
On the Wiberg Algorithm for Matrix Factorization

in the Presence of Missing Components

The original publication is available at www.springerlink.com.

1

Takayuki Okatani and Koichiro Deguchi

Graduate School of Information Sciences, Tohoku University

Aramaki Aza Aoba 6-6-1

980-8579 Sendai, Japan

Email:okatani@fractal.is.tohoku.ac.jp

2

Abstract

This paper considers the problem of factorizing a matrix with missing components into

a product of two smaller matrices, also known as principal component analysis with missing

data (PCAMD). The Wiberg algorithm is a numerical algorithm developed for the problem in

the community of applied mathematics. We argue that the algorithm has not been correctly

understood in the computer vision community. Although there are many studies in our com-

munity, almost every one of which refers to the Wiberg study, as far as we know, there is no

literature in which the performance of the Wiberg algorithm is investigated or the detail of

the algorithm is presented. In this paper, we present derivation of the algorithm along with

a problem in its implementation that needs to be carefully considered, and then examine its

performance. The experimental results demonstrate that the Wiberg algorithm shows a consid-

erably good performance, which should contradict the conventional view in our community,

namely that minimization-based algorithms tend to fail to converge to a global minimum rel-

atively frequently. The performance of the Wiberg algorithm is such that even starting with

random initial values, it converges in most cases to a correct solution, even when the matrix

has many missing components and the data are contaminated with very strong noise. Our con-

clusion is that the Wiberg algorithm can also be used as a standard algorithm for the problems

of computer vision.

3

1 Introduction

This paper deals with the problem of factorizing a matrix into a product of two smaller matrices,

assuming the rank of the matrix to be a known number, as follows:

Y → UV>. (1)

This problem commonly appears in several problems of computer vision, such as structure from

motion (SFM) [10, 7, 4, 2] and computation of shape and illumination from an image set taken

under different illumination conditions [6, 5, 1]. Considering the presence of noise in the data, the

problem is most often formulated as findingU andV that minimize the error‖Y −UV> ‖2F. In this

paper, we consider the case where there are missing components inY. In this case, the function to

be minimized is defined to be the error sum‖Y−UV> ‖2F only over the existing components. Unlike

the case without missing components, where the problem is reduced to an eigenvalue problem,

in this case, we have to directly solve the minimization problem that is truly nonlinear; thus,

convergence and computational complexity of its algorithms are of significant interest.

It is the study [9] by Shum et al. in the computer vision community that first introduced the

problem and numerical algorithms for it. They rediscovered the study of Wiberg [11] in the 70’s,

based on which they developed an algorithm and applied it to 3D object modeling. Since then,

many algorithms have been proposed in our community for the problem. There is a good survey

of them in the recent study [2] by Buchanan et al (See also [3]).

The study of Wiberg [11] (and that of Ruhe and Wedin [8], on which it is based) should be a

basis for the mentioned initiative work of Shum et al. as well as many subsequent studies. In fact,

the Wiberg name is cited in almost every one of those studies. However, we would like to point out

the possibility that the Wiberg algorithm has not been correctly understood in our community. As

far as we know, there is no literature (within our community) in which its numerical performance

is investigated or the algorithm itself is presented. In the paper [9] of Shum et al., a brief outline

of the Wiberg algorithm is presented, but no experimental result by the algorithm is shown. In the

recent paper [2] of Buchanan et al., where many algorithms are classified into several categories,

the Wiberg algorithm is mentioned but not explicitly classified. In some literature, the algorithm

seems even to be confused with that of the alternated least squares (ALS). As will be shown later,

4

the Wiberg algorithm is based on the Gauss-Newton algorithm and is different from the ALS

algorithm.

The goal of this paper is firstly to present the Wiberg algorithm correctly and then to accurately

investigate its numerical performance. There are several possible reasons for the above-mentioned

misunderstanding of the Wiberg algorithm. One is that the Wiberg paper lacks detailed explana-

tions of the underlying logic of the algorithm. Our derivation in what follows will supplement

these. Another possible reason for the misunderstanding might be that the equation for computing

the Gauss-Newton update in the Wiberg algorithm is always degenerate. This needs to be borne in

mind when implementing the algorithm. We prove the degeneracy and show how to handle it.

As will be shown in what follows, our experimental results show that the Wiberg algorithm (with

our implementation) shows a considerably good numerical performance, which may contradict the

conventional view in our community concerning the performance of algorithms for the problem.

For example, there are several studies [7, 4] of a different type of algorithm that is based on impu-

tation, in which missing components are locally estimated from those existing. These studies are

motivated by a recognition that the minimization-based algorithms do not have good convergence

performance, and good initial values are necessary to have them converge to a global minimum.

However, as far as the Wiberg algorithm is concerned, choosing good initial values does not seem

to be necessary. Even starting with completely random initial values, the algorithm will converge

to a global minimum for most of the cases, as will be shown in what follows. We also show brief

comparisons of some of the minimization-based algorithms in terms of computational complexity,

in which the Wiberg algorithm is superior to others.

2 Notation

In this paper, we consider factorization of the form:

Y → UV>, (2)

as well as factorization with a mean vector:

Y → UV> + 1mµ
>, (3)

5

whereY, U andV are matrices ofm× n, m× r, andn× r, respectively,1m is am-vector of all 1’s

andµ is a n-vector. Although in what follows, the form (2) is mainly considered for the sake of

simplicity, the results for (2) are applicable to (3) with only a few modifications.

Some components ofY are missing. LetH be anm× n matrix indicating which components

are missing;H is such that the componenthi j indicates the existence ofyi j ; hi j = 1 if yi j exists and

hi j = 0 if yi j is missing. This matrixH will be called the indicator matrix and is assumed to be

known throughout this paper. Then, for the factorization form (2), the problem is formulated as a

minimization problem with respect toU andV:

φ(U,V) ≡ ‖H � (Y − UV>) ‖2F → min., (4)

where� represents the component-wise product of matrices. For the factorization form (3) with a

mean vector, the problem is formulated as minimization with respect toU, V, andµ:

φ′(U,V, µ) ≡ ‖H � (Y − UV> − 1mµ
>) ‖2F → min. (5)

The functionsφ andφ′ are inconvenient to manipulate analytically, because of the� product with

H. Thus, we rewrite them into a simpler form withoutH, by introducing several notations. Let

U = [u1, . . . , um]> andV = [v1, . . . , vn]>; ui andv j are bothr-vectors. Also, letu ≡ [u>1 , . . . , u
>
m]>

andv ≡ [v>1 , . . . , v
>
n]>. In what follows,U and themr-vectoru will be used in an interchangeable

manner, and so areV and thenr-vectorv; for example,φ(U,V) = φ(u, v). Let p be the number

of observed components, andy be ap-vector containing only observed componentsyi j in lexical

order ofi and j. Using ap×mr matrix F containingu1, . . . , um and ap× nr matrix G containing

v1, . . . , vn, φ(u, v) can be rewritten as follows:

φ(u, v) = ‖Fu − y ‖2 = ‖Gv − y ‖2 (6)

6

The matricesF andG have the following structures:

F ≡



v>1

v>2
...

v>n

v>1

v>2
...

v>n
. . .

v>1

v>2
...

v>n



, G ≡



u>1

u>1
. . .

u>1

u>2

u>2
. . .

u>2
...

u>m

u>m
. . .

u>m



. (7)

Note that the above shows only the basic structures of the matrices for notational simplicity, and

in the presence of missing components,v j ’s andui ’s do not regularly appear in them, as implied

above. The matrices will have only the rows corresponding to the observed components. For

example, ify12 is missing, the second rows of the aboveF and G are removed, and ifymn is

missing, the last rows are removed. Thus, the number of rows ofF andG becomes the numberp

of observed components.

The distribution of the missing/observed components inY (i.e., the indicator matrixH) deter-

mines the size and structure ofF, and therefore, for a fixedH, F can be viewed as a function ofv;

thus, we will writeF(v). Similarly, we will write G = G(u).

For the factorization form (3) with a mean vector (and the corresponding costφ′), we define

m = [µ1, . . . , µn, . . . , µ1, . . . , µn]> (m-repetition of a vector [µ1, . . . , µn] while excluding the entries

corresponding to the missing components) and thenṼ ≡ [V,m]. We denote each row vector ofṼ

by ṽ j, i.e., Ṽ = [ṽ1, ṽ2, . . . ṽn]>. Then stacking these vectors, defineṽ> = [ṽ>1 , ṽ
>
2 , . . . ṽ

>
n]. Using

these notations,φ′ is represented as

φ′(u, ṽ) = |Fu + m − y |2 = | G̃ṽ − y |2,

7

whereG̃ is a p× n(r + 1) matrix such that (̃Gṽ − y)k yieldsu>i v j + µ j − yi j assuming thatyi j is the

k-th observed element;̃G is formally obtained by replacingu>i ’s onG by [ui ,1]>’s on Eq.(7).

3 The Wiberg algorithm and its implementation

The Wiberg algorithm was proposed for the minimization problem (5) [11]. (It is straightforward

to make it applicable to the problem (4).) This section shows the derivation of the algorithm in

detail and then its implementation.

3.1 Alternated least squares algorithm

To begin with, we summarize the alternated least squares (ALS) algorithm that are often confused

with the Wiberg algorithm. From now on, we deal with only the factorization form (2) without a

mean vector.

We want to find a minimum ofφ. Then, we search for a solution to the equations∂φ/∂u =

∂φ/∂v = 0. Using the notations introduced above, these are expressed as


∂φ/∂u

∂φ/∂v

 =


F>(Fu − y)

G>(Gv − y)

 =


0

0

 . (8)

When considering the two equations independently, solutions are given by

û = (F>F)−1F>y, (9a)

v̂ = (G>G)−1G>y. (9b)

Based on these bilinear relations, the ALS algorithm updatesu from v by Eq.(9a) andv from u by

Eq.(9b) in an alternative manner, starting from some initial values ofu(0) or v(0). An interpretation

of the algorithm is that it searches for a fixed point of the mapping (u, v) to (û, v̂) by the iteration.

Althoughφ decreases monotonically with the iterations, there is no guarantee as to the speed of

its convergence. In fact, as is pointed out in [2], it tends to be quite slow, especially for “badly

conditioned” data such as those with there are many missing components and strong noise.

8

3.2 Naive Gauss-Newton algorithm

Before going into the Wiberg algorithm, for the sake of comparison, we summarize the standard

Gauss-Newton algorithm applied to the problem. Definingx ≡ [u>, v>]>, we writeφ as

φ(x) =
1
2

f>f , (10)

wheref ≡ Fu − y = Gv − y. In order to find a solutionx to dφ/dx = 0, the Newton’s algorithm

seeks a solution by iteratively updatingx as x + ∆x → x where the update is computed as a

solution to (dφ/x) + (d2φ/dx2)∆x = 0. Usingf , the first and second derivatives are represented

as dφ/dx = (df/dx)>f and d2φ/dx2 = (df/dx)>(df/dx) + (d2f/dx2)>f . In the Gauss-Newton

algorithm, the second term (d2f/dx2)>f is neglected. Then, the equation for the update∆x turns to
(

df
dx

)>
f +

(
df
dx

)> (
df
dx

)
∆x = 0, or equivalently

∣∣∣∣∣f +
df
dx

∆x
∣∣∣∣∣
2

→ min. (11)

Note that the popular Levenberg-Marquardt (LM) algorithm, which is widely used in the literature

of SFM bundle adjustment and will be later compared with the Wiberg algorithm, is a composite

method of the (Gauss-)Newton and steepest descent algorithms.

3.3 Derivation of the Wiberg algorithm

In some of the nonlinear least squares problems with multiple parameters, when assuming part of

the parameters to be fixed, minimization of the least squares with respect to the rest of the pa-

rameters becomes a simple problem, such as a linear problem, and gives a closed form solution.

For such problems, by eliminating the latter parameters, the original minimization problem can

be rewritten into a minimization problem of a function only of the former parameters (i.e., those

assumed to be fixed). There are some cases where deriving a Newton-based algorithm for the

rewritten problem achieves better algorithms in terms of computational complexity etc., than de-

riving one for the original problem. A general framework of this methodology is shown by Ruhe

and Wedin [8]. Wiberg applied this framework to the specific problem, factorization of a matrix

with missing components [11].

9

Thus, the basic idea is to rewrite the minimization problem ofφ(u, v) into that of a function

ψ(v) of only v using (half of) the bilinearity of Eq.(8). For a fixedv, an optimalu can be linearly

computed according to Eq.(9a). We may represent this by a functionû(v). By substituting this into

φ(u, v), we have

ψ(v) ≡ φ(û(v), v). (12)

It is clear that this new minimization problem yields the same solution as the original, sincev

minimizingψ(v) together withu = û(v) minimizesφ(u, v). Then, the application of the standard

Gauss-Newton algorithm to solve this minimization ofψ, yields what we call the Wiberg algorithm.

Because of the structure of its square-sums,ψ(v) can be written as

ψ(v) =
1
2

g>g, (13)

whereg = g(v) = f (û(v), v) = Fû(v) − y. Then we want to solve an equationdψ(v)/dv = 0. An

updating scheme of the Newton method for this equation is immediately given as

∣∣∣∣∣g +
dg
dv

∆v
∣∣∣∣∣
2

→ min. (14)

The∆v minimizing this gives the optimal update toward a local minimum. Thus, we now want to

calculate the function on the left hand side of (14). Sinceg = f (û(v), v), its first-order derivative is

given according to the chain rule as

dg
dv

=
∂f
∂u

dû
dv

+
∂f
∂v
. (15)

The partial derivatives off can be written usingf = Fu − y etc. as

∂f
∂u

= F,
∂f
∂v

= G. (16)

The remaining derivativedû/dv can be calculated as follows. Sinceφu(û(v), v) ≡ 0 independently

of v, its derivative with respect tov should also be zero. Fromφu(û(v), v) = F>(Fû − y) = F>g,

we haved(F>g)/dv = 0. By neglecting the term (dF/dv)>g in the spirit of the Gauss-Newton

algorithm, it is written as

d
dv

(F>g) ≈ F>
dg
dv

= F>
(
∂f
∂u

dû
dv

+
∂f
∂v

)
. (17)

10

Since this should be zero, we have

dû
dv

= −(F>F)−1F>G. (18)

Using this along with Eq.(16), Eq.(15) is rewritten as

dg
dv

= (I − F(F>F)−1F>)G. (19)

Let QF ≡ I −F(F>F)−1F>. Note thatQF is a projector to the space orthogonal to the column space

of F. UsingQF, g is rewritten asg = Fû(v) − y = −QFy. The substitution of this and Eq.(19) into

Eq.(14) yields

|QFG∆v −QFy |2→ min. (20)

Now, the optimal update∆v is determined from this. However, this minimization does not have

a unique solution, sinceQFG is always singular (not of full rank), as shown in the next section,

although this is not mentioned in the Wiberg paper [11].

3.4 Determination of the Gauss-Newton update

We first show that the following holds for the rank ofQFG.

Proposition 1. WhenU, V, F andG are all of full rank, the rank of the matrixQFG is at most

(n− r)r.

Proof. For any arbitraryr × r matrix, it always holds thatU′V> = (UA)V> = U(VA>)> = UV′>.

This equality can be rewritten as

Fdiagm(A>)u = Gdiagn(A)v, (21)

where diagm(A) represents anm-block diagonal matrix with the diagonal subblockA. Defining an

mr× r2 matrix Xu and annr × r2 matrix Xv appropriately, the equation is further rewritten as

FXua = GXva, (22)

wherea is anr2-vector containing the components ofA. The matrixXu consists only ofu1, . . . ,um

and the matrixXv only of v1, . . . , vn. Since Eq.(22) always holds for any arbitrarya, we have

FXu = GXv.

11

Let C(u, v) ≡ FXu = GXv. From the definition, the column space ofC is always a subspace of

F andG. If V is of full rank, it is easy to see thatXv is of full rank (X>v Xv = diagr(V
>V)). Thus, if

G is also of full rank,C = GXv is of full rank, too. Then, the column space ofC has the dimension

of r2. Thus, it has been shown that the column spaces ofF andG share a subspace of at leastr2

dimension.

SinceQF is a projector to the space orthogonal to the column space ofF, the rank ofQFG is

given as the numbernr of its columns minus the dimension of the common subspace of the column

spaces ofF andG. Thus, we have shown that rank(QFG) ≤ nr − r2 = (n− r)r. �

This result is clearly connected to the fact that factorizationY → UV> is always not unique;

for any arbitrary non-singularr × r matrix A, it is possible to rewriteUV> = U′V′> by setting

U′ = UA−1 andV = VA>. The degree of freedom of the ambiguity isr2, the number of components

of A.

In the above proof,U, V, F, andG are all assumed to be of full rank. This does not limit the

applicability of the result for the following reasons. Firstly, the matricesU andV should be of full

rank to make factorization meaningful. Also,F andG should be of full rank, too, since if they are

not, the factorization is not unique. Thus, the assumption should hold for non-degenerate, valid

data, from which meaningful solutions can be derived.

SinceQFG is always not of full rank, the equation (20) for the update has an infinite number of

solutions. A promising choice is

∆v = (QFG)†QFy, (23)

where (QFG)† is a generalized inverse ofQFG. This solution corresponds to choosing∆v that min-

imizes|∆v|2. Representing the singular value decomposition ofQFG asQFG→ SDT>, (QFG)† is

given as

(QFG)† ≡ TD̃−1S>, (24)

whereD̃−1 is defined as̃D−1 = diag[1/d1, . . . , 1/dq,0, . . . , 0], whered1, . . . , dq are non-zero singu-

lar values. The algorithm is summarized as Fig.1.

As shown above, the rank ofQFG is equal to or smaller than (n− r)r. However, it can be shown,

from the result of one of our studies, that in order for factorization to be unique, the rank should

not be smaller than (n − r)r and should namely be exactly (n − r)r. Therefore, when computing

12

1. Initializev.

2. MakeF from v and computeu that minimizes|Fu −
y|2.

3. Stop if converged. Otherwise go to 4.

4. Make G from u and determine∆v that minimizes

|QFG∆v − QFy|2. From the possible solutions, select

that with minimum length|∆v|. Updatev + ∆v → v.

Go to 2.

Figure 1: The Wiberg algorithm for the factorization form without a mean vector.

(QFG)† on Eq.(24), we need only select theq = (n − r)r largest singular values. This enables a

secure implementation of the algorithm in which the numerical difficulty of identifying non-zero

singular values from a numerical result of the SVD is avoided.

For the factorization form (3) with a mean vector, instead of Proposition 1, we show:

Proposition 2. The rank of the matrixQFG̃ is at most(n− r)(r + 1).

The proof is omitted here. Figure 2 shows the algorithm for the case with a mean vector. As in

the above, it can be conveniently used in its implementation that the rank ofQFG̃ is expected to be

exactly (n− r)(r + 1), unless the given data are not ill-conditioned.

3.5 Consideration of computational cost

In the Wiberg algorithm, there are two linear equations to be solved per iteration. As for the

equation in step 2 for updatingu, we should use the block property of the matrix to reduce its

computational cost;F hasm block submatrices of at mostn× r size. Then, assuming the compu-

tational cost of solving a linear equation with aM ×N coefficient matrix to beO(MN2), the cost is

evaluated asO(mnr2).

As for the equation in step 4, there is no way of reducing the computational cost, and thus it is

evaluated asO(pn2r2), sinceQFG is of p× nr. Since this is much larger than the costO(mnr2) of

13

1. Initialize ṽ, i.e.,V andm.

2. MakeF and m from ṽ1, . . . , ṽn and computeu that

minimizes|Fu + m − y|2.

3. Stop if converged. Otherwise go to 4.

4. Make G̃ from u and determine∆ṽ that minimizes

|QFG̃∆ṽ−QF(y−m)|2 From the possible solutions, se-

lect that with minimum length|∆ṽ|. Updateṽ + ∆ṽ→
ṽ. Go to 2.

Figure 2: The Wiberg algorithm for the factorization form with a mean vector.

step 2, step 4 is the dominant part in terms of computational cost. Thus, the overall computational

cost can be evaluated asO(pn2r2) per iteration. Note that it depends onn, the number of columns

of Y, but not onm, the number of rows ofY. Therefore, the better one between factorizingY and

Y> should be chosen to minimize the computational cost, whenever the choice is possible.

The computational cost for the naive Gauss-Newton algorithm that was shown earlier can simi-

larly be evaluated asO(p(m+ n)2r2). Thus, it can be seen that the Wiberg algorithm is faster than

the naive Gauss-Newton algorithm, and the ratio of the costs is given asn2/(m + n)2. Thus, if

m≈ n, it will be 1/4 and it will further decrease whenm is larger thann.

In the ALS algorithm, there are two equations to solve, whose computational cost are com-

parable to the solution of the equation in step 2 of the Wiberg algorithm. Thus, as for the ALS

algorithm, its computational cost per iteration is by far smaller than even the Wiberg algorithm.

However, it should be noted that the ALS algorithm tends to need many iterations to converge,

hence the total computational time tends to be rather larger than the other two, especially for badly

conditioned data.

14

4 Experimental results

This section presents the experimental results. Only the factorization with a mean vector is consid-

ered here; in our experience, there is little difference in numerical behavior between the algorithms

for the two factorization forms.

4.1 Comparison with the Levenberg-Marquardt algorithm

We compared the described implementation of the Wiberg and Levenberg-Marquardt (LM) algo-

rithms. Comparisons of LM with the ALS algorithm and its variants are detailed in [2]. As an im-

plementation of the LM algorithm, the functionlmder from the MINPACK library is used. There

is the following fundamental ambiguity in the factorization:UV>+1mµ
> = (UA−1+1mb>)(VA>)>+

1m(µ> − b>A>V). In order to constrain this, the necessary number of components ofU andm are

fixed in the implementation of the LM algorithm.

4.1.1 Synthetic data

As test data, matrices of 30× 20 (i.e. m = 30 andn = 20) with rankr = 3 are used. Each

component is randomly generated according toyi j = u>i v j + µ j + εi j , whereui j , vi j , andµ j are all

random variables generated according to a normal densityN(0,1), and the noiseε according to

N(0,0.052) (i.e. 5% noise corruption). The missing components are also randomly chosen in the

30×20 matrix. The two algorithms are run for these data. The simulation repeats for 500 trials, and

during each trial, initial values are randomly chosen and supplied to each of the two algorithms.

Figures 3 and 4 show the results for the data with 30% and 65% missing components, respec-

tively. The upper row shows the histograms of iteration counts for each algorithm, and the lower

row shows the histogram of the residue
∑

(yi j − uiv j − µ j)2. The two algorithmsx are forced to

stop when the iteration count exceeds 100. It can be seen from Fig.3 that the Wiberg algorithm

converges in every trial, whereas the LM algorithm does not converge (at most within 100 iteration

counts) in 10% of the trials. The histograms of the residue show that both algorithms converge

to a global minimum whenever they converge. Figure 4 shows the results for 65% missing com-

ponents. As in the case of 30% missing components, it can be seen that the Wiberg algorithm

15

 0

 100

 200

 300

 400

 0 20 40 60 80 100

Iteration count

Wiberg,5%,30%

 0

 50

 100

 150

 0 20 40 60 80 100

Iteration count

LM,5%,30%

 0

 100

 200

 300

 400

 500

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Residue

Wiberg,5%,30%

 0

 100

 200

 300

 400

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Residue

LM,5%,30%

Figure 3: Results for synthetic data with 30% missing components. Upper: The iteration counts

for 500 trials with random initial values. Lower: The residue after convergence. Left: Wiberg.

Right: Levenberg-Marquardt.

 0

 30

 60

 90

 120

 0 20 40 60 80 100

Iteration count

Wiberg,5%,65%

 0

 100

 200

 300

 400

 500

 0 20 40 60 80 100

Iteration count

LM,5%,65%

 0

 100

 200

 300

 400

 500

 0.05 0.1 0.15 0.2 0.25 0.3

Residue

Wiberg,5%,65%

 0

 100

 200

 300

 400

 500

 0.05 0.1 0.15 0.2 0.25 0.3

Residue

LM,5%,65%

Figure 4: Results for synthetic data with 65% missing components.

converges in almost every trial, whereas the LM algorithm does so in only a few. We can conclude

that the Wiberg algorithm showed a much better performance than the LM algorithm for the data

used here.

4.1.2 Real data

We also compared the two algorithms using a real image sequence of a cube rotated through 360

degrees on a turntable. There are 177 images in the sequence, a few of which are shown in Fig.5.

The Lucas-Kanade-Tomasi tracker is first applied to the image sequence, and trajectories of feature

points are extracted, from which wrong trajectories are manually removed. A few erroneous tra-

jectories are intentionally left unremoved to test the robustness of the algorithms. As a result, 106

trajectories survive, which are shown on the left of Fig.6. The number of observed data is 5550,

16

Figure 5: Real images used for the test. Selected three of 177 images.

Figure 6: Trajectories of feature points. Left: Observed components (in black) in the data matrix.

Middle: Initial trajectories. Right: Recovered trajectories.

which means that 70.4%(= (106× 177)− 5550/(106× 177)) of components are missing.

Then, the LM and the Wiberg algorithms are run for 100 trials. In the same way as above,

random initial values are used for each trial. Figure 7 shows the results. It is seen that the Wiberg

algorithm converged to an identical solution, which is therefore considered to be a correct solution,

in every trial. On the other hand,the LM algorithm did not converge in any of the 100 trials.

To examine the behavior of the LM algorithm, we run the LM algorithm also usinggood initial

values, which are synthesized by multiplying (1+ α) to each component of trueU andV, where

α ∼ N(0, σ2
1). The second and third histograms on Fig.7 show the results forσ1 = 0.1 and 0.3,

respectively. It can be seen from this that when good initial values are given, the LM algorithm

converges, and also that its convergence performance deteriorates quickly as the initial values

become distant from the global minimum. We can conclude that the Wiberg algorithm outperforms

the LM algorithm for the real data used here.

4.2 Convergence performance vs. fraction of missing data and noise strength

Clearly there are two factors that affect the convergence performance of the Wiberg algorithm: the

fraction of missing components and noise strength. Using synthetic data, we examined how these

factors affect the convergence performance. The data is generated in the same way as above, except

that the matrix size is set to 50× 50, and the missing components are deterministically selected so

17

 0

 10

 20

 30

 40

 0 20 40 60 80 100

Iteration count

Wiberg

 0

 10

 20

 30

 40

 50

 0 20 40 60 80 100

Iteration count

LM, 10%

 0

 10

 20

 30

 40

 0 20 40 60 80 100

Iteration count

LM, 30%

Figure 7: The number of iterations needed for SFM using the trajectories of Fig.6. From left to

right, the Wiberg algorithm starting from random initial values, and the LM algorithm starting

from “good” initial values that are generated by perturbing the solutions obtained by the Wiberg

with 10% and 30% random noise, respectively.

that H is a band diagonal matrix. The bandwidth ofH varies from 29 to 13, which corresponds

to a range from 50.4% to 75.7% of the fraction of the missing components. The variance of the

noiseε is varied in the range from 0.005(0.5% corruption) to 0.5(50% corruption). Then, we run

the algorithm for 100 trials, for each of which random initial values are used.

Figure 8 shows the results. The left plot shows the percentage of the number ofsuccessfultrials

vs. the fraction of missing components, for each noise strength. The success/failure of a trial is

identified by checking if the final residue after the convergence is the same, in a numerical sense,

as the minimum of the residues for the 100 trials. The minimum of the residues for each data set

is shown on the right plot, which confirms that the algorithm actually reaches the global minimum

for the trials identified as successful.

It can be seen from the results that the convergence rate decreases with the number of missing

components, and deteriorates very quickly over around the fraction 65% of missing components.

The “theoretical ceiling” of the missing component fraction, which is given at the percentage

where the number of observed data is the same as the number of parameters minus factorization

ambiguity (i.e.,p = mr+(n−r)(r+1)), is calculated to be 86.5%. Thus, a gap is evident between the

theoretical ceiling and the percentage at which the algorithm starts to fail to converge. It can also

be seen that noise strength does not appear to significantly affect the convergence performance.

It seems even that the number of converged trials slightly increases for larger noise strength. It

should be noted that for most of the unconverged trials, the algorithm either diverged completely

or was trapped in an infinite (oscillatory) loop, and only for a few trials, did it converge to another

minimum.

18

 0

 20

 40

 60

 80

 100

 50 55 60 65 70 75 80

C
on

ve
rg

en
ce

 r
at

e
(%

)

Fraction of missing components (%)

0.005
0.05

0.5

 0.0001

 0.01

 1

 100

 50 55 60 65 70 75 80

R
es

id
ue

Fraction of missing components (%)

0.005
0.05

0.5

Figure 8: Effects of fraction of missing components and noise strength (0.5, 5, and 50% noise cor-

ruption) on the convergence performance. Left: The number of trials (%) for which the algorithm

converges to the solution of minimum residue. Right: The minimum residue peryi j .

5 Conclusion

We have shown the derivation of the Wiberg algorithm for the problem of matrix factorization

in the presence of missing components. In the derivation, we prove the degeneracy of the equa-

tion for determining the Gauss-Newton update in the algorithm, which needs to be taken care of

when implementing the algorithm. We show through several experiments, that our implementa-

tion of the algorithm demonstrates a relatively good convergence performance, as compared to a

standard implementation of the Levenberg-Marquardt algorithm. As inferior performance of the

ALS algorithm and its variants, even to the LM algorithm, is reported in [2], we believe that the

Wiberg algorithm (with the described implementation) should also be used as a standard tool for

the problems in computer vision.

References

[1] P. N. Belhumeur and D. J. Kriegman. What is the set of images of an object under all possible

illumination conditions ?International Journal of Computer Vision, 28(3):245–260, 1998.

[2] A. M. Buchanan and A. W. Fitzgibbon. Damped newton algorithms for matrix factorization

with missing data. InProceedings of IEEE Computer Vision and Pattern Recognition, 2005.

[3] A. M. Buchanan. Investigation into matrix factorization when elements are unknown. Tech-

nical report, University of Oxford,http://www.robots.ox.ac.uk/˜amb, 2004.

19

[4] P. Chen and D. Suter. Recovering the missing components in a large noisy low-rank ma-

trix: Application to sfm. IEEE Transaction on Pattern Analysis and Machine Intelligence,

26(8):1051–1063, 2004.

[5] R. Epstein, A. L. Yuille, and P. N. Belhumeur. Learning object representations from lighting

variations. InObject Representation in Computer Vision II.Eds. J. Ponce, A. Zisserman, and

M. Herbert. Springer Lecture Notes in Computer Science 1144, 179–199, 1996.

[6] H. Hayakawa. Photometric stereo under a light source with arbitrary motion.Journal of the

Optical Society of America A, 11(11):3079–3089, 1994.

[7] D. W. Jacobs. Linear fitting with missing data for structure-from-motion.Computer Vision

and Image Understanding, 82(1):57–81, 2001.

[8] A. Ruhe and P. ÅA. Wedin. Algorithms for separable nonlinear least squares problems.

”SIAM Review”, 22(3):318–337, 1980.

[9] H. Shum, K. Ikeuchi, and R. Reddy. Principal component analysis with missing data and

its application to polyhedral object modeling.IEEE Transaction on Pattern Analysis and

Machine Intelligence, 17(9):855–867, 1995.

[10] C. Tomasi and T. Kanade. Shape and motion from image streams under orthography: a

factorization method.International Journal of Computer Vision, 9(2):137–154, 1992.

[11] T. Wiberg. Computation of principal components when data are missing. InProceedings of

the Second Symposium of Computational Statistics, Berlin, 229–326, 1976.

20

