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Abstract

This paper considers the automatic design of fuzzy rule-based classification systems from labeled data. The classification accuracy
and interpretability of generated rules are of major importance in fuzzy classification systems. We propose a weighting function for
compatibility grade of patterns that improves the performance of fuzzy classification system without degrading the interpretability
of fuzzy rules. Our approach divides the covering subspace of each fuzzy rule into two subdivisions based on a threshold. Any
pattern with compatibility grade above this threshold should be classified truly so the weighting function enhances their association
degree. For patterns below threshold, their compatibility grades remain unchanged. The splitting threshold for each rule (i.e. the
compatibility grade of a specific pattern) is found using distribution of patterns in the covering subspace of that rule. We also show
that how the proposed approach is applicable when fuzzy rules have certainty grades. Experiments on some well-known data sets
are used to evaluate the performance of our approach.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Fuzzy rule-based expert systems are often applied to classification problems in various fields. The fuzzy if-then
rules improve the interpretability of results and provide more insight into the classifier structure and decision making
process [26]. Many approaches have been proposed for generating and learning fuzzy if-then rules from numerical
data for classification problems. These include simple heuristic procedures [1,11], neuro-fuzzy techniques [18,19],
clustering methods [2], fuzzy clustering in combination with fuzzy relations [24], fuzzy nearest neighbor [17], and
genetic algorithms [25].

Traditionally, the design of fuzzy classification systems have focused either on the accuracy of the classifier or the
interpretability of the fuzzy rules. Recently, some approaches that combine these properties have been reported. For
example, deriving transparent models using fuzzy clustering [23], applying linguistic constraints to fuzzy modeling
[26], rule extraction from neural networks [22], using genetic algorithm for iteratively developing fuzzy classifiers [21]
and using evolutionary algorithms to learn the linguistic hedges and the parameters of t-norm connectives in fuzzy
rules [5,7].
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In this work, we do not attempt to modify the membership functions of the given linguistic values, as this will degrade
the interpretability of the fuzzy rules. Instead, using weighting functions [6], we modify the compatibility grade of
patterns to improve the classification accuracy, especially for very coarse partitioning where the performance is poor.
Our approach specifies a positive pattern (i.e. pattern with true class) from the covering subspace of each fuzzy rule
as splitting pattern and uses its compatibility grade as threshold. This pattern divides the covering subspace of each
rule into two distinct subdivisions. All patterns having compatibility grade above this threshold are positive so any
incoming pattern for this subdivision should be classified as positive. The proposed weighting function enhances the
certainty grade of these patterns such that, using winner takes all reasoning method, they are classified by this rule. For
other patterns, the weighting function makes no change.

Some approaches use certainty grades to improve the performance of fuzzy classification systems [10,20].Adjustment
of certainty grades is easier than the learning of membership functions of antecedent fuzzy sets. Also, the classification
accuracy can be improved without modifying the membership function of each linguistic label. Considering these facts,
our proposed weighting function is applicable for fuzzy rules having certainty grades. We obtain a general form of the
weighting function that can also be used for this case.

The rest of this paper is organized as follows. In Section 2, designing a fuzzy rule-based classification system with
reduced rule set is explained. Section 3 discusses the proposed weighting function. The effect of certainty grade on
weighting function is explained in Section 4. In Section 5, we present the experimental results. Section 6 concludes
this paper.

2. Designing fuzzy rule-based classification system

Fuzzy if-then rules for a pattern classification problem with n attributes can be written as

Rule Rj : If x1 is Aj1 and . . . and xn is Ajn then class Cj , for j = 1, 2, . . . , N, (1)

where X = [x1, x2, . . . , xn] is the n-dimensional pattern vector, Aji (i = 1, 2, . . . , n) is an antecedent linguistic value
such as Small or Large, Cj is the consequent class, and N is the number of fuzzy rules. Generally, for an M-class
problem, m labeled patterns Xp = [xp1, xp2, . . . , xpn], p = 1, 2, . . . , m is given. Usually, each attribute is first
normalized to unit interval [0, 1]. Using the information provided by labeled patterns, the task of classifier design is to
generate a set of fuzzy rules in the form of (1).

For this purpose, first the pattern space is partitioned into fuzzy subspaces and then, each partition is identified by a
fuzzy rule if there are some patterns in that subspace [11]. In this paper we assume that partitioning of pattern space
is provided in advance. We use triangular membership functions to partition each feature axis into K fuzzy subsets
{A1, A2, . . . , Ak}. Fig. 1 shows this partitioning for K = 2, 3, 4 and 5.

Given an input partitioning of pattern space, one approach is to consider all possible combination of antecedent
linguistic values and generate a fuzzy rule for each combination if there is a training pattern covered by this rule.

For high dimensional problems, this approach can generate too many rules which are practically impossible to
handle. For example, for Wine data set [4] with 13 input variables, even with coarsest partitioning of pattern space
(K = 2), 213 fuzzy rules may be generated with this method. One approach for handling this problem is to use a fuzzy
rule evaluation measure to select a small subset of candidate rules [14].
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Fig. 1. Different partitioning of each feature axis.
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The approach we take in this paper to handle high dimensional problems is to generate a fuzzy rule only if there is a
training pattern in the decision subspace of the rule (i.e. classified by the rule). Using this method, for a problem with
m training pattern, at most m rules can be generated. This is the case if each training pattern is located in the decision
subspace of a different rule. In general, a single training pattern can generate 2n fuzzy rules for an n-dimensional
problem. Our rule generation method can be viewed as selecting one out of these 2n rules (i.e. the rule having most
compatibility with the training pattern).

The consequent class Cj of each fuzzy rule in Eq. (1) is determined by training patterns in the corresponding fuzzy
subspace. The compatibility grade of each training pattern Xp is defined with the antecedent part Aj = Aj1 × Aj2 ×
· · · × Ajn of the fuzzy rule Rj using the product operator as

�j (Xp) = �j1(xp1)�j2(xp2) . . . �jn(xpn), (2)

where �ji(·) is the membership function of the antecedent fuzzy set Aji . In order to select the consequent class of a
fuzzy rule, we use the heuristic method proposed by Ishibuchi et al. [12], which is based on the confidence of association
rules from the field of data mining. A fuzzy classification rule in (1) can be viewed as an association rule of the form
Aj ⇒ class Cj , where Aj is a multidimensional fuzzy set representing the antecedent combination of the rule and Cj

is a class label. In [13], a measure for evaluating the confidence of a fuzzy association rule is provided as

Conf(Aj ⇒ Class Cj ) =
∑

Xp∈class Cj

�j (Xp)

/
m∑

p=1

�j (Xp) . (3)

The consequent class Cj of fuzzy rule Rj is specified by identifying the class with the maximum confidence.
The most popular fuzzy reasoning method in fuzzy rule-based classification systems is the reasoning based on a

single winner rule [9]. This method is simple and intuitive for human users. Other fuzzy reasoning methods are studied
in [3,6,9]. In this way, a new pattern Xp = [xp1, xp2, . . . , xpn] is classified by the single winner rule R

ĵ
defined as

�
ĵ
(Xp) = max{�j (Xp), j = 1, 2, . . . , N}, (4)

where �j (Xp) is the compatibility grade of fuzzy rule Rj with Xp using (2).

3. The proposed weighting function

Cordon et al. [6] present a general model of fuzzy reasoning to combine information provided by different rules. Their
model is an extension of the fuzzy classifier definition presented by Kuncheva [15]. In their model, after calculating
the compatibility grade of patterns according to each rule, a weighting function is applied. This function modifies the
association degrees in order to increase the classification accuracy of the system.

In this work, we define a piecewise linear weighting function based on a splitting threshold. This function enhances
the compatibility grade of patterns above this threshold such that they are classified truly. For patterns below this
threshold, their compatibility grades remain unchanged.

Considering the distribution of training patterns in the covering subspace of each fuzzy rule, we specify a splitting
pattern which divides the covering subspace of the rule into two subdivisions. Given this pattern, its compatibility
grade is used as splitting threshold. All training patterns having association values above this threshold are positive
(i.e. patterns with true class). Intuitively, any incoming pattern within this subdivision must be classified truly. To
classify these patterns as positive, their compatibility grade is set to one, ensuring that these patterns will be classified
by the current rule. However, for some new patterns, the splitting threshold of more than one fuzzy rule might be over
passed. In this case, the compatibility grade of new pattern in two or more fuzzy rules would be set to one. Selecting
the appropriate rule from these competing rules is impossible. To overcome this difficulty, we add to one the initial
compatibility grade of the pattern in each rule. Fig. 2 shows the input–output mapping of weighting function. In this
Figure, tj is the splitting threshold of rule Rj , �in

j is the compatibility grade of input pattern Xp with this rule, and �out
j

is the enhanced compatibility grade.
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Fig. 2. Input–output mapping of weighting function.
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Fig. 3. Comparing the decision area of fuzzy rules; (a), (d) no weighting function and certainty grade; (b), (e) using weighting function; (c), (f) using
certainty grade.

Thus, before selecting the winner rule for new pattern Xp, its compatibility grade with rule Rj is modified as

�out
j (Xp) =

{
�in

j (Xp) if �in
j (Xp) < tj ,

1 − tj + �in
j (Xp) if �in

j (Xp)� tj .
(5)

Specifying the splitting pattern is simple and straightforward. We rank (in descending order) the training patterns in
the covering subspace of the rule based on their compatibility grade. The last positive pattern before the first negative
one is selected as splitting pattern and its grade of compatibility is used as threshold.

Fig. 3 illustrates the effect of weighting function on decision area of fuzzy rules applied to two 2-dimensional pattern
classification examples. Using no weighting function and certainty grade, the fuzzy rules have rectangular decision
areas and the classification boundaries are always linear and parallel to the axes of the pattern space [16]. As claimed
in [10], fuzzy rules with certainty grades have decision areas of various shapes and the classification boundaries are
not always parallel to the axes of the pattern space. On the other hand, when weighting function is applied, the decision
area of rules is not necessarily rectangular and the classification boundaries are nonlinear.
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4. Effect of certainty grade on weighting function

As shown in [10], fuzzy rule-based systems can generate various classification boundaries by adjusting the certainty
grade (i.e. rule weight) of each fuzzy rule even when fixed membership functions are used. Using certainty grade, each
fuzzy if-then rule in (1) can be written as

Rule Rj : If x1 is Aj1 and . . . and xn is Ajn then class Cj with wj , for j = 1, 2, . . . , N, (6)

where wj is the certainty grade of rule Rj . In this case, the winner rule R
ĵ

for a new pattern Xp = [xp1, xp2, . . . , xpn]
is defined by

�
ĵ
(Xp).w

ĵ
= max{�j (Xp).wj , j = 1, 2, . . . , N}. (7)

In order to assign a suitable certainty grade to each fuzzy rule, several heuristic measures are proposed in the
literature [13]. Since we use the single winner-based method, the following definition of certainty grade from Ishibuchi
and Yamamoto [13] is appropriate for multi-class problems:

wj = Conf(Aj ⇒ Class Cj ) − Conf(Aj ⇒ Class C2nd), (8)

where class C2nd is the class with the second largest confidence for the antecedent part Aj . This definition has been
used in many fuzzy rule-based classification systems [8] where satisfactory results have been obtained.

Using certainty grade for fuzzy rules in classification process, some modification on weighting function in (5) is
needed. We obtain a general form of weighting function that can also be used for fuzzy classification rules having
certainty grades. Assigning certainty grade wj to rule Rj , changes the slope of piecewise linear weighting function in
Fig. 2 from 1 to wj . This is equal to rotating the input–output mapping about the origin up to �j = tan−1 wj − (�/4)

radians as shown in Fig. 4.
Generally, rotating any point (x, y) about the origin through an angle � radians transforms this point to (x′, y′) using

Eq. (9):[
x′
y′

]
=

[
cos � − sin �
sin � cos �

]
×

[
x

y

]
. (9)

From �j = tan−1 wj − (�/4), we obtain⎧⎨
⎩

sin �j = (wj − 1)/
√

2w2
j + 2,

cos �j = (wj + 1)/
√

2w2
j + 2.

(10)
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Fig. 4. Effect of certainty grade on weighting function.
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By transforming point (tj , tj ) to (nj , nj .wj ) in Fig. 4, using Eq. (9) for � = �j , the unknown parameter nj is
obtained as[

nj

nj .wj

]
=

[
cos �j − sin �j

sin �j cos �j

]
×

[
tj
tj

]
⇒ nj = tj

√
2

1 + w2
j

. (11)

Similarly, transformation of point (tj , 1) to (mj , pj ) yields

[
mj

pj

]
=

[
cos �j − sin �j

sin �j cos �j

]
×

[
tj
1

]
⇒

⎧⎨
⎩

mj = {tj .(wj + 1) − (wj − 1)}/
√

2w2
j + 2,

pj = {tj .(wj − 1) + (wj + 1)}/
√

2w2
j + 2.

(12)

So, using the certainty grade wj , the splitting threshold for rule Rj moves from tj to
√

2/(1 + w2
j )tj . The weighting

function for Rj that modifies the compatibility grade of Xp before determining the single winner rule, changes to

�out
j (Xp) =

⎧⎪⎪⎨
⎪⎪⎩

wj .�in
j (Xp) if �in

j (Xp) < nj ,(
pj − nj .wj

mj − nj

)
.�in

j (Xp) −
(

pj − mj .wj

mj − nj

)
.nj if nj ��in

j (Xp) < mj ,

wj .�in
j (Xp) − wj .mj + pj if �in

j (Xp)�mj .

(13)

5. Experimental results

In this section, the performance of fuzzy rule-based classification systems using weighting functions is examined.
We used five data sets available from the UCI ML repository [4]. Table 1 shows their specifications.

This paper uses three evaluation methods to examine the classification accuracy of systems at various levels of
training: 2FT, LV1 and 2CV [27]. In the 2FT (i.e. full train and full test) method, the entire data used for training the
system, is also used for testing. The 2CV (i.e. two-fold cross-validation) method divides the data into two subsets of
the same size. One subset is used as training data for generating fuzzy rules and their parameters. The other subset is
used as test data for evaluating the system. The same training and testing procedure is also performed after exchanging
the role of each subset. Since the error rate on test data in the 2CV depends on the initial division of the data, the 2CV
is iterated 10 times using different divisions of the data set. The average classification rate in the 2CV can be viewed as
indicating the generalization ability when the size of training data is small [10]. In LV1 (i.e. leaving one out) approach,
one sample is used in test phase and the rest of samples are used in training phase. The procedure is repeated until all
the samples are used in the test phase. The average classification rate on test data is reported as the performance of
classifier.

Since the feature space of data sets is continuous, each attribute value is normalized to a real number in the unit
interval [0, 1]. Then, the attribute axes are homogeneously divided by K triangular fuzzy sets. These fuzzy partitions
are used for generating fuzzy rules, specifying their splitting thresholds and calculating their certainty grades and other
parameters used in (13).

Tables 2–4 summarize the simulation results for five data sets. Each table compares the classification accuracy
of fuzzy systems for two cases: (a) fuzzy rules do not use weighting functions (i.e. columns titled old in tables)

Table 1
Statistics of data sets used for system evaluation

Data set Number of attributes Number of classes Number of samples

Iris 4 3 150
Wine 13 3 178
Glass 9 6 214
Image segmentation 18 7 210
Breast cancer 9 2 684
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Table 2
Classification accuracy when using weighting functions (2FT method)

Data set K Rules without certainty grades Rules having certainty grades Number of rules

Old New Old New

Iris 2 71.33 76.00 68.00 69.33 9
3 92.00 96.00 94.00 95.33 15
4 84.00 93.33 92.00 93.33 28
5 94.67 98.00 96.67 98.00 48

Wine 2 92.13 98.31 93.82 97.75 124
3 96.07 100 98.31 100 138
4 100 100 100 100 171
5 100 100 100 100 177

Glass 2 53.27 62.15 63.55 64.02 33
3 67.76 69.63 69.16 69.63 44
4 64.02 73.83 71.96 75.23 65
5 76.64 80.37 76.64 78.5 95

Image 2 60.95 71.90 66.19 70.95 47
3 86.67 92.86 90.00 91.43 101
4 94.76 98.57 91.90 96.19 150
5 95.24 98.10 95.71 97.62 171

Cancer 2 95.32 98.83 95.32 98.10 135
3 98.25 98.68 97.95 98.39 254
4 99.42 99.85 99.56 99.71 313
5 100 100 100 100 326

Table 3
Classification accuracy when using weighting functions (2CV method)

Data set K Rules without certainty grades Rules having certainty grades Rejection rate Average number of rules

Old New Old New

Iris 2 71.27 77.87 70.00 72.13 8.40 9.0
3 91.67 93.87 93.27 91.33 2.70 15.0
4 80.40 91.53 89.33 92.00 0.00 27.5
5 93.93 93.80 95.47 95.47 2.00 47.1

Wine 2 89.27 91.46 92.30 93.93 0.23 124.0
3 93.26 95.22 95.45 95.56 0.45 137.0
4 89.94 90.00 90.06 90.84 4.49 161.6
5 79.72 79.44 79.72 79.66 17.02 143.2

Glass 2 48.83 55.47 54.07 53.32 0.14 33.0
3 58.74 59.25 60.93 61.22 1.40 42.3
4 53.64 62.38 59.77 61.07 2.85 58.1
5 59.11 60.65 60.05 58.97 5.70 84.7

Image 2 55.52 66.38 57.10 60.10 1.05 46.8
3 73.43 78.00 77.57 80.14 3.67 95.1
4 79.10 79.38 78.29 78.05 6.76 139.6
5 76.05 76.52 76.48 76.38 10.52 153.8

Cancer 2 95.06 95.96 95.15 96.64 0.00 135.0
3 93.58 93.63 93.73 94.01 2.60 234.6
4 75.98 75.99 76.07 76.20 21.61 216.0
5 68.83 68.83 68.85 68.86 28.60 210.0
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Table 4
Classification accuracy when using weighting functions (LV1 method)

Data set K Rules without certainty grades Rules having certainty grades Rejection rate Average number of rules

Old New Old New

Iris 2 71.33 76.00 68.00 68.00 8.67 9.0
3 92.00 92.00 93.33 92.67 2.67 15.0
4 82.67 90.67 88.00 90.67 0.00 28.0
5 94.67 94.00 95.33 96.67 2.00 48.0

Wine 2 88.76 91.57 91.57 94.94 0.00 124.0
3 94.94 98.31 97.19 96.63 0.00 138.0
4 91.57 91.57 91.57 93.26 2.81 171.0
5 84.27 83.71 84.27 84.27 11.24 176.8

Glass 2 51.87 58.88 56.54 56.54 0.00 33.0
3 63.08 62.62 62.62 63.08 0.00 44.0
4 53.27 62.15 59.35 61.22 2.34 65.0
5 62.62 64.02 61.68 62.62 4.67 95.0

Image 2 56.67 66.19 60.00 61.90 0.95 47.0
3 78.10 81.43 81.90 83.81 2.38 101.0
4 81.43 81.90 80.48 81.43 4.76 150.0
5 79.52 80.48 78.57 79.52 8.57 170.9

Cancer 2 95.03 96.35 95.18 96.78 0.00 135.0
3 95.61 95.61 95.61 96.20 1.02 254.0
4 78.95 79.09 78.94 79.37 18.13 312.7
5 70.76 70.76 70.76 70.91 25.73 325.7

and (b) fuzzy rules using weighting functions (i.e. columns titled new in tables). When fuzzy rules have certainty
grades, their performance is also included. As seen, classifier performance has improved in majority of cases for
different evaluation methods considered, especially for coarse fuzzy partitioning (i.e. K = 2, 3). This is true, because
for coarse partitioning, the covering subspace of each fuzzy rule is almost large such that there are some patterns in
each subdivision specified by splitting threshold. However, when fuzzy rules utilize certainty grades, the amount of
improvement is moderate because the classification accuracy is almost high and there is a little room for improvement.

Generally, the classification of a test pattern may be rejected due to lack of fuzzy rule compatible with that pattern,
especially when generating only a small subset of rules. As mentioned before, we generate fuzzy rule only if there are
some training patterns in the decision subspace of the rule. Intuitively, for fine fuzzy partitioning (i.e. K = 4, 5), the
covering subspace of generated rules decrease considerably, so the probability of rejection of test patterns increases as
shown in Tables 3 and 4.

6. Conclusion

In this paper, we examined the performance of fuzzy if-then rules extracted from numerical data for pattern classi-
fication problems using weighting function. This function divides the covering subspace of each fuzzy rule according
to a threshold and then enhances the compatibility grade of some patterns to classify them truly. Experimental results
showed that the proposed scheme can improve the classification accuracy considerably, especially when the size of
covering subspace is large. Additionally, when fuzzy rules have certainty grades, the performance of new approach
showed noticeable improvements.

The rule generation method used in this paper, generates rules having at least one training pattern in their decision
subspace. It makes sense when generating complete fuzzy rules or selecting only good rules based on an evaluation
metric, using weighting function will hopefully improve the performance of fuzzy classification systems.
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