
Information Processing Letters 111 (2011) 516–520
Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

String matching with inversions and translocations in linear average time
(most of the time)

Szymon Grabowski a,∗,1, Simone Faro b, Emanuele Giaquinta b

a Technical University of Łódź, Computer Engineering Department, Al. Politechniki 11, 90–924 Łódź, Poland
b Università di Catania, Dipartimento di Matematica e Informatica, Viale Andrea Doria 6, I-95125 Catania, Italy

a r t i c l e i n f o a b s t r a c t

Article history:
Received 1 December 2010
Received in revised form 21 February 2011
Accepted 25 February 2011
Available online 1 March 2011
Communicated by Ł. Kowalik

Keywords:
Approximate string matching
Algorithms
Bioinformatics

We present an efficient algorithm for finding all approximate occurrences of a given pattern
p of length m in a text t of length n allowing for translocations of equal length adjacent
factors and inversions of factors. The algorithm is based on an efficient filtering method and
has an O(nm max(α,β))-time complexity in the worst case and O(max(α,β,σ))-space
complexity, where α and β are respectively the maximum length of the factors involved
in any translocation and inversion, and σ is the alphabet size. Moreover we show that
our algorithm has an O(n) average time complexity, whenever σ = Ω(log m/ log log1−ε m),
for ε > 0. Experiments show that the proposed algorithm achieves very good results in
practical cases.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

Retrieving information and teasing out the meaning of
biological sequences are central problems in modern bi-
ology. Generally, basic biological information is stored in
strings of nucleic acids (DNA, RNA) or amino acids (pro-
teins). With the availability of large amounts of DNA data,
matching of nucleotide sequences has become an impor-
tant application and there is an increasing demand for fast
computer methods for analysis and data retrieval.

Approximate string matching is a fundamental problem
in text processing and consists in finding approximate
matches of a pattern in a string. The closeness of a match
is measured in terms of the sum of the costs of the
edit operations necessary to convert the string into an
exact match. Most classical models, e.g., Levenshtein dis-
tance (for a survey, see [1]), assume that changes between
strings occur locally. However, evidence shows that large
scale changes are possible in chromosomal rearrangement.
For example, large pieces of DNA in a chromosomal se-

* Corresponding author.
E-mail address: sgrabow@kis.p.lodz.pl (S. Grabowski).

1 Supported by the Polish Ministry of Science and Higher Education un-
der the project N N516 441938.
0020-0190/$ – see front matter © 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.ipl.2011.02.015
quence can be broken and moved from one location to an-
other. This is known as a chromosomal translocation. Some-
times a mutation can also flip a stretch of DNA within a
chromosome, producing a chromosomal inversion.

In particular, a chromosomal inversion is a rearrange-
ment in which a segment of a chromosome is reversed
end to end. An inversion occurs when a single chromo-
some undergoes breakage and rearrangement within itself.
Differently, a chromosomal translocation is a chromosome
abnormality caused by rearrangement of parts of the same
chromosome or between non-homologous chromosomes.
Sometimes a chromosomal translocation could join two
separated genes, the occurrence of which is common in
cancer.

Recently Cantone et al. [2] presented the first solution
for the matching problem under a string distance whose
edit operations are translocations of equal length adja-
cent factors and inversions of factors. In particular, they
devised an O(nm max(α,β))-time and O(m2)-space algo-
rithm, where α and β are the maximum length of the
factors involved in a translocation and in an inversion,
respectively. They showed that under the assumption of
equiprobability and independence of characters in the al-
phabet, on average the algorithm has an O(n logσ m)-time
complexity, where σ is the alphabet size. Moreover they

http://dx.doi.org/10.1016/j.ipl.2011.02.015
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:sgrabow@kis.p.lodz.pl
http://dx.doi.org/10.1016/j.ipl.2011.02.015

S. Grabowski et al. / Information Processing Letters 111 (2011) 516–520 517
GFG(p,m, t,n,α,β)

1. for c ∈ Σ do G[c] ← 0
2. for s ← 0 to m − 1 do
3. G[p[s]] ← G[p[s]] + 1
4. G[t[s]] ← G[t[s]] − 1
5. δ ← 0
6. for c ∈ Σ do δ ← δ + abs(G[c])
7. for s ← 0 to n − m do
8. if δ = 0 then
9. Verify(p,m, t, s,α,β)

10. a ← t[s]
11. b ← t[s + m]
12. δ ← δ − abs(G[a]) − abs(G[b])
13. G[a] ← G[a] + 1
14. G[b] ← G[b] − 1
15. δ ← δ + abs(G[a]) + abs(G[b])
16. if δ = 0 then
17. Verify(p,m, t,n − m,α,β)

Verify(p,m, t, s,α,β)

1. γ = min(α,β)

2. for i ← 0 to m − 1 do
3. for j ← max(0, i − γ) to min(m − 1, i + γ) do
4. F [i, j] ← I[i,m − j − 1] ← 0
5. if (p[i] = t[s + j]) then
6. if (i = 0 or j = 0) then F [i, j] ← 1
7. else F [i, j] ← F [i − 1, j − 1] + 1
8. if (p[i] = t[s + m − j − 1]) then
9. if (i = 0 or j = 0) then I[i,m − j − 1] ← 1

10. else I[i,m − j − 1] ← I[i − 1,m − j] + 1
11. if (p[i] = t[s + i] and (i = 0 or S[i − 1] = 1))
12. then S[i] ← 1 else S[i] ← 0
13. for k ← 1 to min(α, � i+1

2 �) do
14. if (F [i, i − k] � k and F [i − k, i] � k) then
15. if (i < 2k or S[i − 2k] = 1) then S[i] ← 1
16. for k ← 2 to min(β, i + 1) do
17. if (I[i, i − k + 1] � k) then
18. if (i < k or S[i − k] = 1) then S[i] ← 1
19. if (S[m − 1] = 1) then Output(s)

Fig. 1. (on the left) The GFG algorithm for the approximate string matching problem with inversions and translocations and (on the right) the verification

procedure.
also presented a bit-parallel implementation of their al-
gorithm, working in O(n max(α,β)) time and O(σ + m)

space, if the pattern length is comparable with the com-
puter word size.

In this paper we present a new algorithm for the
same problem based on an efficient permutation filter-
ing method and on a dynamic programming approach
for testing candidate positions. In particular our algo-
rithm achieves an O(nm max(α,β))-worst case time com-
plexity, as the M-Sampling algorithm, and requires only
O(max(α,β)) space. More interestingly, our algorithm is
shown to achieve O(n) average-case time complexity, for
σ = Ω(log m/ log log1−ε m), ε > 0.

2. Basic notions and definitions

Let p[0 . . .m − 1] be a string of length len(p) = m � 0,
over an integer alphabet Σ of size σ . We denote by
p[i] the (i + 1)th character of p. Likewise, the sub-
string (also called factor) of p contained between the
(i + 1)th and the (j + 1)th characters of p is indicated
with p[i . . . j], for i � j. An k-substring (or k-factor) is a
substring of length k. In addition, we write pp′ to denote
the concatenation of p and p′ , and pr for the reverse of
the string p.

A distance d : Σ∗ × Σ∗ → R is a function which asso-
ciates to any pair of strings X and Y the minimal cost of
any finite sequence of edit operations which transforms X
into Y , if such a sequence exists, ∞ otherwise.

Definition 1. Given two strings X and Y , the mutation dis-
tance md(X, Y) is based on the following edit operations:

(1) Inversion: a factor Z is transformed into Z r .
(2) Translocation: a factor of the form Z W is transformed

into W Z , provided that len(Z) = len(W) > 0.

Both operations are assigned unit cost.

We indicate with α and β the maximum length of
factors involved translocations and inversions, respec-
tively. By definition, α � �len(X)/2� and β � len(X). When
md(X, Y) < ∞, we say that X and Y have an md-match.
Additionally, if X has an md-match with a suffix of Y , we
write X
md Y .

Definition 2. The string matching with inversions and
translocations (SMIT) problem: Given text t[0 . . .n − 1] and
pattern p[0 . . .m − 1], n � m, return all text positions s
such that p
md t[0 . . . s + m − 1].

3. Proposed algorithm

In this section we present a new efficient algorithm
for the approximate string matching problem allowing for
inversions of factors and translocations of equal length ad-
jacent factors. In the following we assume that p and t are
strings of length m and n respectively, over a common al-
phabet Σ = {c0, . . . , cσ−1}, where σ = O (n). (The case of
even larger alphabets is rather theoretical and can be han-
dled with standard solutions, e.g., using a minimal perfect
hash function.)

The new algorithm, named GFG algorithm, searches for
all occurrences of p in t by making use of an efficient filter
method. This technique, usually called as the counting filter,
is known in the literature [3–5] and has been used for k-
mismatches and k-differences. The idea behind the filter is
straightforward and is based upon the observation that (in
our problem) if the pattern p has an occurrence (possibly
involving inversions and translocations) starting at position
s of the text then t[s . . . s + m − 1] is a permutation of the
pattern.

In short, the GFG algorithm identifies the set Γp,t of all
candidate positions s in the text such that the substring
t[s . . . s + m − 1] is a permutation of the characters in p
and, for each s ∈ Γp,t , executes a verification procedure in
order to check the approximate occurrence.

As the counting filter technique is quite well known, we
refer the reader to the pseudocode of the GFG algorithm in
Fig. 1 (on the left) and the verification procedure (on the
right), providing only brief comments below.

518 S. Grabowski et al. / Information Processing Letters 111 (2011) 516–520
For each position 0 � s � n − m, we define a function
Gs : Σ → N , as Gs(c) = occp(c)− occt(s,m)(c) for c ∈ Σ , and
where we set t(s,m) = t[s . . . s + m − 1].

We also define, for each position s, the distance value
δs as follows

δs = δ(p, ts) =
∑
c∈Σ

abs
(
occp(c) − occt(s,m)(c)

)

=
∑
c∈Σ

abs
(
Gs(c)

)

Then it is easy to see that the set Γp,t of all candidate
positions in the text can be defined as Γp,t = {s | 0 � s �
n − m and δs = 0}.

Observe that values δs+1 and δs can differ only in the
number of occurrences of characters t[s] and t[s + m].
Thanks to this property, Gs+1(c) can be computed in con-
stant time from Gs(c) and similarly δs+1 can be computed
from δs in constant time (lines 12–15 in Fig. 1, left).

Note that the main loop of GFG has only one condi-
tional and the integer abs function is translated by modern
compilers (including GNU C Compiler) into branchless
code.

The verification procedure is based on dynamic pro-
gramming. The algorithm uses two matrices, F and I , both
of size m2, in order to compute occurrences of factors
and inverted factors of p, respectively, in the substring
t[s . . . s + m − 1]. More formally we define

F [i, j] = max
{
k

∣∣ p[i − k + 1 . . . i]
= t[s + j − k + 1 . . . s + j]}

and

I[i, j] = max
{
k

∣∣ p[i − k + 1 . . . i]
= (

t[s + j . . . s + j + k − 1])r}
for 0 � i < m and max(0, i − γ) � j � min(m − 1, i + γ),
where γ = min(α,β). Moreover a vector S , of size m, is
maintained in order to compute the md-matches of all
prefixes of the pattern in t[s . . . s + m − 1]. More formally,
for 0 � i < m, we have S[i] = 1 if pi
md t[s . . . s + i] and
S[i] = 0 otherwise.

The following recursive relations are used for comput-
ing F and I .

F [i, j] =

⎧⎪⎪⎨
⎪⎪⎩

0 if p[i] �= t[s + j]
F [i − 1, j − 1] + 1 if i > 0, j > max(0, i − α)

and p[i] = t[s + j]
1 otherwise

I[i, j] =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 if p[i] �= t[s + j]
I[i − 1, j + 1] + 1 if i > 0,

j < min(m − 1, i + β)

and p[i] = t[s + j]
1 otherwise

Finally the vector S is computed, for increasing i =
0 . . .m − 1 according to the following (recursive) formula.
The value of S[i] is set to 1 iff one of the following condi-
tions holds:
– p[i] = t[s + i] and (i = 0 or S[i − 1] = 1);
– F [i, i − k] � k, F [i − k, i] � k and (i < 2k or S[i − 2k]

= 1), for 1 � k � min(α, � i+1
2 �);

– I[i, i − k + 1] � k and (i < k or S[i − k] = 1), for 1 �
k � min(β, i + 1).

Then p has an md-match starting at position s of the
text if S[m−1] = 1 at the end of the verification procedure
with parameter p, t and s.

Observe that the computation of the entry of position i
in S only requires the last β entries of the (i − 1)th row of
I and the last α entries of both the (i − 1)th row of F and
(i − 1)th column of F . Similarly only the last max(2α,β)

entries of the vector S are needed for computing the value
S[i]. Moreover, both for I and F , the computation of the
ith row (column) needs only the values in the (i − 1)th
row (column) of the matrix.

It is thus straightforward to reduce the space require-
ments of the verification phase to O(max(α,β)). This is
done by maintaining, for each iteration, only two rows of
I and only two rows and two columns of F , each of size
max(α,β).

The verification time and space costs are thus
O(m max(α,β)) and O(max(α,β)), respectively, leading to
overall O(nm max(α,β)) worst case time complexity and
O(max(α,β,σ)) space complexity for the GFG algorithm.

Finally, note that the arrays F and I store results of
the longest common extension (LCE) queries and for this
problem efficient theoretical results are known. More pre-
cisely, one can build a suffix tree over p#t , where # is a
symbol not occurring in Σ , and preprocess it for lowest
common ancestor (LCA) queries. This can be done once for
the whole text in O(n+m) time, using O(n) space, and the
queries are handled in constant time [6]. The space use can
be decreased to O(m) using a standard technique (p# con-
catenated with overlapping windows of t of width 2m − 1)
without compromising the overall build and query answer-
ing time complexities. Still, in this case the calculations
of vector S in our procedure remain the (theoretical) bot-
tleneck, and the overall complexities are unchanged (the
minor difference in space, between O(max(α,β)) of our
solution and O(m) of the suffix tree based one, is practi-
cally irrelevant, since usually the whole text of length O(n)

is stored in the main memory as well). Our solution based
on the arrays F and I is conceptually simpler and does not
suffer from large hidden constants associated with suffix
trees.

4. Average-case time analysis

Next, we evaluate the average time complexity of the
GFG algorithm. In our analysis we assume the uniform dis-
tribution and independence of characters. We first assume
that m = ω(σ O(1)), then we prove the simple case when
m � σ .

Our verification procedure takes O(m2) (worst-case)
time per location. To obtain linear average time, we must
thus bound the probability of having permuted subse-

S. Grabowski et al. / Information Processing Letters 111 (2011) 516–520 519
Table 1
The performance of M-Sampling [2] (MS), GFG using M-Sampling for verification (GFG1) and GFG as shown in Fig. 1 (GFG2).

Random text with σ = 4
m MS GFG1 GFG2

8 254.78 48.53 73.73
16 350.25 50.05 103.09
32 441.05 44.20 102.04
64 528.35 43.83 140.18

128 645.36 43.20 208.05
256 868.13 41.84 273.47
512 1273.13 44.71 349.57

Random text with σ = 8
m MS GFG1 GFG2

8 155.39 29.57 29.78
16 193.91 29.21 28.98
32 241.54 29.20 28.72
64 309.26 29.33 28.75

128 377.17 29.68 29.16
256 525.96 30.75 30.89
512 770.45 34.14 37.73

Random text with σ = 16
m MS GFG1 GFG2

8 115.27 28.45 28.55
16 137.27 28.48 28.54
32 161.25 28.51 28.57
64 211.75 28.65 28.66

128 273.53 28.94 29.01
256 371.65 29.86 30.34
512 536.40 32.85 35.79

Random text with σ = 32
m MS GFG1 GFG2

8 93.80 28.18 28.52
16 110.64 28.20 28.53
32 128.80 28.25 28.55
64 169.25 28.42 28.61

128 197.24 28.65 28.93
256 259.77 29.45 30.23
512 398.20 32.07 35.11

Escherichia coli
m MS GFG1 GFG2

8 593.49 117.79 184.48
16 781.76 108.53 208.50
32 976.79 99.88 222.19
64 1188.58 94.64 267.01

128 1484.03 84.16 252.17
256 2005.00 80.40 257.70
512 2929.90 83.36 299.49

Saccharomyces cerevisiae
m MS GFG1 GFG2

8 163.25 41.38 41.45
16 192.64 41.39 41.45
32 224.27 41.44 41.48
64 297.01 41.56 41.60

128 376.27 41.88 41.91
256 506.88 42.79 43.25
512 738.19 45.72 48.65
quences of length m with O(1/m2). We will find condi-
tions upon which this happens.2

Suppose m = ω(σ O(1)), we define k = m/σ and, with-
out loss of generality, we assume that σ divides m. For
each text position s, with 0 � s � n − m, the probability
that the m-substring of the text, beginning at position s, is
a permutation of the pattern p is exactly

Pr{s ∈ Γp,t}

=
(m

occ(c0)

)(m−occ(c0)
occ(c1)

)(m−occ(c0)−occ(c1)
occ(c2)

)
. . .

(occ(cσ−1)
occ(cσ−1)

)
σm

(1)

Now, it is easy to notice that the probability given in
(1) is maximized when occ(ci) = k for all i. We can thus
write:

Pr{s ∈ Γp,t} �
(m

k

)(m−k
k

)(m−2k
k

)
. . .

(k
k

)
σm

= m!
(k!)σ σm

We make use of Stirling’s approximation for m! and k!
(recall that k = m/σ):

m!
(k!)σ σm

= Θ

(√
2πm(m/e)m

(
√

2π(m/σ)(m/(eσ))m/σ)σ σm

)

= Θ

(√
2πm

(
√

2π(m/σ))σ

)

Let us upper-bound
√

2π/(
√

2π)σ with 1 and remove
it. We have:

Θ

(√
m

(
√

m/σ)σ

)
= Θ

(
σσ/2

m(σ−1)/2

)

Let us assume m � σ 4 (we recall that m = ω(σ O(1))).
Then σσ/2/m(σ−1)/2 is less than or equal to 1/σ 1.5σ−2.

2 The paper [5] contains an analysis of the counting filter, in the
k-differences problem. Unfortunately, the analysis seems to be flawed,
which was admitted in discussion by the second author of the cited paper
(G. Navarro).
Note that if we take a larger lower bound on m, e.g.,
σ 8, then our upper bound gets even smaller, namely
1/σ 3.5σ−4 in this example. All in all, we have

Pr{s ∈ Γp,t} = O
(
1/σ O(σ)

) = O
(
1/m2)

for any σ = Ω(log m/ log log1−ε m), where ε > 0.
Suppose now that m � σ .3 Then the probability that

the m-substring of the text, beginning at position s, is a
permutation of the pattern p is

Pr{s ∈ Γp,t} � m!
σm

� m!
mm

<
√

2π
mm+1

emmm

= √
2π

m

em
= O

(
1/m2)

where we made use again of Stirling’s approximation
for m!.

Thus the overall average time complexity of the GFG al-
gorithm, assuming σ = Ω(log m/ log log1−ε m), is given by
the following relation:

T (n,m,σ) = O(σ + m) +
n−m∑
s=0

Pr{s ∈ Γp,t} · O
(
m2)

= O(σ + m) + (n − m + 1) · O
(
1/m2) · O

(
m2)

= O(n)

5. Experimental results

We evaluate the performance of the following algo-
rithms: M-Sampling [2] (MS), GFG using M-Sampling for
verification (GFG1) and GFG as shown in Fig. 1 (GFG2)
(see Table 1). All algorithms have been implemented in
C and compiled with the GNU C Compiler 4.2, using
the options -O2 -fno-guess-branch-probability.
All tests have been performed on a 2 GHz Intel Core

3 Note that for the more general case of m = σ O(1) there exists already
an average-case linear algorithm [2], so this part of the analysis is only to
find properties of the currently presented algorithm.

520 S. Grabowski et al. / Information Processing Letters 111 (2011) 516–520
Table 2
The mean, over the 200 runs, of the number of pattern’s permutations found per text position.

Random text (σ = 4)
m # candidate

8 0.013621
16 0.006399
32 0.001837
64 0.000720

128 0.000285
256 0.000093
512 0.000029

Random text (σ = 8)
m # candidate

8 0.000410
16 0.000037
32 0.000004
64 0.000001

128 0.000001
256 0.000001
512 0.000001

Random text (σ = 16)
m # candidate

8 0.000004
16 0.000001
32 0.000001
64 0.000001

128 0.000001
256 0.000001
512 0.000001
2 Duo and running times have been measured with a
hardware cycle counter, available on modern CPUs. We
used the following input files: (i) four random texts of
2,000,000 characters with a uniform distribution over al-
phabets of dimension σ , with σ ∈ {4,8,16,32} respec-
tively; (ii) a protein sequence of 2,900,352 characters from
the Saccharomyces cerevisiae genome (with σ = 20)4; (iii) a
genome sequence of 4,638,690 base pairs of Escherichia
coli (σ = 4).5

For each input file, we have generated seven sets of 200
patterns of fixed length m randomly extracted from the
text, for m ∈ {8,16,32,64,128,256,512}. For each set of
patterns we reported the mean time over 200 runs, ex-
pressed in ms.

The experimental results show that the filtering strat-
egy is quite effective and allows to dramatically speed
up, by a factor of at most 30, the computation of the
md-matches. For very small alphabets the GFG1 algo-
rithm, based on M-Sampling, is faster than GFG2, based
on the dynamic programming verification, while in the
other cases the two algorithms have almost the same
speed.

In Table 2 we report the mean, over the 200 runs, of the
number of pattern’s permutations found per text position.

4 http://data-compression.info/Corpora/ProteinCorpus/.
5 http://corpus.canterbury.ac.nz/.
Observe that, while for small alphabets the number is
non-negligible also for long patterns, for large enough al-
phabets it is always insignificant.

Acknowledgements

We thank an anonymous referee for constructive com-
ments on the manuscript.

References

[1] G. Navarro, A guided tour to approximate string matching, ACM Com-
put. Surv. 33 (1) (2001) 31–88.

[2] D. Cantone, S. Faro, E. Giaquinta, Approximate string matching allow-
ing for inversions and translocations, in: J. Holub, J. Žd’árek (Eds.),
Proceedings of the Prague Stringology Conference, Czech Technical
University, Prague, Czech Republic, 2010, pp. 37–51.

[3] R. Grossi, F. Luccio, Simple and efficient string matching with k mis-
matches, Inform. Process. Lett. 33 (3) (1989) 113–120.

[4] P. Jokinen, J. Tarhio, E. Ukkonen, A comparison of approximate string
matching algorithms, Softw. Pract. Exp. 26 (12) (1996) 1439–1458.

[5] R.A. Baeza-Yates, G. Navarro, New and faster filters for multiple
approximate string matching, Random Structure Algorithms 20 (1)
(2002) 23–49.

[6] D. Gusfield, Algorithms on Strings, Trees and Sequences: Computer
Science and Computational Biology, Cambridge University Press, Cam-
bridge, 1997.

http://data-compression.info/Corpora/ProteinCorpus/
http://corpus.canterbury.ac.nz/

	String matching with inversions and translocations in linear average time (most of the time)
	Introduction
	Basic notions and deﬁnitions
	Proposed algorithm
	Average-case time analysis
	Experimental results
	Acknowledgements
	References

