of the input sequences.

1 Introduction

Automatic discovery of patterns in unaligned biological sequences is an important
problem in molecular biology. For a set of proteins that share a common function or
structure, it is often that only a few of common residues are conserved among them
[4]. In biology, a motif is a pattern that has a specific structure and is functionally
significant [4]. Functional motifs are not necessarily found in only one region of the
protein sequence. Instead, the conserved residues usually appear as clusters (it is
called a motif block in this paper), and multiple clusters may simultaneously
contribute to an important substructure [13]. Limited insertions and deletions are
admitted within a motif block, and large insertions and deletions may happen between
motif blocks during evolution.

Protein families can often be characterized by one or more such patterns, which
each consist of one or more motif blocks [12, 18, 21, 22]. Many computational

 Efficient Discovery of Structural Motifs from Protein Sequences 531

approaches have been introduced for the problem of motif identification [1, 2, 3, 6, 8,
11, 16, 17]. These approaches can be categorized based on the type of the motifs they
discover, statistical or deterministic. In this paper, we focus on the problem of
discovering deterministic patterns like some other web services, Pratt [6] and
Teiresias [17]. A deterministic pattern can be matched or not matched by a sequence.
In the mining process, a pattern is found if it matches more than a user-specified
percentage of the input sequence set. This is the so-called minimum support
constraint.

A sequential pattern is called sparse if a large number of wildcards exist between
pattern components, and is treated as flexible, contrary to fixed, if different sequences
match the same pattern with different sizes of gaps, where a gap is defined as a set of
one or more successive wildcards. Discovering sparse and flexible patterns is a time-
consuming task due to the large search space of solutions. So many related studies
employ constraints to expedite the mining process [6, 14, 17, 20], among which the
gap constraint is widely used to restrict the length of a fixed gap within some
maximum and minimum values specified by the users. Jonassen et al. in 1995 first
introduced the constraint of gap flexibility in Pratt program that allows limited
variable spacing between pattern components [7]. Gaps of irregular lengths are
important in biological patterns because variable sizes of loops can occur even in
well-conserved regions. Setting flexibility as 2 satisfies most short patterns existing in
protein sequences [7].

However, longer patterns consisting of several sequential blocks can be discovered
only when a larger flexibility is allowed. According to our performance analysis on
Pratt program, version 2.1 [6], we observed that the program consumes unreasonably
much time when flexibility is set to a value larger than 4, as shown in Table 1. This
result is because the branching factor of Pratt used in constructing the pattern tree is
exponentially in proportion to the flexibility constraint. Pratt uses some other
constraints, such as flexibility product, to narrow down the search space and to
decrease the number of potential patterns generated. However, this largely reduces the
solution space, and consequently longer patterns cannot be discovered.

Another common problem of current mining algorithms is a huge amount of
memory is required for constructing a pattern tree and the associated data structures
during mining process. Table 1 also shows the memory usage of Pratt v2.1 versus the
flexibility constraint. This situation is getting even worse when lower support
constraint is requested. Nevertheless, low supports are desired during mining process
because some highly specific signatures are usually conserved in few members of a
protein family.

Table 1. Performance analysis of Pratt v2.1 on a data set containing about one hundred of
sequences with the support constraint set as 70%

Flexibility Flexibility product Memory used Execution time
FL=2 FP=16 0.182 Gigabytes 2895 seconds
FL=3 FP=81 1.016 Gigabytes 36963 seconds
FL=4 FP=256 1.5 Gigabytes 207236 seconds
FL=5 FP=625 3.9 Gigabytes The system crashed

532 C.-M. Hsu et al.

This work presents the algorithm MAGIIC that aims to discover flexible long
patterns from a set of unaligned biological sequences. We propose using combination
of intra- and inter-block gap constraints to find patterns with large irregular gaps,
provided that the derived patterns are still compact in local regions. The idea is
motivated by the observation that highly conserved regions of biological sequences
are usually separated by a set of large gaps with irregular lengths. The smaller flexible
intra-block gap constraint is used to relax the local motif blocks but still keep them
compact, and the larger inter-block gap constraint is proposed to allow longer gaps to
exist between compact motif blocks. Using two types of gap constraints for different
purposes largely improves the efficiency of the mining process.

2 Problem Definition

In this section, the problem of mining conserved sequential blocks with flexible intra-
and inter-block gaps is defined. We first give the definition of a sequence.

Definition 1 (Sequence). A sequence over an alphabet Σ is a finite sequence of
components belonging to Σ. For any sequence β=〈β1…βm〉,

 a sequence α is called a
subsequence of β, denoted as α <s β, if α can be obtained by deleting zero or more
components from sequence β. We use β[i..j] to denote the substring (contiguous
subsequence) of β, which starts at position i and ends at position j of β, for 1 ≤ i ≤ j ≤
m. In particular, β[1..i] is the prefix of sequence β that ends at position i, and β[i..m] is
the suffix of sequence β that begins at position i. The number of components in β is
denoted as |β |. □

If we segment a sequence into one or more blocks, it can be expressed as a blocked
sequence. Blocks belonging to the same sequence are called sequential blocks.

Definition 2 (Blocked sequence). A sequence α = 〈α1…αm〉 can be segmented into
disjoint r blocks, r ≤ m, and be written as 〈B1…Br〉, where Bk= α[ek-1+1..ek], e0 = 0, er =
m, and ek > ek-1+1, for 1 ≤ k ≤ r. □

We next define what intra- and inter-block gaps are.

Definition 3 (Intra- and inter-block gaps). Let β = 〈β1…βm〉 be a sequence, and
α=〈B1…Br〉 be a blocked sequence provided that α <s β. If we consider the blocked
sequence α as a pattern, then β serves as an instance of α. The interval between any
two adjacent blocks Bi and Bi+1 on the sequence β is called an inter-block gap. The
interval between any two adjacent components within a block of α on the instance β
is called an intra-block gap. □

MAGIIC employs different constraints for intra- and inter-block gaps respectively.

Definition 4 (Gap constraints). Let ω = (γmin, γmax, τmin, τmax) be a set of constraints
called gap constraints, which stand for the low and up bounds of an intra-block gap
and the low and up bounds of an inter-block gap, respectively. Given a blocked
sequence α=〈B1…Br〉, we say that α satisfies the user-defined gap constraints ω if
there exists a sequence β=〈β1…βm〉 such that α holds as a subsequence of β and the

 Efficient Discovery of Structural Motifs from Protein Sequences 533

Table 2. Parameters of MAGIIC

Parameter set θ Description

λ Minimum occurrences of a pattern
κ min Minimum size of a motif block
κ max Maximum size of a motif block

γ min Low bound of an intra-block gap
γ max Up bound of an intra-block gap
τ min Low bound of an inter-block gap ω

τ max Up bound of an inter-block gap
nmin Minimum size of a pattern
nmax Maximum size of a pattern

blocks in α satisfy the constraint ω, denoted as α <ω β. The set β/(α)ω stands for all the
substrings of β that match pattern α under the gap constraints ω. □

MAGIIC also employs some other basic constraints associated with pattern mining,
including the support and size constraints. The parameter names are given in Table 2.

Definition 5 (Support and size constraints). The support of a blocked sequence α in
a sequence database D under the gap constraints ω and the size constraints (κ min, κmax,
nmin, nmax) is defined as the number of distinct input sequences β ∈ D such that α <ω β
and the blocked sequence α=〈B1…Br〉 satisfies nmin ≤ |α| ≤ nmax, and κmin ≤ |Bi| ≤ κmax for
1 ≤ i ≤ r. The pattern α is frequent (conserved) in sequence database D if its support is
grater than λ, where λ is the minimum support constraint. □

Finally we give the problem statement as follows.

Problem Statement. Given a sequence database D and the parameter set θ listed in
Table 2, the algorithm will find the complete set of conserved blocked sequences
(patterns) existing in the sequence database D under the constraints in θ.

The derived patterns are expressed in the PROSITE language [5]. The notation x(a,b),
a < b, is used for a size-bounded gap with minimum length of a and maximum length
of b, and x(a) stands for a gap with a fixed length of a. The wildcard x(a) is omitted if
a = 0, and is written as x if a = 1, i.e. x = x(1).

3 Method

This paper proposes a novel algorithm called MAGIIC, which is designed based on
the PrefixSpan algorithm proposed by Pei et. al. in 2004 [15]. The contribution of
MAGIIC comes from two parts. First, MAGIIC develops a new procedure called
bounded-prefix-growth based on the prefix-growth procedure of the PrefixSpan
algorithm. In order to identify patterns with large flexible gaps in biological data, the
bounded-prefix-growth procedure incorporates intra- and inter-block gap constraints
to speed up the mining process. Second, MAGIIC employs a newly designed
projected database, called complete projected database, to guarantee that all the
patterns satisfying the user-specified gap constraints will be found. In this section, we
first briefly describe the PrefixSpan algorithm. After that, the concept of a complete
projected database will be defined and how the intra- and inter-block gap constraints
affect the scanning process of bounded-prefix-growth will be introduced.

□

534 C.-M. Hsu et al.

PrefixSpan algorithm presents as a promising and efficient approach for many
applications of sequential pattern discovery by avoiding generating a large amount of
pattern candidates, and it consumes a relatively stable and small amount of memory
space by using the pseudo projecting technique that records only the sequence
identifiers and the associated event identifiers instead of constructing a physical
projected database. The prefix-growth procedure of PrefixSpan employs a divided-
and-conquer mechanism for pattern growing, which recursively reduces the size of
the sequence database by generating the projected database of the current sequential
pattern and then grows the sequential pattern in one particular projected database by
exploring the local frequent components.

Fig.1 provides an example of a projected database with respect to a pattern 〈CG〉.
Fig.1(a) shows the original database D. The projected database addressed by the
PrefixSpan algorithm does not record complete information regarding gaps between
sequence components, because PrefixSpan does not consider gap constraints in its
mining process. As the example shown in Fig.1(b), the 〈CG〉’s projected database
only keeps the longest substring of each sequence in D whose prefix matches the
pattern 〈CG〉. This information is not sufficient when gaps are considered in the
pattern mining process. Thus as shown in Fig.1(c), a complete projected database
collects all the substrings in database D with a prefix of pattern 〈CG〉 that satisfies the
gap constraints. We next give the definition of a complete projected database.

Seq id 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
S

1
 C T G E Y T J E A S N C A G E G

S
2
 P E C P G K I I C H P G Q G R K

S
3
 S C W V S Q W V V C Q G W G

(a) The original database D
Seq id 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
s

1
 C T G E Y T J E A S N C A G E G

s
2
 C P G K I I C H P G Q G R K

s
3
 C Q G W G

(b) The projected database of the pattern 〈CG〉, according to the definition of PrefixSpan
Seq id 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
s

1-1
 C T G E Y T J E A S N C A G E G

s
1-2

 C A G E G
s

2-1
 C P G K I I C H P G Q G R K

s
2-2

 C H P G Q G R K
s

3
 C Q G W G

(c) The complete projected database of the pattern 〈CG〉

Fig. 1. Illustration of the complete projected database

S1 C T G E Y T J E A S N C A G E G

S2 P E C P G K I I C H P G Q G R K

S3 S C W V S Q W V V C Q G W G

Note: S1/〈CG〉ω ={g1, g2}, S2/〈CG〉ω ={g3, g4}, and S3/〈CG〉ω ={g5}

Fig. 2. The scenario of scanning a projected database

g1 g2

g4 g3

g5

 Efficient Discovery of Structural Motifs from Protein Sequences 535

Definition 6 (Complete projected database). Let α be a blocked sequence, and ω be
a set of gap constraints. The α’s complete projected database constructed from
projecting the database D under gap constraints ω, denoted as D|(α)ω, is a complete
collection of sequences, each of which is the suffix of a sequence β ∈ D and has a
prefix of s, provided that s ∈ β /(α)ω. □

We next describe how the bounded-prefix-growth procedure scans a complete
projected database. The proposed procedure is called bounded-prefix-growth because
its scanning range in the projected database is restricted by the gap constraints. In
Fig.2, the dotted arrows represent the original scanning range of a projected database
in PrefixSpan algorithm and the solid arrows show the scanning range of the bounded-
prefix-growth procedure under the intra-block gap constraints (γmin = 1, γmax = 2). The
scanning range of a complete projected database under gap constraints ω is much
smaller. Most of the times, only the ranges under the intra-block gap constraints are
considered when looking for the next frequent component. Only when the size of the
currently growing block (the right most block) of the pattern satisfies the minimum
block size constraint, larger scanning range with respect to the inter-block constraints
will also be considered during the mining process.

The arguments of bounded-prefix-growth include a pattern as a blocked sequence
α and its complete projected database D|(α)ω. This procedure takes the blocked
pattern α as input and tries to extend it under the user-specified constraints ω. In each
call of bounded-prefix-growth, the search space of finding the next frequent
component is bounded by the intra- and inter-block gap constraints. A component is
conserved (frequent) if its occurrences in the projected database D|(α)ω satisfy the
minimum support threshold. Each frequent component is appended to the current
blocked sequence one at a time, and the resulted new blocked sequence (α′) is used as
the argument for the next call of bounded-prefix-growth, accompanied with a smaller
projected database D|(α′)ω. Adding one more component to the current blocked
pattern thus reduces the size of the complete projected database.

4 Results and Discussions

The performance of MAGIIC is compared with two well known packages on this
problem, Teiresias [17] and Pratt v2.1 [6]. All the experiments provided here were
conducted on a machine with a 3GHz Intel Pentium CPU and memory of 2GBs,
running Linux Server. Regarding the parameter setting of MAGIIC, the users can set
the following three constraints as a large number as long as the consuming time is
acceptable on their machines. In this paper, we set both the maximum size of a motif
block (κmax) and the maximum size of a pattern (nmax) as 100, and change the up
bound of an inter-block gap (τmax) incrementally during mining process because this
parameter affects the performance of MAGIIC significantly. Furthermore, in order to
reduce the confusion of setting the other parameters, we set the low bound of an inter-
block gap (τmin) just one larger than the up bound of an intra-block gap (γmax). Since
only limited insertions and deletions within motif blocks are allowed during
evolution, we set the low/up bound of an intra-block gap (γmin/γmax) as 0/2.

536 C.-M. Hsu et al.

Table 3. Study on the first data set. (Arsenate reductase and related)

(a) Patterns discovered by different algorithms
ID Patterns discovered by different algorithms Support
 Pattern discovered by MAGIIC
(1) P-x-C-x(0,2)-S-x(0,2)-R-x(72,75)-P-x(1,2)-L-x(1,2)-R-P-I 38
 Pattern discovered by Teiresias (K=70, L=6, W=100, other parameters as default,)
(i) L-x(19)-P-x(4)-RPI-x(19)-L 38
 Pattern discovered by Pratt v2.1 (C%=70, PX=100, FN=4, FL=5, FP=12, other parameters as

default)
(ii) R-x(18,20)-L-x(7)-P-x-L-x(2)-R-P-I 35
(iii) G-x-[DEST]-x(2)-[AI]-x(2)-R-x(0,1)-K-x(4,7)-L-[ADGN]-[ILMV]-[ADEN]-x-

[DEGN]-x-[FILM]-[PST]-x(3)-[FL]-x(2)-[FILM]-[IMV]-x(3)-P-x-[ILM]-[IL]-x
-[RS]-P-I-[ILMV]-x-[DT]

35

(b) Executing time and usage of memory space for each algorithm with support = 70%
Method MAGIIC Teiresias Pratt v2.1
Runtime in seconds 2 15 588
Memory used in Megabytes 3 15 150

(a) Pattern (1) found by MAGIIC (b) Pattern (i) found by Teiresias (c) Pattern (ii) found by Pratt v2.1

Fig. 4. Viewing the derived patterns of the first data set in a three-dimensional structure
(1I9D.pdb). The patterns are plotted in sticks, and blocks are shown with different colors.

This paper employs two well annotated data sets to demonstrate the capability of
MAGIIC algorithm in identifying conserved structural motifs. The first input set
collects 50 proteins of the InterPro family IPR006660, Arsenate reductase and related,
(one fragment has been removed) from Swiss-Prot (http://www.expasy.org/sprot/)
(version 48.1). With the support constraint set as 70%, the minimum size of a motif
block as 4, and the up bound of an inter-block gap constraint as 100, MAGIIC found
one pattern with 38 supporting sequences, as shown in Table 3(a), denoted as pattern
(1). In fact, this pattern can be found as long as the user-specified constraints are more
relaxed than the above settings. It can be observed in Fig. 4(a) that the two motif
blocks of pattern (1) are clustered together when the protein is folded, and they are
really closed to the ligands bound together with this protein. This shows that the
derived motif reveals its structural and functional meanings. It has been reported in
[9] that the cysteine in the first block is important in binding one of the sulfate anion
(SO4). We will show in the following that it is not found by other mining programs.

Table 3(a) also provides the best pattern found by Teiresias and Pratt v2.1, labeled
as pattern (i)-(iii), which are derived by using reasonable parameter settings regarding
this data set. It can be observed in Fig. 4(b) and (c) that patterns (i) and (ii) do not
capture the signature of the substructure with respect to the ligands bound with this
protein. The main problem of Teiresias is only fixed gaps are considered. Even Pratt

 Efficient Discovery of Structural Motifs from Protein Sequences 537

considers the flexibility of gaps, allowing large flexibility on every gap enlarges the
search space and increases the executing time rapidly, which forces the users to give
up searching for a pattern with a large gap like x(72,75). On the other hand, both
Teiresias and Pratt v2.1 can handle equivalence to extend the length of the patterns,
such as the pattern (iii) identified by Pratt v2.1. However, it does not really help to
identify the structural motif associated with the functional site. Table 3(b) provides
the executing time and memory usage of each algorithm. It is always the case that
lowering support constraint enlarges the search space and thus consumes more
computing time and space. Incorporating two gap constraints also makes MAGIIC
more efficient than the other two packages in finding some highly specific signatures
which are conserved in few members of a protein family.

The second training data was retrieved from Swiss-Prot database (release 48.1) by
querying the keywords IPR001305, PF00684, and PS00637, which are associated
with the CXXCXGXG domain signature of DnaJ proteins. The keywords are the
entry IDs of InterPro (release 11.0), Pfam (version 18.0) and PROSITE (release
19.11) databases, respectively. We randomly select 100 proteins from the retrieved
272 sequences (totally we have 275 sequences, but three short fragments have been
excluded.) And later we will show that the other 172 proteins can be completely
found by using the pattern derived by MAGIIC.

With the support constraint set as 70%, the minimum size of a motif block as 4, and
the up bound of an inter-block gap constraint as 20, MAGIIC found a pattern with 72
supporting sequences, denoted as pattern (1) in Table 4(a). This pattern contains four
repeats of the motif block {C-x(2)-C-x-G-x-G}, which is recognized as the DnaJ
central cysteine-rich (CR) domain. The DnaJ CR domain consists of two zinc centers,
each of which is composed of four conserved cysteines [10]. We can see in Fig. 5(a)
that each pair of the blocks in pattern (1) forms a zinc binding site, where the first and
fourth blocks contribute to the first one and the second and third blocks contribute to
the second one. It has been studied in [19] that the second binding site is more
important than the first one. By increasing the support constraint as 100% and relaxing
the minimum size of a motif block as 3, MAGIIC found another pattern, listed in Table
4(a) as pattern (2), which contains only three motif blocks. We observed that some
DnaJ proteins lost the first block of the CR domain during evolution and some other
lost the last block. This is consistent with the observation in [19] that the second and
third blocks are more important to the function of DnaJ proteins.

The pattern of the entry PS00637 in PROSITE is provided in Table 4(a), denoted
as pattern (i). As shown in Fig. 5(b), this pattern does not capture the feature of the
isolated cysteine-rich domain, same as the best patterns found by Pratt v2.1 and
Teiresias, also provided in Table 4(a). The selectivity of the derived patterns is
evaluated by employing the ScanProsite (http://www.expasy.org/tools/scanprosite/)
web service to scan protein sequences in Swiss-Prot database (release 48.1). The
results are shown in Table 4(b). The precision rate is defined as TP / (TP + FP) and
the recall rate as TP/ (TP + FN), where TP is short for true positives, FP for false
positives, and FN for false negatives. It can be observed that the patterns found by
Teiresias are not as good as MAGIIC or Pratt, and the pattern (ii) found by Pratt is
specific enough to recognize the DnaJ proteins. However, pattern (2) still does not
correctly capture the structural motif of the cysteine-rich domain. Also, Pratt v2.1
consumes much more resources than MAGIIC and Teiresias, as shown in Table 4(c).

538 C.-M. Hsu et al.

Table 4. Study on the second data set (the CXXCXGXG domain signature of DnaJ proteins)

(a) Patterns discovered by different algorithms
ID Pattern discovered by MAGIIC Support

(1)
C-x(2)-C-x-G-x-G-x(8,14)-C-x(2)-C-x-G-x-G-x(12,19)-
C-x(2)-C-x-G-x-G-x(5,12)-C-x(2)-C-x-G-x-G 72

(2) C-x(2)-C-x-G-x-G-x(8,19)-C-x(2)-C-x-G-x(7,20)-C-x(2)-C-x-G 100
ID Pattern of PS00637 in PROSITE database
(i) C-[DEGSTHKR]-x-C-x-G-x-[GK]-[AGSDM]-x(2)-[GSNKR]-x(4,6)-C-x(2,3)-C-x-G-x-G -
 Pattern discovered by Pratt (C%:70,PX:20,FL:8, FN:3, FP:256 and other parameters as default)

(ii) G-x(7,12)-C-x(2)-C-x-G-x-G-x(6,14)-C-x(2)-C-x-G 100
 Pattern discovered by Teiresias (K=70, L=4, W=30 and other parameters as default)
(iii) C-x(2)-C-x-G-x-G-x(6)-C-x(2)-C-x-G-x-G-x(12)-P-x(14)-G 70
(iv) C-x(2)-C-x-G-x-G 100

(b) Analysis on the selectivity and sensitivity of patterns
Method ID TP FN FP Precision % Recall % Expected random matches
MAGIIC (1) 219 53 0 100 80.50 4.342022e-14
MAGIIC (2) 272 0 1 99.63 100 2.950594e-06
PROSITE (i) 188 76 0 100 71.21 2.857160e-05
Pratt (ii) 271 1 5 98.18 99.63 3.565674e-03
Teiresias (iii) 223 49 0 100 81.98 2.180195e-07
Teiresias (iv) 272 0 366 42.63 100 55

(c) Performance and usage of memory space with support = 70%
Method MAGIIC Teiresias Pratt v2.1
Runtime in seconds 76 217 858760
Memory used in Megabytes 3 18 4000

(a) Pattern found by MAGIIC (1EXK.pdb) (a) Pattern found by MAGIIC (1EXK.pdb)

Fig. 5. Structure of the patterns for the DnaJ proteins. The zinc atoms are plotted as red spheres
and the patterns in colored cartoon display.

5 Conclusion

Functional motifs composed of several sequential blocks are difficult to find. Current
mining technologies might individually find each motif block but fail to connect them
with large irregular gaps. On the other hand, allowing large flexible gaps might derive
patterns with the conserved residues largely scattered. MAGIIC employs intra- and
inter-block gap constraints to discover clusters of conserved residues present in
protein sequences. The efficiency of MAGIIC remains even when the constraints are
relaxed. This is important because setting lower support constrains or larger gap
flexibilities helps to identify the signature of protein functional sites. The spatial
information of the sequential motifs also helps to detect critical substructures of
proteins that share similar functions. Thus, how to incorporate MAGIIC in the study
of protein binding or protein-protein interaction deserves further study.

 Efficient Discovery of Structural Motifs from Protein Sequences 539

References

1. Blanchette, M., Schwikowski, B., Tompa, M.: An exact algorithm to identify motifs in
orthologous sequences from multiple species. Proc. Int. Conf. Intell. Syst. Mol. Biol. 8
(2000) 37-45

2. Blekas, K., Fotiadis, D.I., Likas, A.: Greedy mixture learning for multiple motif discovery
in biological sequences. Bioinformatics. 19 (2003) 607-617

3. Brazma, A., Jonassen, I., Eidhammer, I., Gilbert, D.: Approaches to the automatic
discovery of patterns in biosequences. J. Comput. Biol. 5 (1998) 277-305

4. Eidhammer, I., Jonassen, I. Taylor, W.R.: Protein Bioinformatics: An Algorithmic
Approach to Sequence and Structure Analysis. John Wiley & Sons. (2004)

5. Falquet, L., et al.: The PROSITE database, its status in 2002. Nucl. Acids Res. 30 (2002)
235-238

6. Jonassen, I.: Efficient discovery of conserved patterns using a pattern graph. Comput.
Appl. Biosci. 13 (1997) 509-522

7. Jonassen, I., Collins, J.F., Higgins, D.: Finding flexible patterns in unaligned protein
sequences. Protein Science. 4(8) (1995) 1587-1595

8. Liu, X., Brutlag, D.L. Liu, J.S.: BioProspector: discovering conserved DNA motifs in
upstream regulatory regions of co-expressed genes. Pac. Symp. Biocomput. (2001) 127-138

9. Martin, P., et al.: Insights into the Structure, Solvation, and Mechanism of ArsC Arsenate
Reductase, a Novel Arsenic Detoxification Enzyme. Structure. 9 (2001) 1071-1081, 2001.

10. Martinez-Yamout, M., Legge, G.B., Zhang, O., Wright, P.E., Dyson, H.J.: Solution
structure of the cysteine-rich domain of the Escherichia coli chaperone protein DnaJ. J.
Mol. Biol. 300(4) (2000) 805-818

11. Narasimhan, G., Bu, C., Gao, Y., Wang, X., Xu, N., Mathee, K.: Mining protein sequences
for motifs. J. Comput. Biol. 9 (2002) 707-720

12. Neuwald, A.F., Green, P.: Detecting patterns in protein sequences. J. Mol. Biol. 239
(1994) 698-712

13. Ogiwara, A., Uchiyama, I., Yasuhiko, S., Kanehisa, M.: Construction of a dictionary of
sequence motifs that characterize groups of related proteins. Protein Eng. 5 (1992) 479-488

14. Pei, J., Han, J.: Constrained frequent pattern mining : a pattern-growth view. ACM
SIGKDD Explorations (Special Issue on Constraints in Data Mining). 4(1) (2002) 31-39

15. Pei, J., Han, J., Mortazavi-Asl, B., Wang, J., Pinto, H., Chen, Q., Dayal, U, Hsu, M.-C.:
Mining Sequential Patterns by Pattern-Growth: The PrefixSpan Approach. IEEE
Transactions on Knowledge and Data Engineering. 16 (2004) 1424-1440

16. Pevzner, P.A, Sze, S.H.: Combinatorial approaches to finding subtle signals in DNA
sequences. Proc. Int. Conf. Intell. Syst. Mol. Biol. 8 (2000) 269-278

17. Rigoutsos, I, Floratos, A.: Combinatorial pattern discovery in biological sequences: The
Teiresias algorithm. Bioinformatics. 14 (1998) 55-67

18. Saqi, M.A.S, Sternberg, M.J.E.: Identification of sequence motifs from a set of proteins
with related function. Protein Eng. 7 (1994) 165-171

19. Shi, Y.Y., Tang, W., Hao, S.F., Wang, C.C.: Constributions of cysteine residues in Zn2 to
zinc figers and thioldisulfide oxidoreductase activities of chaperone DnaJ. Biochemistry.
44 (2005) 1683-1689

20. Silvestri, C., Orlando, S., Perego, R.: A new algorithm for gap constrained sequence
mining. Proceedings of the 2004 ACM Symposium on Applied Computing, special track
on Data Mining. (2004) 540-547

21. Su, Q.J., Lu, L., Saxonov, S., Brutlag, D.L.: eBLOCKs: enumerating conserved protein
blocks to achieve maximal sensitivity and specificity. Nucl. Acids Res. 33 (2005) D178-182

22. Wang, J.T.L., et al.: Discovering active motifs in sets of related protein sequences and
using them for classification. Nucl. Acids Res. 22 (1994) 2769-2775

	Introduction
	Problem Definition
	Method
	Results and Discussions
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

