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INTRODUCTION

Protein–protein interactions are key to the functioning of

all cells and many biological processes. To understand the

mechanism of a protein–protein interaction, the structure of a

protein complex is essential. Although many high-resolution

(X-ray) structures of protein complexes are available in the

protein data bank (PDB1), a vast number of protein complex

structures are not yet determined. Meanwhile, structural

genomics projects are underway,2 producing new structures of

proteins, many of them monomeric. With the crystal struc-

tures (or modeled structures) of the component monomers,

protein–protein docking (referred to as protein docking for

brevity) can be used to predict the structures of the protein

complex when no protein complex structure is available.

Recent developments in protein docking allow for atomic-scale

protein complex predictions,3 yet work needs to be done to

refine these methods so that they can be quickly and reliably

applied to unknown protein complexes.

Many protein docking algorithms are divided into several

steps: the initial global search and subsequent steps to improve

these initial predictions.4 The global search is a full search of

the orientations of the two proteins, typically keeping the

larger protein (referred to as the receptor) fixed, while moving

the smaller protein (the ligand). This is often a rigid-body

search in six dimensions, utilizing a fast Fourier transform

(FFT) for efficiency and softness for small overlaps,5–7 but

other methods such as Monte Carlo with side chain searching

have also been successful.8,9 The following steps can include

clustering,10,11 reranking,12 and structural refinement13 of

the initial set of predictions. Structural refinement is useful in

that it can improve the contacts and the accuracy of initial

predictions that are close to the correct conformation but also

have room for improvement.
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ABSTRACT

To determine the structures of protein–protein interac-

tions, protein docking is a valuable tool that comple-

ments experimental methods to characterize protein

complexes. Although protein docking can often produce

a near-native solution within a set of global docking

predictions, there are sometimes predictions that require

refinement to elucidate correct contacts and conforma-

tion. Previously, we developed the ZRANK algorithm to

rerank initial docking predictions from ZDOCK, a dock-

ing program developed by our lab. In this study, we have

applied the ZRANK algorithm toward refinement of pro-

tein docking models in conjunction with the protein

docking program RosettaDock. This was performed by

reranking global docking predictions from ZDOCK, per-

forming local side chain and rigid-body refinement using

RosettaDock, and selecting the refined model based on

ZRANK score. For comparison, we examined using

RosettaDock score instead of ZRANK score, and a larger

perturbation size for the RosettaDock search, and deter-

mined that the larger RosettaDock perturbation size

with ZRANK scoring was optimal. This method was

validated on a protein–protein docking benchmark. For

refining docking benchmark predictions from the newest

ZDOCK version, this led to improved structures of top-

ranked hits in 20 of 27 cases, and an increase from 23

to 27 cases with hits in the top 20 predictions. Finally,

we optimized the ZRANK energy function using refined

models, which provides a significant improvement over

the original ZRANK energy function. Using this opti-

mized function and the refinement protocol, the numbers

of cases with hits ranked at number one increased from

12 to 19 and from 7 to 15 for two different ZDOCK ver-

sions. This shows the effective combination of independ-

ently developed docking protocols (ZDOCK/ZRANK, and

RosettaDock), indicating that using diverse search and

scoring functions can improve protein docking results.
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Previously we have implemented several algorithms for

initial-stage docking and refinement: ZDOCK, RDOCK,

and ZRANK. The program ZDOCK performs a grid-

based docking search using FFT, and its scoring includes

desolvation, electrostatics, and a novel shape complemen-

tarity function.14 It has performed consistently among

the top algorithms during the critical assessment of pre-

dicted interactions (CAPRI) docking experiment;15 using

ZDOCK to perform docking led to five of six recent tar-

gets with at least one prediction rated Acceptable or

higher16 (the highest number among all participants).

ZDOCK was also found to compare favorably with other

FFT-based docking algorithms in a recent study on clus-

tering initial-stage docking predictions.17 Although

ZDOCK produces many near-native predictions (hits),

they are often not ranked in the top 10. To improve the

rank of the hits, RDOCK performs docking refinement

by reranking the top 2000 ZDOCK predictions using

energy minimization followed by scoring using electro-

statics and desolvation.18 Although RDOCK has been

shown to improve the success rate of ZDOCK predic-

tions, it lacks the ability to quickly process all 54,000 pre-

dictions from a ZDOCK run.

To account for this, we developed the ZRANK pro-

gram; it uses a weighted energy function with van der

Waals, electrostatics and desolvation terms to quickly and

effectively rerank the ZDOCK predictions without energy

minimization.19 It was tested on protein docking Bench-

mark 2.0,20 using predictions from two versions of

ZDOCK: ZDOCK 2.1 (which employs shape complemen-

tarity alone) and ZDOCK 2.3 (which employs shape

complementarity, desolvation, and electrostatics). In both

cases there was significant improvement in docking per-

formance when using ZRANK to rescore the rigid-body

predictions; the number of cases with top-ranked hits

increased from 2 to 11 for ZDOCK 2.1 and from 6 to 12

for ZDOCK 2.3.

It was noted that ZRANK could be followed with

structural refinement to further improve the docking suc-

cess rate.19 To examine this possibility, we have com-

bined the initial-stage docking of ZDOCK and scoring of

ZRANK with the structural refinement of RosettaDock.8

The local refinement of RosettaDock includes side chain

repacking and a Monte Carlo search of the local rigid-

body space of the ligand. Although RosettaDock can be

highly successful in obtaining atomically accurate models

through its refinement, it is sometimes unsuccessful in

locating near-native structures in its initial (Monte Carlo

based) global search due to the large size of the search

space, particularly for larger proteins.21 On the other

hand, ZDOCK is not as limited by size of the protein

structures, as it utilizes the FFT to scan the entire protein

translational space quickly.

In this study, we tested the effectiveness of refining the

initial-stage docking structures from ZDOCK and ZRANK

using RosettaDock, and selecting refined models using ei-

ther RosettaDock score or ZRANK score. Also we explored

using a larger perturbation size in the RosettaDock refine-

ment search, to determine whether this can allow for suc-

cessful refinement of models that are more distant from

native. Finally, we optimized the ZRANK scoring function

specifically to evaluate refined structures, which leads to a

significant improvement in accuracy.

MATERIALS AND METHODS

In this study, hits are defined as predictions with Ca

root-mean-square distance (RMSD) of less or equal to

than 2.5 Å after superposition with the interface atoms

in the crystal structure, as described by Chen et al.14

Near-hits are defined as having interface Ca RMSD

greater than 2.5 Å and less than or equal to 4.0 Å.

The initial-stage docking models were generated by

ZDOCK versions 2.314 and 3.0.22 For the ZDOCK runs,

68 rotational sampling was used, with different initial

rotations for each test case to avoid bias. The 76 rigid-

body and medium unbound Benchmark 2.0 cases were

used for docking. This was to provide as large a test set

as possible, without including the difficult cases that

would require explicit modeling of the large interface

conformational changes to produce near-native predic-

tions.20 For the antibody test cases, the search was re-

stricted to the complementarity determining regions for

the antibody cases, as described by Chen and Weng.6

ZRANK was used to rerank the ZDOCK models as

described previously,19 with polar hydrogens added to

the unbound proteins using RosettaDock prior to scor-

ing. For the refined structures, hydrogens were already in

the structures from RosettaDock. The nonpolar hydro-

gens (which were also added by RosettaDock) were

ignored by ZRANK.

For the docking refinement protocol, the Monte Carlo

refinement method of RosettaDock 2.0 was used,8 with

ZDOCK predictions as starting structures. Nonstandard

amino acids and nonprotein atoms were removed prior to

refinement, with exceptions where substitutions were pos-

sible (for example modeling MSE as MET). During refine-

ment, extra chi1 rotamers and chi2 aromatic rotamers

were included in the side chain searching. Unbound

rotamers were also used, as described by Wang et al.,23

with the exception of the cases with bound antibody

structures. Filtering was turned off, as it was found to lead

to no output for many ZDOCK predictions, due to the fil-

ter rejecting the models because of small clashes. Three

hundred refined models were generated for each starting

structure, similar to (but slightly smaller than) the 500–

1000 structures generated by Schueler-Furman et al.24

The Large Perturbation RosettaDock searching (Large

Pert) was achieved through modification of the Rosetta-

Dock code and setting Monte Carlo perturbations to 0.4

Å and 0.28, rather than the default perturbation (Default

Pert) size of 0.1 Å and 0.058.8
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To optimize the weights of the ZRANK terms for scor-

ing refined models, a downhill simplex was used to deter-

mine the weights, as was used for the original ZRANK.19

To generate the docking models for training, all three ini-

tial docking protocols used in this study (ZD2.3ZR,

ZD3.0, ZD3.0ZR) were utilized. This provided 37 Bench-

mark 2.0 cases with near-hits in the top 20 predictions.

For all of these cases, the top 20 models for each protocol

were refined by RosettaDock to produce 300 refined mod-

els. The downhill simplex was then used to maximize the

number of hits per test case, selecting the top-scoring pre-

diction (using the candidate weights) from the 300 refined

structures for each of the 20 models. The simplex opti-

mized the weights for the seven terms from the original

ZRANK, as well as a term for the IFACE potential.22 To

avoid missing the global minimum, 30 different simplex

starting points were used as well as five random restarts

from each minimum. For the success rate calculation,

five-fold cross validation was used. We divided the test

cases into five nonoverlapping sets, training the weights

with four sets and testing on the remaining set. This was

performed five times so that each set was tested using

weights from the remaining sets.

RESULTS

ZDOCK and ZRANK success rates for hits
and near-hits

To produce initial sets of structures for refinement,

ZDOCK versions 2.314 and 3.022 were run on all rigid-

body and medium difficulty cases from Benchmark 2.0,20

and ZRANK19 was then used to rerank all 54,000 of the

initial-stage docking predictions for each ZDOCK run.

ZDOCK 3.0 is a newly developed version of ZDOCK that

uses a pairwise interface statistical potential (IFACE) based

on improved atom-typing,25 and has been shown to have

significantly improved success on a docking benchmark.

We did not use ZDOCK 2.126 as its shape complementar-

ity scoring function is contained within ZDOCK 2.3 and

ZDOCK 3.0, and its performance is approximately the

same or less than that of ZDOCK 2.3.14

The success rate for each docking/scoring method for

the 63 rigid-body cases is given in Figure 1. For each

number of Np predictions allowed, the success rate

denotes the percentage of cases with a hit (or near-hit)

ranked within that set of predictions. As defined in the

Methods, hits are predictions with interface RMSD of

less than or equal to 2.5 Å from structure of the com-

plex, and near-hits are predictions with interface RMSD

greater than 2.5 Å and less than or equal to 4.0 Å from

the structure of the complex.

While the success rates of ZDOCK 2.3 and ZRANK

have already been investigated,19 Figure 1 provides a ba-

sis for examining how ZRANK performs when reranking

ZDOCK 3.0 models, and also how near-hit success com-

pares with hit success for these protocols. The hit success

rate for ZDOCK 2.3 and ZRANK (ZD2.3ZR) versus the

original ZDOCK 2.3 (ZD2.3) predictions represents a

strong improvement, as has already been noted.19 For

ZDOCK 3.0 followed by ZRANK (ZD3.0ZR), the success

rate is slightly lower than that of ZDOCK 3.0 (ZD3.0)

for the top few predictions (Np < 4). After this point,

the hit success rate of ZD3.0ZR is better than for ZD3.0

alone, and surpasses that of ZD2.3ZR at Np 5 20.

The near-hit success rates (Fig. 1, bottom) are shifted

up from those of the hits, reflecting the more lenient cut-

off. In general, the near-hit success rates follow the same

trends as the hit success rates. The top near-hit success

rates at Np 5 100 are highest for the ZRANK protocols

(ZD2.3ZR and ZD3.0ZR), both above 60%. In addition,

ZD3.0 gives a relatively high near-hit success rate, partic-

ularly for the top predictions.

Figure 1
Hit success rate (top) and hit and near-hit success rate (bottom) for ZDOCK

2.3 and ZDOCK 3.0 with and without ZRANK for the rigid-body cases of

Benchmark 2.0, versus number of predictions allowed (Np). Hits are defined as

having interface RMSD less than or equal to 2.5 Å from the complex structure

determined by X-ray crystallography, and for near-hits the RMSD is between 2.5

and 4.0 Å.
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Testing of RosettaDock sampling and
ZRANK scoring

On the basis of the success rates for ZRANK and

ZDOCK to produce initial hit and near-hit structures, we

chose to refine models generated by ZD2.3ZR, ZD3.0,

and ZD3.0ZR sets. The ZD2.3ZR, ZD3.0, and ZD3.0ZR

sets have 26, 27, and 27 cases, respectively, with hits or

near-hits in the top 20 predictions.

The schematic showing the basic steps we employed

for docking and refinement is given in Figure 2; the focus

of this study is the last two steps. For each test case, the

top 20 models from ZDOCK and ZRANK were refined

using RosettaDock to generate 300 models per predic-

tion. ZRANK was then used to score all 300 models for

each prediction, and the best scoring model of the 300

was selected for that prediction. Finally, these 20 refined

structures were reranked by ZRANK score. For compari-

son, we consider two alternatives: the use of the top

ZDOCK models for the input to refinement (rather than

ZDOCK and ZRANK) as illustrated by the top dotted

line (which was performed for the ZD3.0 set), and the

use of RosettaDock scores to select the refined structures

and rerank them (thus skipping the second ZRANK step)

as shown by the lower dotted line.

In addition to testing RosettaDock scores instead of

ZRANK scores to evaluate the structures, we also explored

using a larger rigid-body perturbation size in the Rosetta-

Dock structural refinement (as described in the Methods

section), referred to as large perturbation (Large Pert) ver-

sus default perturbation (Default Pert). This was per-

formed primarily to determine whether increasing the

search space would successfully refine the more distant hits

and near-hits. The evaluation of these refinement protocols

was performed via several metrics, and is given below.

Amount of structural improvement

To determine the degree of structural improvement

resulting from the refinement and reranking, we calculated

the interface RMSD of the refined structure and compared

it with the initial interface RMSD of the prediction for all

models that were initially near-hits (from the three dock-

ing protocols ZD2.3ZR, ZD3.0, and ZD3.0ZR). The histo-

gram of these RMSD changes is given in Figure 3.

For the RosettaDock scoring, the Default Pert search-

ing performed better than the Large Pert. In particular,

the Large Pert had a significant amount of models that

were worse than input by >0.8 Å. This can be explained

Figure 2
Protocol employed for docking and refinement (alternative protocols employed in

this study are indicated with dashed lines). The initial stage, which produces 20

rigid-body models, includes ZDOCK followed by ZRANK (alternatively the top

20 ZDOCK models are used). The model refinement, which is the focus of this

study, employs RosettaDock to refine each model to generate 300 structures per

rigid body prediction. These structures are rescored by ZRANK and the top

scoring model is selected from each set of 300. The resultant 20 predictions are

reranked using ZRANK score (alternatively RosettaDock score is used to select

and rerank the structures).

Figure 3
Histogram of interface RMSD change for all hit and near-hit models after

refinement using several search/scoring strategies. Each bin represents the

interface RMSD after refinement minus the interface RMSD of the model before

refinement. Default Pert 5 RosettaDock refinement with default perturbation

size, Large Pert 5 RosettaDock refinement with large perturbation size, Rosetta

5 RosettaDock score used to select the predictions, ZRANK 5 ZRANK score

used to select the predictions.
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by the fact that the RosettaDock scoring function and

search function were developed together, and the default

search size may be optimized for its scoring scheme.

Also in Figure 3 the improvement from ZRANK scor-

ing can be seen, resulting in significant differences in the

distributions from RosettaDock scoring. Using the Wil-

coxon rank sum test, the P-values for similarity between

the RosettaDock and ZRANK scoring RMSD distribu-

tions are 2.7 3 1028 and <2.2 3 10216 for Default Pert

and Large Pert, respectively. For all bins representing

structural improvement, the ZRANK scoring had more

predictions than for RosettaDock scoring. Comparing the

perturbation sizes for ZRANK scoring, they are approxi-

mately equal for the larger improvement bins, while the

Large Pert 1 ZRANK improved more predictions than

Default Pert 1 ZRANK for the under 0.4 Å range. The

Default Pert then had more predictions become slightly

and moderately worse, and Large Pert had some predic-

tions worsen by 0.8 Å or more while default had none.

Overall, the large perturbation performed better than

default perturbation for the ZRANK scoring.

Improved structures versus initial RMSD

To further examine the structural improvement from

refinement using these methods, we binned the predic-

tions based on their initial RMSDs and calculated per-

centage of cases with structural improvement for each

bin (see Fig. 4). This indicates which method performs

well for the more distant initial predictions. The dotted

line indicates 50% of cases improving; however, it should

be noted that random movement of the proteins might

not necessarily yield this high a rate of improvement.

It can be seen in Figure 4 that the RosettaDock Large

Pert 1 ZRANK gives the greatest overall performance in

structural improvement. In four of the six bins, it has the

highest percentage improved; and in five out of six of the

bins, it is above 60% improved (all of them are above

50%). The highest percentage improvement is for the bin

of 2.5–3.0 Å, which represents the most proximal near-

hits. Following this method in terms of performance is

default perturbation plus ZRANK and default perturba-

tion plus RosettaDock scoring.

Hits after refinement versus initial RMSD

In addition to the structural improvement, we also

measured the performance for hits after refinement for the

same refinement schemes (see Fig. 5). It should be noted

that performing no refinement at all would yield 100% hits

in the first three bins, and 0% hits in the latter three bins.

In this case, the default perturbation with ZRANK per-

formed slightly better than the large perturbation with

ZRANK for the bins with the smallest initial RMSDs.

Interestingly, the large perturbation with ZRANK has the

most hits for the bin from 3.5 to 4.0 Å starting RMSD,

in agreement with that the larger perturbation allowed

for more sampling in hit range for those distant predic-

tions than default perturbation. RosettaDock with default

perturbation also performed well, but not as high as the

ZRANK scoring with either perturbation size.

Score versus RMSD examples

One means to understand the effectiveness of a scoring

function is to plot the scores of the docking models ver-

sus the RMSD to see if there is a trend or funnel toward

the native structure. Such funnels are considered to be

Figure 4
Percent of models with RMSD improvement for several search/scoring strategies,

binned by initial interface RMSD of the models. The dotted line represents 50%

success rate. Protocols and abbreviations are the same as Figure 3.

Figure 5
Percent of models with hits after refinement for several search/scoring strategies.

binned by initial interface RMSD of the models. Protocols and abbreviations are

the same as Figure 3.
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part of the physical binding process,27–29 thus an accu-

rate energy function should be able to replicate this.

Plots of score versus RMSD for three test cases are shown

in Figure 6, using RosettaDock Large Pert for searching

and RosettaDock (top) and ZRANK (bottom) scoring.

For each test case, the top 10 model refinements are

shown, to illustrate how the scores and funnels appear

for both the near-native structures and those that are far

from native for that test case (the top 10 rather than the

top 20 were shown to simplify the plots).

In all three cases, there is a hit after refinement when

using the ZRANK scoring, and the energy funnels can be

seen for the near-hits and hits. This is not as evident

when using the RosettaDock scoring for these predic-

tions, as can be expected based on the overall results

described above (Figs. 3–5). Although it is not the top-

ranked prediction, the near-hit for 1MLC is refined to

0.98 Å using ZRANK scoring to select the top model,

close to the minimum rigid-body RMSD for this case

(0.6 Å). Also using ZRANK scoring, the top-ranked

model for 1RLB is a hit with 1.38 Å RMSD, and for

1CGI the near-hit model is refined from the initial 3.4 Å

RMSD to 2.33 Å RMSD, thus producing a hit from a

near-hit. In the case of 1CGI, the interface RMSD

between the superposed unbound and bound structures

is 2.02 Å, making this one of the more difficult of the

rigid-body Benchmark 2.0 cases.20

Detailed Results: ZD3.0ZR 1 RosettaDock
large perturbation 1 ZRANK

On the basis of analysis of the four different refine-

ment sampling and scoring schemes (Figs. 3–5), we chose

to utilize the ZRANK scoring and large perturbation of

RosettaDock for the remainder of this study.

Numbers of refined structures

Although we selected to use sets of 300 refined struc-

tures for this study, we examined the success rates for

using fewer than 300 refined structures from Rosetta-

Dock as input to the scoring. In this case, the success

rate is out of all hit and near-hit cases from ZD3.0ZR

selected as input to refinement. This is provided in Fig-

ure 7. Random subsets of predictions were selected from

the RosettaDock refined structures to determine the suc-

cess from sets of fewer than 300 predictions. The success

rates increase upon using more predictions from Rosetta-

Dock, with 300 predictions showing the highest overall

success rate, in particular for Np > 6. At 20 predictions,

using 300 refined structures and ZRANK has a 100%

success rate, indicating that all 27 cases that had hits or

near-hits in the top 20 prior to refinement had hits after

refinement. On the basis of this analysis, it is possible

that greater than 300 refined structures would provide

even greater success rate, however this was not tested

because of the computational limitations.

Hit statistics

To provide an illustration of the specific improvements

from this refinement, the detailed results for the refine-

ment of ZD3.0ZR models are given in Table I. As was noted

above regarding the success rate (see Fig. 7), all 27 cases

had hits after refinement, with four cases becoming hits

from near-hits. The number of cases with hits ranked at

Figure 6
Refinement of three test cases (1MLC, 1RLB, and 1CGI) with Rosetta scores (top) and ZRANK scores (bottom) versus interface RMSD of the predictions. For each case,

300 refinement models were generated for each of 10 input structures from ZD2.3ZR (1MLC), ZD3.0ZR (1RLB), and 1CGI (ZD3.0), using the large perturbation size for

RosettaDock refinement. Each point represents the score for one refinement model, and each point type represents refinement models for one input prediction. For each

input model, the top scoring refined model was retained for evaluation.

Rescoring and Refinement in Protein Docking

PROTEINS 275



no. 1 increased from 7 to 10 after refinement. For 20 of the

27 cases, the RMSD of the top hit was improved indicating

the structural improvement resulting from the refinement.

Refined structure example

In some cases, there were significant improvements of

RMSD, for example 1IQD (Factor VIII/Fab) for the

ZD3.0ZR set, which is shown in Figure 8. The original

model from ZDOCK, which had an interface RMSD of

4.18 Å, was refined by RosettaDock to produce 300

structures, and these models were scored by ZRANK to

select the structure shown, with 1.46 Å interface RMSD.

Figure 8 shows how the ligand in the final structure is

both shifted and rotated from the initial prediction to be

positioned more correctly on the receptor. Though it is

not the typical degree of RMSD improvement (as indi-

cated by Fig. 3), this demonstrates that it is possible to

sample adequately large space in the Rosetta refinement

to achieve significantly improved structures from the ini-

tial rigid-body prediction, and such structures can be

identified by ZRANK. Interestingly, there were several

predictions for this case with initial RMSD less than 4.0

Table I
Results for all Hit and Near-Hit Cases of the ZD3.0ZR Set, Before

and After Refinement

Test case

ZD3.0ZR Orig ZD3.0ZR 1 Ros 1 ZR

Hitsa Rankb RMSDc Hitsa Rankb RMSDc

1AVX 2 11 1.59 2 1 1.45
1BVN 1 16 1.55 1 3 2.49
1DFJ 3 2 2.06 2 2 2.24
1E6E 7 5 1.96 8 1 1.08
1EAW 0 — — 1 9 1.70
1MAH 6 3 1.10 6 1 0.93
1PPE 19 1 0.76 19 1 0.56
1UDI 0 — — 2 2 2.16
2SIC 9 1 1.38 9 1 0.60
7CEI 11 3 1.34 11 2 1.46
1E6J 9 1 1.58 3 8 1.57
1JPS 2 1 1.01 2 5 0.93
1MLC 3 5 1.14 3 9 1.02
1WEJ 4 2 0.75 3 4 0.62
2VIS 1 8 2.02 1 15 2.24
1B6C 4 2 2.38 10 1 2.42
1F51 2 3 1.67 2 2 1.75
1KAC 1 11 2.10 1 2 1.89
1KXP 0 — — 2 9 1.91
1ML0 9 1 1.25 9 1 1.24
1RLB 8 1 2.31 8 1 1.38
1BJ1 1 19 1.18 1 16 1.10
1FSK 17 1 1.05 17 1 1.54
1IQD 0 — — 1 18 1.46
1KXQ 2 14 1.29 2 6 0.95
1NCA 1 14 0.90 1 1 0.55
2QFW 3 6 1.80 1 5 1.63

aNumber of hits in the top 20 predictions.
bRank of the first hit; ‘‘—’’ denotes no hit was found in the top 20.
cInterface root-mean-square distance (RMSD) of the first hit, in Å; ‘‘—’’ denotes

no hit was found in the top 20.

Figure 7
Success rates of refinement for ZD3.0ZR predictions for hit and near-hit cases

for various numbers of RosettaDock refinement models. Success is defined as the

number of cases (out of 27 hit and near-hit cases from this set) that have a hit

in a given number of top-ranked predictions (Np). The large perturbation size

was used for RosettaDock, and ZRANK scoring was used to select and rerank

the refined model. Random subsets of RosettaDock refined models were selected

from a total of 300 for the smaller sizes numbers of predictions.

Figure 8
Refinement of ZD3.0ZR prediction no. 12 for test case 1IQD (Factor VIII/Fab)

with input ligand (red), refined ligand (green), and bound ligand (blue). The

bound receptor is colored gray. The refined structure was chosen by ZRANK

score of the 300 refined models from Rosetta. Figure generated with Pymol.30
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Å, and none of these became hits; this is possibly due to

the initial positioning having some hindrance preventing

the Monte Carlo algorithm from correctly positioning

the ligand and its side chains for those predictions.

Retraining weights for refinement

Based on the success of using the ZRANK scoring

function to rescore refined models, we retrained the

ZRANK weights to determine whether this would further

improve the refinement performance, in particular to

rank refined hits at no. 1. For several instances (such as

1MLC and 1CGI in Fig. 6) the near-hit structures were

refined well using RosettaDock and ZRANK scoring, but

the hit predictions were not ranked at no. 1 among the

top 20. This is possibly because the original ZRANK

weights were determined using rigid-body models from

ZDOCK, and though they are effective they may not be

optimal for discriminating refined predictions that

should have less clash and better side chain positions.

For instance, the van der Waals repulsive weight in

ZRANK is significantly smaller than the van der Waals

attractive to provide softness for the scoring of the rigid-

body predictions; for the refined predictions this softness

may not be as necessary.

Weights were retrained as described in the Methods

section, using five-fold cross validation with the original

ZRANK terms and also incorporating a term for the

pairwise IFACE potential.22 The cross-validation results

using these new weights are provided in Table II, along

with the initial results for comparison. The number of

cases with hits ranked at no. 1 is significantly higher

compared with the original predictions, and also com-

pared with the original ZRANK for refinement scoring.

The best performance for the retrained function is seen

for the ZD2.3ZR and ZD3.0ZR sets. Comparing the

results using the new weighted refinement with before

refinement, the number of cases with hits ranked at no. 1

increased from 12 initially to 19 (the ZD2.3ZR set) and

from 7 initially to 15 (the ZD3.0ZR set). For the

ZD2.3ZR set, the 19 cases with hits at no. 1 comprise

over 79% of the 25 cases with hits in the top 20. Both

refinement with the ZRANK weights and refinement with

the new weights led to significant improvements in the

number of cases with hits in the top 20 versus the origi-

nal unrefined models.

The weights obtained when training using the entire

set of cases are:

vdW attractive: 1.0

vdW repulsive: 0.23

electrostatics short-range attractive: 0.57

electrostatics short-range repulsive: 0.56

electrostatics long-range attractive: 1.09

electrostatics long-range repulsive: 0.29

ACE: 0.7

IFACE: 0.38

As anticipated, the repulsive van der Waals weight is

higher than for the original ZRANK weights, which was

0.009, representing less softness in the refinement scoring

function. As before, the electrostatics short-range terms

are similar to one another. The ACE and IFACE terms

both have significant weights and the sum of their weights

is approximately the same as the ACE weight for the origi-

nal ZRANK, where no IFACE term was present. Both

IFACE and ACE are contact potentials representing sol-

vent exclusion. ACE was parameterized based on atomic

contacts within chains of protein crystal structures.31 In

contrast, the IFACE function was developed using struc-

tures of transient protein–protein interfaces, and has 12

atom types rather than the 18 atom types of ACE.22,25

Ideally, IFACE should replace ACE entirely when evaluat-

ing protein–protein interfaces; however, the amount of

available training data is substantially less for IFACE than

for ACE, hence some energy terms may be better esti-

mated in ACE. As the weights and results indicate, these

terms complement each other well and help to improve

the accuracy of discriminating refined hits from nonhits.

CAPRI experiment

The CAPRI is an international experiment for testing

protein docking methods where participants make blind

predictions of protein complex structures.32 Recently, the

CAPRI experiment has featured a scoring sub-round

where a set of initial docking models (�1000–2000) from

several groups is rescored and refined by participants,

and the top 10 models are submitted for evaluation.

Table II
Number of Cases with Hits Ranked at No. 1 and in the Top 20; Before

Refinement, After Refinement with ZRANK (Ros 1 ZR), and After Refinement

with New ZRANK Refine Function (Ros 1 ZR Refine) for Three Sets of Initial

Predictions

Input

Original Ros 1 ZR
Ros 1 ZR
Refine

1a 20a 1a 20a 1a 20a

ZD2.3ZR 12 20 10 24 19 24
ZD3.0 10 19 9 23 13 21
ZD3.0ZR 7 23 10 27 15 26

aRank.

Table III
CAPRI Scoring Results for Using ZRANK and RosettaDock, with Numbers of

Acceptable and Medium Predictions Submitted in the 10 Predictions for Each

Target

Target Protein Acceptable Medium

T26 TolB/Pal 1 3
T27.2 E2-25K/Ubc9 7 0
T29 Trm8/Trm82 1 2
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We have used the CAPRI scoring experiment as an op-

portunity to test the combination of ZRANK and Roset-

taDock, with positive results (Table III). The CAPRI eval-

uation classifies docking predictions as acceptable (*),

medium (**), and high (***) accuracy. Our definition of

‘‘hits’’ is approximately between the criteria for ‘‘accepta-

ble’’ and ‘‘medium’’ for CAPRI. Our general protocol for

CAPRI scoring was to rescore input models with

ZRANK, filter false-positive models using known biologi-

cal data (e.g., if a C-term is known not to interact then

predictions involving an interface C-term are removed),

refine using RosettaDock, and rerank the refined struc-

tures using ZRANK.

For all three targets, we submitted at least one accepta-

ble prediction, and for two targets we submitted medium

predictions.16 For Target 26, where we utilized ZRANK

and Rosetta with default perturbation (selecting models

based on RosettaDock score) because we had not investi-

gated large perturbation at that time, we achieved three

medium and one acceptable predictions. In the case of

Target 27 (the second interface evaluated), we achieved

seven acceptable predictions, and for Target 29, for which

the protocol matches that of the present study with large

perturbation and ZRANK, we submitted two medium

and one acceptable predictions for the scoring sub-

round. For Target 28 (results not shown), no near-hits

were provided to the scorers so as a result there were no

acceptable predictions from any scorers.

It should be noted that the input predictions for the

CAPRI scoring are not necessarily from ZDOCK; in fact

as several groups are involved in producing initial struc-

tures some scoring structures are certainly not and may

include refined models or more clash than ZDOCK pre-

dictions, which was the original intent of ZRANK. How-

ever success in the context of the CAPRI scoring helps to

highlight the effectiveness of this algorithm.

Computational performance

The computational time of the Rosetta refinement pro-

tocol on a 2.2 GHz Linux machine was on average 9 h to

produce 300 refined structures from the input model.

Scoring the 300 refined structures with ZRANK took an

average of 4 min.

DISCUSSION

Protein docking often requires the effective usage of

several steps to produce accurate predictions.4 In this

study, we have explored an efficient global search with

rescoring and refinement, by combining the tools

ZDOCK, ZRANK, and RosettaDock. The combination of

these techniques has led to increased success on a dock-

ing benchmark and suggests that this is a promising ave-

nue for further improving protein complex prediction

success.

One interesting result from this study is the improve-

ment of using ZRANK scoring over RosettaDock scoring

when selecting refined docking models. It has been

shown that RosettaDock scoring, when used in the con-

text of the RosettaDock global search, is effective on a

docking benchmark.8 One major difference in this study

is that the models being refined are from rigid-body

docking using ZDOCK, rather than from the Rosetta

global search. The softness in the scoring function of

ZDOCK allows for slight side chain overlaps in the pre-

dictions; Rosetta is most likely not as tolerant of these as

ZRANK. This also explains the need for removal of the

filter when running the RosettaDock refinement, as dis-

cussed in the Methods section. On the other hand, the

ZRANK scoring function was parameterized to allow it

to effectively score rigid-body predictions.

The success rates and refinement RMSD changes (Figs.

3–5) highlight the performance differences between the

scoring functions and search strategies explored in this

study. It is particularly clear from the success rates in Fig-

ure 4 that the RosettaDock with large perturbation com-

bined with ZRANK scoring performs well for structural

refinement. Although RosettaDock scoring does perform

well when rescoring the refined models using RosettaDock

default perturbations, it is not as high a success rate as that

for either perturbation size with ZRANK.

The success rates of the refinement procedure

described here are further improved by reoptimization of

the scoring function for refined docking models. The

vast improvement in success of cases with hits ranked at

no. 1 is highly encouraging. Also informative are the

weights themselves resulting from the training; indicating

that the van der Waals repulsive provides more discrimi-

nation after refinement, where models (including hits)

no longer have clash that is inherent in rigid-body dock-

ing. The IFACE term also helps the scoring function.

Though its weight is roughly similar to that obtained for

ACE, training the scoring function without the IFACE

term yields lower success rates, though higher than those

from the original ZRANK weights (data not shown).

There have been several recent studies that have utilized

scoring functions specifically for protein docking refine-

ment. The program FireDock33 employs two different

weighted functions (one for enzyme/inhibitor systems, and

one for antibody-antigen systems), each with 11 terms to

score refined predictions (after rigid-body and side chain

refinement). Compared with this, the scoring function of

ZRANK is simpler and does not use separate weights for

different types of protein complexes. Another recently

developed scoring function, EMPIRE,34 uses an eight term

scoring function and a separate side chain energy function,

in conjunction with rotamer modeling and CHARMM

energy minimization.35 In that case, the structural

improvement of the predictions was more limited than

used in this study as it employs CHARMM energy minimi-

zation rather than the RosettaDock 6D search.
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Future work includes incorporating backbone move-

ments into the refinement search, to overcome limita-

tions imposed by backbone conformational change at the

binding interface. Also, the RosettaDock refinement algo-

rithm can possibly be modified to search more quickly

and just a subset of mobile side chains, so that more pre-

dictions can be effectively processed. This way the

remaining cases from the docking benchmark can con-

ceivably be included (those with hits and near-hits

ranked greater than 20) to improve the docking perform-

ance on these cases.

In summary, we have shown that it is possible to com-

bine the protein docking tools ZDOCK, RosettaDock,

and ZRANK in a systematic manner to improve the suc-

cess across a set of cases from a docking benchmark. In

this approach, the ZRANK algorithm was found to be

effective at rescoring the refined models from Rosetta-

Dock, in particular when utilizing a function specifically

trained for refined models.
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