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Abstract—In protein-folding prediction, the location of disulfide 
bonds can strongly reduce the search in the conformational space. 
Therefore the correct prediction of the disulfide connectivity 
starting from the protein residue sequence may also help in 
predicting its 3D structure. In this paper, we describe a method 
to predict disulfide connectivity in a protein given only the amino 
acid sequence, using neural network, and given input of 
symmetric flanking regions of N-terminus and C-terminus 
cystines augmented with residue secondary structure (helix, sheet, 
and coil) as well as evolutionary information. 252 protein 
sequences were selected from the SWISS-PROT database. From 
the results of 4-fold cross validation, we find that merging protein 
secondary structure allows us to obtain significant prediction 
accuracy improvements.  

Keywords-disulfide bonds; neural network; protein secondary 
structure 

I.  INTRODUCTION 
Correctly predicting the disulfide bond topology in a 

protein is of crucial importance for the understanding of protein 
function and can be of great help for tertiary prediction 
methods. 

A disulfide bond is formed by the oxidative linkage of two 
cysteines through their thiol groups. In proteins some cysteines, 
called cystines, are oxidized and the others are called free 
cysteines. 

A necessary step to the prediction of disulfide connectivity 
is the prediction of the disulfide bonding state of cysteine in 
proteins. This has been tackled before [1, 2] and recently 
refined [3, 4]. The methods presently available discriminate 

between free and bonded state of cysteine with a high accuracy 
(about 80%) starting from the residue chain. 

In 1999, Fariselli et al. [1] designed a jury of neural 
networks, trained on flanking sequence information in 
neighborhoods of oxidized versus reduced cysteines. Their 
algorithm obtained an accuracy of 71%; when additionally 
trained on flanking evolutionary information (i.e. multiple 
sequence alignments of homologous proteins) the accuracy 
improved to 81%. Fiser and Simon [2] used multiple sequence 
alignments in a different manner to obtain an accuracy of 82%. 
Mucchielli-Giorgi et al. [3] used a combination of perceptrons, 
trained on sets of proteins homogeneous in terms of their 
amino acid content, to obtain an accuracy of 84%. In the same 
year, Martelli et al. [4] used a hybrid hidden Markov model 
and neural network system, reaching 88% accuracy. 

The question then poses as to also whether cysteine pairing 
in the bond is endowed with characteristic marks that can be 
captured and used to univocally establish the disulfide 
connectivity in proteins. In this work we will complement the 
prediction of disulfide bonding state by focusing on the 
prediction of the disulfide connectivity, i.e. which, if any, pairs 
of cystines form a bond in a given protein sequence. 

Beginning with the earlier observation that there is a bias in 
the secondary structure preference of free cysteines and 
cystines [5], we develop a BP neural network to learn amino 
acid environments constituting the window contents of a 
symmetric region centered at partner cystines. The inputs of the 
neural network are the symmetric flanking residues about both 
cystines of a potential disulfide bond, along with the secondary 
structure of the residues and PSI-BLAST-determined 
evolutionary information (PSSM). Finally, apply Ed 
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Rothberg’s program (wmatch, http://elib.zib.de/pub/Pack 
ages/mathprog/matching/weighted) of the Edmonds–Gabow 
maximum weight matching algorithm [6] to assign disulfide 
bond partners, given the weighted complete graph, whose 
nodes are cystines and whose weights are values output from 
the neural network. 

II. SYSTEM AND METHODS 

A. The Protein Data Sets 
We selected 252 protein sequences from the SWISS-PROT 

database having at least two and at most five (i.e. 4–10 
cysteines in the protein forming disulfide bonds) intra-chain 
disulfide bonds, and for which structural data were available in 
the Protein Data Bank (PDB) [7]. These protein sequences 
were divided into four groups of the same size approximately 
in order to perform 4-fold cross validation experiments. 

B. Performance Measures 
Given an even number of cysteines believed to form 

disulfide bonds, the problem is to determine the correct 
connectivity pattern among all the possible alternatives. 

Throughout the following sections, P and N represent a 
training file of positive and negative examples, respectively, of 
sequence length 2w, e.g. two 15-mers corresponding to the 
symmetric cystine-centered size w=2n+1=15 window contents 
of cystines (i.e. the n residues N-terminal and C-terminal to 
each cystine, where n=7). Let P denote the pairs of window 
contents for all the cystines involved in an intra-chain bond, 
and let N denote the corresponding set of possible pairs of 
cystines that are not intra-chain disulfide bonds. True positive 
predictions occur when a cystine pair with a known bond is 
correctly predicted as such, while false negative predictions 
occur when known disulfide bonds are predicted not to be 
such. Accordingly, a true negative is a cystine pair correctly 
predicted to not form a disulfide bond, while a false positive is 
a pair of cystines that is not a bond though predicted as such. 
Letting TP, TN, FP and FN denote, respectively, the number of 
true positives, true negatives, false positives and false 
negatives, recall the definitions of sensitivity (Sn), specificity 
(Sp) and Matthew’s correlation coefficient (Mcc): 
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Finally, two indexes can also be used [8]: Qp and Qc. For a 
protein p Qp is defined as: 

 ),( patternpredictedpatterncorrectQp δ= , (4) 

where δ (x, y) is 1 if and only if the predicted pattern coincides 
with the correct pattern. Alternatively, Qc is defined as: 

 
pairspossibleofnumber

pairspredictedcorrectlyofnumberQc = . (5) 

The two indexes are equally suited and complimentary for 
measuring the accuracy of the prediction: Qp is a measure of 
the predictive performance on each protein (either 1 or 0) and 
can be averaged over the number of predicted proteins to give a 
global measure of the accuracy of the method. Qc quantifies 
the accuracy of the method based on the number of pairs 
correctly predicted with respect to the total number of possible 
pairs. 

C. Neural Network Model 
The amino acid environment of cystines shows peculiar 

sequence characteristics that allow the discrimination between 
cystines and free cysteines using machine learning [1, 2]. 
Moreover, the secondary structure conformation assumed by 
the cysteines and their neighboring residues is remarkably 
different when comparing disulfide-bonded versus free 
cysteines [5]. Tab. �, � and � show the secondary structure 
conformation frequencies detected in the dataset and computed 
using DSSP annotations. From the Tab. �, we can see that 
disulfide bonds in the selected data set predominantly occur in 
coil structures (47.39%). Tab. � shows the relative frequency 
of secondary structures flanking the N-terminus and the 
respective C-terminus cystine in a disulfide bond in symmetric 
size 15 window. A secondary structure is assigned to each 
cystine seven N-terminal and seven C-terminal residues using a 
majority decision (i.e. counting which secondary structure of 
each group of seven residues is prevalent). Note the remarkable 
asymmetry of the coil–sheet (8.97%) and sheet–coil (13.93%) 
frequencies. Considering the secondary structure of pairs of 
cystines known to form a disulfide bond, some combinations 
are preferred (Tab. �). 

TABLE I.  CYSTEINE SECONDARY STRUCTURE FREQUENCIES(%) 

Secondary 
Structure 

All residues Cystines Free 
cysteines 

Helix 34.38 22.84 36.09 
Sheet 27.24 29.77 32.65 
Coil 38.38 47.39 31.26 

TABLE II.  SECONDARY STRUCTURE OF CYSTINES NEIGHBORS 

Secondary Structure Frequency(%) 
H-H 11.07 
H-E 1.27 
H-C 11.45 
E-H 1.34 
E-E 6.87 
E-C 13.93 
C-H 9.99 
C-E 8.97 
C-C 35.11 
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TABLE III.  SECONDARY STRUCTURE OF DISULFIDE BONDS 
FREQUENCIES (%) 

N-terminal 
secondary 
structure 

C-terminal 
secondary 
structure 

Percentage 
expected 

Percentage 
detected 

H H 5.22 6.39 
H E 6.80 9.81 
H C 10.82 9.72 
E H 6.80 3.71 
E E 8.86 9.21 
E C 14.11 8.31 
C H 10.82 9.59 
C E 14.11 19.05 
C C 22.46 24.04 

The expected frequencies for pairs of secondary structures, 
one for each cystine, assuming independence of each cysteine, 
are computed as the product of corresponding frequencies from 
Tab. �. The detected frequency is computed using DSSP 
annotations. For example, in 19.05% of the cases in the dataset 
the N-terminal cystine is in coil conformation, while the C-
terminal is in sheet conformation (this is the value reported in 
the ‘Percentage detected’ column). Since the frequency of coil 
cystine in the dataset is 0.4739, and the frequency of sheet 
cystine is 0.2977 (as reported in Tab. �), one can expect the 
frequency of bonds, in which one cystine is a coil and the other 
a sheet, to be 0.4739 � 0.2977 = 0.1411 (14.11%). This is the 
‘expected’ frequency, which is different from the detected 
frequency; moreover, the frequency of the bonds in which the 
N-terminal cystine is in sheet conformation and the C-terminal 
is in coil conformation is remarkably different (8.31%). 

Therefore, we explored the possibility of using sequence 
and secondary structure information to infer the protein 
disulfide connectivity. 

Standard feed-forward back-propagation network 
architecture with a single hidden layer was used. A window of 
15 amino acid residues (w=15) was found to be optimal. In the 
input encoding, given two-size w windows centered at N-
terminus and respective C-terminus cystines. For each residue 
in this window, 20 units were used for the scores in the PSSM 
(ran PSI-BLAST, against the non-redundant (NR) database, 
three iterations). To include secondary structure information, 
we extracted DSSP secondary structure annotations of each of 
the 2w residues, and we added to the evolutionary encoding 
vectors, 2w�3 additional binary inputs [9] (e.g. H was 
encoded as 100, E as 010, C as 001). 

The resulting inputs to our neural network consist of 2w�
23 units. And the output unit is unique. The final disulfide 
connectivity is obtained by running the wmatch program. To 
the graph, whose nodes are the putative cystines and whose 
edges, which join pairs of nodes, are weighted by the output of 
the neural network. Of several architectures tested, 50 units of 
hidden layer showed the best performance.  

The dataset of positive examples contain all the disulfide 
bonds annotated in the DSSP files. The negative dataset 
contain all possible cystine pairs of each sequence that are not 
disulfide bonds. 

To implement the neural network by MATLAB software, 
the training function is ‘traingdx’, transfer function are ‘tansig’ 
and ‘logsig’, training epochs is 2000, training goal is 0.001. 

III. RESULTS AND DISCUSSION 
The measures of only PSSM encoding and combined 

secondary structure with PSSM encoding are summarized in 
Tab. � and Tab. �. We selected 10,25,30,35,40,50,60 hidden 
units respectively. 

TABLE IV.  DISULFIDE CONNECTIVY PREDICTION PERFORMANCE OF 
PSSM ENCODING  

Hidden 
Units 

Sn 
(%) 

Sp 
(%) 

Mcc Qc 
(%) 

Qp 
(%) 

10 57.40 95.22 0.5757 88.68 40.08 
25 54.85 94.53 0.5386 87.67 39.29 
30 60.08 95.33 0.5996 89.23 44.44 
35 58.55 95.31 0.5856 88.95 39.68 
40 58.29 95.28 0.5834 88.88 38.89 
50 59.44 95.15 0.5896 88.97 43.25 
60 58.42 95.04 0.5785 88.70 42.06 

 

We can see that the accuracy is highest when using 30 
hidden units.  

TABLE V.  DISULFIDE CONNECTIVY PREDICTION PERFORMANCE OF 
PSSM +SECONDARY STRUCTURE   

Hidden 
Units 

Sn 
(%) 

Sp 
(%) 

Mcc Qc 
(%) 

Qp 
(%) 

10 57.40 95.73 0.5885 89.10 39.60 
25 56.51 94.77 0.5570 88.15 39.30 
30 60.33 95.87 0.6152 89.72 40.68 
35 58.42 95.33 0.5858 88.95 42.46 
40 59.69 95.73 0.6064 89.50 40.87 
50 62.50 95.84 0.6307 90.07 46.03 
60 57.40 95.20 0.5757 88.66 38.89 

 

From the above table, we can see that the use of secondary 
structure information leads to a clear improvement. The 
architecture of 50 hidden units shows the best performance. 
The comparison of only PSSM encoding and combined protein 
secondary structure with PSSM encoding in the same 50 
hidden units is shown in Fig. 1.  
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Figure 1.  Comparison of different input encoding ( 50 hidden units) 

The inclusion of secondary structure information leads to a 
marked improvement as well as the inclusion of the 20 
frequencies obtained in a multiple sequence alignment for each 
given residue of the window. This is known as incorporating 
evolutionary information and has been shown to substantially 
increase the accuracy of neural networks for protein secondary 
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structure prediction; similar improvements obtained using 
evolutionary information in predicting cysteine oxidation state 
and disulfide connectivity have been demonstrated[1,8]. 

IV. CONCLUSIONS 
We have proposed and tested a novel machine learning 

method for predicting disulfide connectivity patterns in 
proteins. Performance is better. In addition, our model 
guarantees a significant decrease in training time. One obvious 
direction for further study is to combine cysteine bonding state 
predictors with a pairing algorithm like the one presented in 
this paper, in order to build a complete predictor of disulfide 
bonds.  

Disulfide bonds can also be seen as a special (and important) 
case of residue contacts. Therefore it may be important to 
compare and combine predictors of disulfide bonds with 
predictors of contact maps whose performance is improving 
but still appears unsatisfactory for long ranged interactions. 
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